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Chapter 1

Introduction

CVODE is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [14]. This suite consists of CVODE, KINSOL, and IDA, and variants of these with
sensitivity analysis capabilities.

1.1 Historical Background

FORTRAN solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are VODE [1] and VODPK [3]. VODE is a general purpose
solver that includes methods for stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
VODE is very similar to the well known solver LSODE [18]. VODPK is a variant of VODE that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
VODPK is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [2]. The
capabilities of both VODE and VODPK have been combined in the C-language package CVODE [8].

At present, CVODE contains three Krylov methods that can be used in conjuction with Newton
iteration: the GMRES (Generalized Minimal RESidual) [19], Bi-CGStab (Bi-Conjugate Gradient
Stabilized) [20], and TFQMR (Transpose-Free Quasi-Minimal Residual) linear iterative methods [9].
As Krylov methods, these require almost no matrix storage for solving the Newton equations as
compared to direct methods. However, the algorithms allow for a user-supplied preconditioner matrix,
and for most problems preconditioning is essential for an efficient solution. For very large stiff ODE
systems, the Krylov methods are preferable over direct linear solver methods, and are often the only
feasible choice. Among the three Krylov methods in CVODE, we recommend GMRES as the best overall
choice. However, users are encouraged to compare all three, especially if encountering convergence
failures with GMRES. Bi-CGFStab and TFQMR have an advantage in storage requirements, in that
the number of workspace vectors they require is fixed, while that number for GMRES depends on the
desired Krylov subspace size.

In the process of translating the VODE and vODPK algorithms into C, the overall CVODE organi-
zation has been changed considerably. One key feature of the CVODE organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a
separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in PVODE [6], the parallel variant
of CVODE.

Recently, the functionality of CVODE and PVODE has been combined into one single code, simply
called cvODE. Development of the new version of CVODE was concurrent with a redesign of the vector
operations module across the SUNDIALS suite. The key feature of the new NVECTOR module is that it
is written in terms of abstract vector operations with the actual vector kernels attached by a particular
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implementation (such as serial or parallel) of NVECTOR. This allows writing the SUNDIALS solvers in
a manner independent of the actual NVECTOR implementation (which can be user-supplied), as well
as allowing more than one NVECTOR module linked into an executable file.

There are several motivations for choosing the C language for CVODE. First, a general movement
away from FORTRAN and toward C in scientific computing is apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity, with
the great variety of method options offered. Finally, we prefer C over C++ for CVODE because of the
wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended FORTRAN.

1.2 Changes from previous versions

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.

A large number of minor errors have been fixed. Among these are the following: In CVSetTqBDF,
the logic was changed to avoid a divide by zero. After the solver memory is created, it is set to zero
before being filled. In each linear solver interface function, the linear solver memory is freed on an error
return, and the *xFree function now includes a line setting to NULL the main memory pointer to the
linear solver memory. In the rootfinding functions CVRcheck1/CVRcheck2, when an exact zero is found,
the array glo of g values at the left endpoint is adjusted, instead of shifting the ¢ location tlo slightly.
In the installation files, we modified the treatment of the macro SUNDIALS USE_GENERIC_MATH,
so that the parameter GENERIC_MATH_LIB is either defined (with no value) or not defined.

Changes in v2.6.0

Two new features were added in this release: (a) a new linear solver module, based on Blas and Lapack
for both dense and banded matrices, and (b) an option to specify which direction of zero-crossing is
to be monitored while performing rootfinding.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including the new Lapack-based ones, were also organized
into a direct family); (b) maintaining a single pointer to user data, optionally specified through a
Set-type function; and (c) a general streamlining of the preconditioner modules distributed with the
solver.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including SUNDIALS header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the instaltion include directory.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were
modified to work for rectangular m xn matrices (m < n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.
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Changes in v2.4.0

CVSPBCG and CVSPTFQMR modules have been added to interface with the Scaled Preconditioned Bi-
CGstab (spBcG) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (SPTFQMR) linear
solver modules, respectively (for details see Chapter 4). Corresponding additions were made to the
FORTRAN interface module FCVODE. At the same time, function type names for Scaled Preconditioned
Iterative Linear Solvers were added for the user-supplied Jacobian-times-vector and preconditioner
setup and solve functions.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (cvode_ and sundials_). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user
data right after its use. The build systems has been further improved to make it more robust.

Changes in v2.2.1

The changes in this minor SUNDIALS release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
SUNDIALS suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, CVODE now provides a
set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §4.5.6 and §4.5.8.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians
and preconditioner information) were simplified by reducing the number of arguments. The same
information that was previously accessible through such arguments can now be obtained through
Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the ODE system.

Installation of cVODE (and all of SUNDIALS) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We
expect that some readers will want to concentrate on the general instructions, while others will refer
mostly to the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of CVODE. The most casual user, with a small IVP
problem only, can get by with reading §2.1, then Chapter 4 through §4.5.5 only, and looking at
examples in [15]. In a different direction, a more expert user with an IVP problem may want to
(a) use a package preconditioner (§4.7), (b) supply his/her own Jacobian or preconditioner routines
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(84.6), (c) do multiple runs of problems of the same size (§4.5.9), (d) supply a new NVECTOR module
(Chapter 6), or even (e) supply a different linear solver module (§3.2 and Chapter 7).
The structure of this document is as follows:

e In Chapter 2, we give short descriptions of the numerical methods implemented by ¢vODE for
the solution of initial value problems for systems of ODEs, and continue with short descriptions
of preconditioning (§2.2), stability limit detection (§2.3), and rootfinding (§2.4).

e The following chapter describes the structure of the SUNDIALS suite of solvers (§3.1) and the
software organization of the CVODE solver (§3.2).

e Chapter 4 is the main usage document for CVODE for C applications. It includes a complete
description of the user interface for the integration of ODE initial value problems.

e In Chapter 5, we describe FCVODE, an interface module for the use of CVODE with FORTRAN
applications.

e Chapter 6 gives a brief overview of the generic NVECTOR module shared among the various com-
ponents of SUNDIALS, and details on the two NVECTOR implementations provided with SUNDIALS:
a serial implementation (§6.1) and a parallel implementation based on MPT (§6.2).

e Chapter 7 describes the interfaces to the linear solver modules, so that a user can provide his/her
own such module.

e Chapter 8 describes in detail the generic linear solvers shared by all SUNDIALS solvers.

e Finally, in the appendices, we provide detailed instructions for the installation of CVODE, within
the structure of SUNDIALS (Appendix A), as well as a list of all the constants used for input to
and output from CVODE functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as CVodeInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as CVDENSE, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.

Acknowledgments. We wish to acknowledge the contributions to previous versions of the CVODE
and PVODE codes and their user guides by Scott D. Cohen [7] and George D. Byrne [5].



Chapter 2

Mathematical Considerations

CVODE solves ODE initial value problems (IVPs) in real N-space, which we write in the abstract form

y = f(tvy) ) y(tO) = Yo, (21)

where y € RY. Here we use ¢ to denote dy /dt. While we use ¢ to denote the independent variable, and
usually this is time, it certainly need not be. CVODE solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time
constant is small compared to the time scale of the solution itself.

2.1 IVP solution

The methods used in CVODE are variable-order, variable-step multistep methods, based on formulas
of the form

K1 . Ko ‘
Z an,iyn_l + hn Z ﬁn,iyn_z =0. (22)
1=0 =0

Here the y™ are computed approximations to y(t,), and h,, = t,, — t,—1 is the step size. The user
of CVODE must choose appropriately one of two multistep methods. For nonstiff problems, CVODE
includes the Adams-Moulton formulas , characterized by K; = 1 and Ky = ¢q above, where the order
q varies between 1 and 12. For stiff problems, CVODE includes the Backward Differentiation Formulas
(BDF's) in so-called fixed-leading coefficient form, given by K; = g and K = 0, with order ¢ varying
between 1 and 5. The coefficients are uniquely determined by the method type, its order, the recent

history of the step sizes, and the normalization o, o = —1. See [4] and [17].
For either choice of formula, the nonlinear system
G(yn) = yn - hnﬁn,of(tnvyn) —Qan = 0, (23)

where a,, = Zi>0(an7iy”_i + hnBn,iy" "), must be solved (approximately) at each integration step.
For this, cVODE offers the choice of either functional iteration, suitable only for nonstiff systems, and
various versions of Newton iteration. Functional iteration, given by

yn(erl) = hn/Bn,Of(tna yn(m)) + ap ,

involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

Myt — ] = Gy ) (2.4)
in which
M~I—-~J, J=0f/0y, and v =h,0lno. (2.5)
n(0)

The initial guess for the iteration is a predicted value y computed explicitly from the available

history data.
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For the solution of the linear systems within the Newton corrections, CVODE provides several
choices, including the option of an user-supplied linear solver module. The linear solver modules
distributed with SUNDIALS are organized in two families, a direct family comprising direct linear
solvers for dense or banded matrices and a spils family comprising scaled preconditioned iterative
(Krylov) linear solvers. In addition, CVODE also provides a linear solver module which only uses a
diagonal approximation of the Jacobian matrix. The methods offered through these modules are as
follows:

e dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial version only),

e band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial version only),

e a diagonal approximate Jacobian solver,

e SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver without
restarts,

e SPBCG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver, or

e SPTFQMR, a scaled preconditioned TFQMR, (Transpose-Free Quasi-Minimal Residual method)
solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator
and any of the preconditioned Krylov methods (SPGMR, SPBCG, or SPTFQMR) yields a powerful tool
because it combines established methods for stiff integration, nonlinear iteration, and Krylov (linear)
iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [2]. Note that the direct linear solvers (dense and band) can only
be used with serial vector representations.

In the process of controlling errors at various levels, CVODE uses a weighted root-mean-square
norm, denoted || - ||wrms, for all error-like quantities. The multiplicative weights used are based on
the current solution and on the relative and absolute tolerances input by the user, namely

W; = 1/[RTOL - |y;| + ATOL;] . (2.6)

Because 1/W,; represents a tolerance in the component y;, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, or diagonal), the iteration is a Modified Newton itera-
tion, in that the iteration matrix M is fixed throughout the nonlinear iterations. However, for any of
the Krylov methods, it is an Inexact Newton iteration, in which M is applied in a matrix-free manner,
with matrix-vector products Jv obtained by either difference quotients or a user-supplied routine.
The matrix M (direct cases) or preconditioner matrix P (Krylov cases) is updated as infrequently as
possible to balance the high costs of matrix operations against other costs. Specifically, this matrix
update occurs when:

e starting the problem,
e more than 20 steps have been taken since the last update,

e the value 4 of v at the last update satisfies |y/5 — 1| > 0.3,

a non-fatal convergence failure just occurred, or
e an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not involve a reevaluation
of J (in M) or of Jacobian data (in P), depending on whether Jacobian error was the likely cause of
the failure. More generally, the decision is made to reevaluate J (or instruct the user to reevaluate
Jacobian data in P) when:
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e starting the problem,
e more than 50 steps have been taken since the last evaluation,

e a convergence failure occurred with an outdated matrix, and the value 7 of v at the last update
satisfies |y/7 — 1] < 0.2, or

e a convergence failure occurred that forced a step size reduction.

The stopping test for the Newton iteration is related to the subsequent local error test, with the
goal of keeping the nonlinear iteration errors from interfering with local error control. As described
below, the final computed value y™(™) will have to satisfy a local error test [|y™(™) —y™()|| < e. Letting
y™ denote the exact solution of (2.3), we want to ensure that the iteration error y” — y™(™) is small
relative to €, specifically that it is less than 0.1e. (The safety factor 0.1 can be changed by the user.)
For this, we also estimate the linear convergence rate constant R as follows. We initialize R to 1, and
reset R =1 when M or P is updated. After computing a correction 6, = y"(™ —y™(™=1) e update
Rifm>1as

R — max{0.3R, [[0m||/[|6m—1ll} -

Now we use the estimate
ly™ =y & gD — g | s Rily™ ™ — gD = RSl
Therefore the convergence (stopping) test is
R||6,m]| < 0.1€.

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration
diverged if any ||0,,]|/]|0m—1]| > 2 with m > 1. If convergence fails with J or P current, we are forced
to reduce the step size, and we replace h,, by h, /4. The integration is halted after a preset number
of convergence failures; the default value of this limit is 10, but this can be changed by the user.

When a Krylov method is used to solve the linear system, its errors must also be controlled, and
this also involves the local error test constant. The linear iteration error in the solution vector 6,, is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the
linear iteration errors do not interfere with the nonlinear error and local integration error controls, we
require that the norm of the preconditioned residual be less than 0.05 - (0.1¢).

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or
approximated by difference quotients, at the user’s option. In the latter case, we use the usual
approximation

Jij = lfilt,y + oje5) — fi(t,y)]/o; -

The increments o; are given by
0 = max{ﬁ |yj|,0'0/Wj} y

where U is the unit roundoff, oy is a dimensionless value, and W is the error weight defined in (2.6).
In the dense case, this scheme requires N evaluations of f, one for each column of J. In the band case,
the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of
f evaluations equal to the bandwidth.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both,
with user-supplied routines for the preconditioning setup and solve operations, and optionally also
for the required matrix-vector products Jv. If a routine for Jv is not supplied, these products are
computed as

Ju = [f(t,y +ov) — f(t,y)]/o. (2.7)

The increment o is 1/||v]|, so that ov has norm 1.
A critical part of CVODE — making it an ODE “solver” rather than just an ODE method, is its
control of local error. At every step, the local error is estimated and required to satisfy tolerance
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conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order ¢ and step size h, satisfies an
asymptotic relation

LTE = Chet1ya+t) L O(hat?)

for some constant C', under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor y™©. These are combined to get a relation

LTE = C'[y" — y" O] + O(h9?).

The local error test is simply |[LTE|| < 1. Using the above, it is performed on the predictor-corrector
difference A,, = y™™) — ™) (with y™™) the final iterate computed), and takes the form

ARl < e=1/1C".

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step size
h' is computed based on the asymptotic behavior of the local error, namely by the equation

(A /R) T Al = €/6.

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails
three times, the order ¢ is reset to 1 (if ¢ > 1), or the step is restarted from scratch (if ¢ = 1). The
ratio A'/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after three.
After seven failures, CVODE returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODE periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1 and varies the
order dynamically after that. The basic idea is to pick the order ¢ for which a polynomial of order ¢
best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change in step size or order is done.
At the current order ¢, selecting a new step size is done exactly as when the error test fails, giving a
tentative step size ratio

W b= (e/6]| A )0 =,

We consider changing order only after taking ¢ + 1 steps at order ¢, and then we consider only orders
¢d=q—1(Gfg>1)or¢ =qg+1 (if ¢ <5). The local truncation error at order ¢’ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q’),
behaves asymptotically as h?+1. With safety factors of 1/6 and 1/10 respectively, these ratios are:

K /h = [1/6||LTE(g — 1)|]/* = 141

and
K /b= [1/10|[LTE(q + D[]/ = ngyy .

The new order and step size are then set according to

n= max{nq—lanq7nq+1} B hl = 77h7

with ¢’ set to the index achieving the above maximum. However, if we find that n < 1.5, we do not
bother with the change. Also, h’/h is always limited to 10, except on the first step, when it is limited
to 10%.

The various algorithmic features of CVODE described above, as inherited from the solvers VODE
and VODPK, are documented in [1, 3, 13]. They are also summarized in [14].

Normally, CVODE takes steps until a user-defined output value ¢ = t4,¢ is overtaken, and then it
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force CVODE not to integrate
past a given stopping point ¢ = tstop-
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2.2 Preconditioning

When using a Newton method to solve the nonlinear system (2.3), CVODE makes repeated use of
a linear solver to solve linear systems of the form Mx = —r, where x is a correction vector and
r is a residual vector. If this linear system solve is done with one of the scaled preconditioned
iterative linear solvers, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Az = b can be
preconditioned on the left, as (P~ A)z = P~1b; on the right, as (AP~!)Px = b; or on both sides, as
(PL_lAPIgl)PRx = PL_lb. The Krylov method is then applied to a system with the matrix P~ A, or
AP~ or P, 1APE ! instead of A. In order to improve the convergence of the Krylov iteration, the
preconditioner matrix P, or the product Pz Pr in the last case, should in some sense approximate the
system matrix A. Yet at the same time, in order to be cost-effective, the matrix P, or matrices Py, and
Pg, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff between
rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for
example, see [2] for an extensive study of preconditioners for reaction-transport systems).

The CVODE solver allow for preconditioning either side, or on both sides, although we know of no
situation where preconditioning on both sides is clearly superior to preconditioning on one side only
(with the product P Pgr). Moreover, for a given preconditioner matrix, the merits of left vs. right
preconditioning are unclear in general, and the user should experiment with both choices. Performance
will differ because the inverse of the left preconditioner is included in the linear system residual whose
norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner is the product
of two matrices, we recommend that preconditioning be done either on the left only or the right only,
rather than using one factor on each side.

Typical preconditioners used with CVODE are based on approximations to the system Jacobian,
J = 0f/0y. Since the Newton iteration matrix involved is M = I — ~.J, any approximation J to
J yields a matrix that is of potential use as a preconditioner, namely P = I — ~.J. Because the
Krylov iteration occurs within a Newton iteration and further also within a time integration, and
since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical feature(s) of the system. We
have found that the combination of a preconditioner with the Newton-Krylov iteration, using even
a fairly poor approximation to the Jacobian, can be surprisingly superior to using the same matrix
without Krylov acceleration (i.e., a modified Newton iteration), as well as to using the Newton-Krylov
method with no preconditioning.

2.3 BDF stability limit detection

CVODE includes an algorithm, STALD (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods is certain situations, as
described below.

When the BDF option is selected, CVODE uses Backward Differentiation Formula methods of orders
1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant A in the
open left half-plane, the method is unconditionally stable (for any step size) for the standard scalar
model problem ¢ = Ay. For an ODE system, this means that, roughly speaking, as long as all modes
in the system are stable, the method is also stable for any choice of step size, at least in the sense of
a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each
case, in order for the method to be stable at step size h on the scalar model problem, the product AA
must lie in a region of absolute stability. That region excludes a portion of the left half-plane that is
concentrated near the imaginary axis. The size of that region of instability grows as the order increases
from 3 to 5. What this means is that, when running BDF at any of these orders, if an eigenvalue A of
the system lies close enough to the imaginary axis, the step sizes h for which the method is stable are
limited (at least according to the linear stability theory) to a set that prevents h\ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region
is much narrower than at order 5, so the potential for unstable behavior grows with order.
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System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary axis.
Problems with modes of that kind call for different considerations, since the oscillation generally must
be followed by the solver, and this requires step sizes (h ~ 1/v, where v is the frequency) that are
stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the solution is
eventually damped to the noise level, and at that time it is important that the solver not be restricted
to step sizes on the order of 1/v. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection
option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs discretized
in space) with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix of
the two with advection dominant will have weakly damped oscillatory modes.

The STALD algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [11]. The algo-
rithm supplements (but differs greatly from) the existing algorithms in ¢VODE for choosing step size
and order based on estimated local truncation errors. It works directly with history data that is readily
available in CVODE. If it concludes that the step size is in fact stability-limited, it dictates a reduction
in the method order, regardless of the outcome of the error-based algorithm. The STALD algorithm has
been tested in combination with the VODE solver on linear advection-dominated advection-diffusion
problems [12], where it works well. The implementation in CVODE has been successfully tested on
linear and nonlinear advection-diffusion problems, among others.

This stability limit detection option adds some overhead computational cost to the CVODE solution.
(In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on the size
and complexity of the problem, with lower relative costs for larger problems.) Therefore, it should
be activated only when there is reasonable expectation of modes in the user’s system for which it
is appropriate. In particular, if a CVODE solution with this option turned off appears to take an
inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution time
scale, then there is a good chance that step sizes are being limited by stability, and that turning on
the option will improve the efficiency of the solution.

2.4 Rootfinding

The CVODE solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (2.1), CVODE can also find the roots of a set of user-defined
functions g¢;(t,y) that depend on ¢ and the solution vector y = y(t). The number of these root
functions is arbitrary, and if more than one g; is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the ¢ axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of g;(t,y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by cvODE. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(¢) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [10].
In addition, each time g is computed, CVODE checks to see if g;(t) = 0 exactly, and if so it reports this
as a root. However, if an exact zero of any g; is found at a point ¢, CVODE computes g at ¢t + § for a
small increment ¢, slightly further in the direction of integration, and if any g;(t + ¢) = 0 also, CVODE
stops and reports an error. This way, each time CVODE takes a time step, it is guaranteed that the
values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, CVODE has an interval (¢, tp;] in which roots of the g;(t) are to be sought, such that ¢p; is
further ahead in the direction of integration, and all g;(¢;,) # 0. The endpoint ¢y; is either ¢,,, the end
of the time step last taken, or the next requested output time tq,; if this comes sooner. The endpoint
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t1, is either t,,_1, or the last output time ¢,y (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward ¢, if an exact
zero was found. The algorithm checks g at tj; for zeros and for sign changes in (¢;,,tp;). If no sign
changes are found, then either a root is reported (if some g;(t5;) = 0) or we proceed to the next time
interval (starting at tp;). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

7=100%U * (|t,| + |h]) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |g;(tni)|/|g9:(tni) — gi(ti0)|, corresponding to the
closest to t;, of the secant method values. At each pass through the loop, a new value t,,;4 is set,
strictly within the search interval, and the values of g;(tiq) are checked. Then either ¢;, or tp; is reset
t0 tmiq according to which subinterval is found to have the sign change. If there is none in (¢i0, tmid)
but some g;(tmiq) = 0, then that root is reported. The loop continues until |tp; — €| < 7, and then
the reported root location is t;.
In the loop to locate the root of g;(t), the formula for ¢,,,q4 is

tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where o a weight parameter. On the first two passes through the loop, « is set to 1, making t,,iq
the secant method value. Thereafter, « is reset according to the side of the subinterval (low vs high,
i.e. toward t;, vs toward t5;) in which the sign change was found in the previous two passes. If the
two sides were opposite, « is set to 1. If the two sides were the same, « is halved (if on the low
side) or doubled (if on the high side). The value of t,,;q is closer to t;, when a < 1 and closer to tp;
when a > 1. If the above value of t,,;4 is within 7/2 of t;, or tz;, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.






Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as SUNDIALS consists of the solvers CVODE (for ODE systems), KINSOL
(for nonlinear algebraic systems), and DA (for differential-algebraic systems). In addition, SUNDIALS
also includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or
adjoint methods): CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 3.1). The following is a list
of the solver packages presently available:

e CVODE, a solver for stiff and nonstiff ODEs dy/dt = f(t,y);

e CVODES, a solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

e DA, a solver for differential-algebraic systems F'(t,y,y) = 0;

e 1DAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;

e KINSOL, a solver for nonlinear algebraic systems F(u) = 0.

3.2 CVODE organization

The ¢VODE package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the CVODE package is shown in Figure 3.2. The central integration
module, implemented in the files cvode.h, cvode_impl.h, and cvode.c, deals with the evaluation of
integration coefficients, the functional or Newton iteration process, estimation of local error, selection
of stepsize and order, and interpolation to user output points, among other issues. Although this
module contains logic for the basic Newton iteration algorithm, it has no knowledge of the method
being used to solve the linear systems that arise. For any given user problem, one of the linear system
modules is specified, and is then invoked as needed during the integration.

At present, the package includes the following eight CVODE linear algebra modules, organized into
two families. The direct familiy of linear solvers provides solvers for the direct solution of linear
systems with dense or banded matrices and includes:

e CVDENSE: LU factorization and backsolving with dense matrices (using either an internal im-
plementation or Blas/Lapack);

e CVBAND: LU factorization and backsolving with banded matrices (using either an internal im-
plementation or Blas/Lapack);

The spils family of linear solvers provides scaled preconditioned iterative linear solvers and includes:
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Figure 3.1: Organization of the SUNDIALS suite
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Figure 3.2: Overall structure diagram of the CVODE package. Modules specific to CVODE are distin-
guished by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes. Note
that the direct linear solvers using Lapack implementations are not explicitly represented.

e CVSPGMR: scaled preconditioned GMRES method;
e CVSPBCG: scaled preconditioned Bi-CGStab method;
e CVSPTFQMR: scaled preconditioned TFQMR method.
Additionally, CVODE includes:
e CVDIAG: an internally generated diagonal approximation to the Jacobian;

The set of linear solver modules distributed with CVODE is intended to be expanded in the future as
new algorithms are developed.

In the case of the direct methods CVDENSE and CVBAND the package includes an algorithm for the
approximation of the Jacobian by difference quotients, but the user also has the option of supplying the
Jacobian (or an approximation to it) directly. In the case of the Krylov iterative methods CVSPGMR,
CVSPBCG, and CVSPTFQMR, the package includes an algorithm for the approximation by difference
quotients of the product between the Jacobian matrix and a vector of appropriate length. Again,
the user has the option of providing a routine for this operation. For the Krylov methods, the
preconditioning must be supplied by the user, in two phases: setup (preprocessing of Jacobian data)
and solve. While there is no default choice of preconditioner analogous to the difference-quotient
approximation in the direct case, the references [2, 3], together with the example and demonstration
programs included with CVODE, offer considerable assistance in building preconditioners.

Each cvODE linear solver module consists of four routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, and only as required to achieve
convergence. The call list within the central cvODE module to each of the five associated functions is
fixed, thus allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. With the exception of CVDIAG and the modules
interfacing to Lapack linear solvers, each of the modules CVDENSE, CVBAND, CVSPGMR, CVSPBCG, and
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CVSPTFQMR is a set of interface routines built on top of a generic solver module, named DENSE, BAND,
SPGMR, SPBCG, and SPTFQMR, respectively. The interfaces deal with the use of these methods in the
CVODE context, whereas the generic solver is independent of the context. While the generic solvers
here were generated with SUNDIALS in mind, our intention is that they be usable in other applications
as general-purpose solvers. This separation also allows for any generic solver to be replaced by an
improved version, with no necessity to revise the CVODE package elsewhere.

CVODE also provides two preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first one, CVBANDPRE, is intended to be used with NVECTOR_SERIAL and provides a
banded difference-quotient Jacobian-based preconditioner, with corresponding setup and solve rou-
tines. The second preconditioner module, CVBBDPRE, works in conjunction with NVECTOR_PARALLEL
and generates a preconditioner that is a block-diagonal matrix with each block being a band matrix.

All state information used by CVODE to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the CVODE package, and so in this
respect it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the CVODE memory structure. The reentrancy of CVODE was motivated
by the anticipated multicomputer extension, but is also essential in a uniprocessor setting where two
or more problems are solved by intermixed calls to the package from within a single user program.



Chapter 4

Using CVODE for C Applications

This chapter is concerned with the use of CVODE for the solution of initial value problems (IVPs) in
a C language setting. The following sections treat the header files and the layout of the user’s main
program, and provide descriptions of the CVODE user-callable functions and user-supplied functions.

The sample programs described in the companion document [15] may also be helpful. Those codes
may be used as templates (with the removal of some lines used in testing) and are included in the
CVODE package.

Users with applications written in FORTRANT7 should see Chapter 5, which describes the FOR-
TRAN/C interface module.

The user should be aware that not all linear solver modules are compatible with all NVECTOR
implementations. For example, NVECTOR_PARALLEL is not compatible with the direct dense or direct
band linear solvers since these linear solver modules need to form the complete system Jacobian.
The following CVODE modules can only be used with NVECTOR_SERIAL: CVDENSE, CVBAND (using
either the internal or the Lapack implementation) and CVBANDPRE. Also, the preconditioner module
CVBBDPRE can only be used with NVECTOR_PARALLEL.

CVODE uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of CVODE, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by cvODE. The relevant library files are

e [ibdir/libsundials_cvode. lib,
e [ibdir/libsundials _nvec*.[ib (one or two files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

e incdir/include/cvode
e incdir/include/sundials
e incdir/include/nvector

The directories libdir and incdir are the install library and include directories, resp. For a default
installation, these are instdir/lib and instdir/include, respectively, where instdir is the directory
where SUNDIALS was installed (see Appendix A).
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4.2 Data Types

The sundials_types.h file contains the definition of the type realtype, which is used by the SUNDIALS
solvers for all floating-point data. The type realtype can be float, double, or long double, with
the default being double. The user can change the precision of the SUNDIALS solvers arithmetic at
the configuration stage (see §A.1.1).

Additionally, based on the current precision, sundials_types.h defines BIG_REAL to be the largest
value representable as a realtype, SMALL _REAL to be the smallest value representable as a realtype,
and UNIT_ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “I” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS
uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying
the code to use realtype, so long as the SUNDIALS libraries use the correct precision (for details see

§A.1.1).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

e cvode.h, the main header file for CVODE, which defines the several types and various constants,
and includes function prototypes.

Note that cvode.h includes sundials_types.h, which defines the types realtype and booleantype
and the constants FALSE and TRUE.

The calling program must also include an NVECTOR implementation header file (see Chapter 6
for details). For the two NVECTOR implementations that are included in the CVODE package, the
corresponding header files are:

e nvector_serial.h, which defines the serial implementation NVECTOR_SERIAL;
e nvector_parallel.h, which defines the parallel (MPI) implementation, NVECTOR_PARALLEL.

Note that both these files in turn include the header file sundials nvector.h which defines the
abstract N_Vector data type.

Finally, if the user chooses Newton iteration for the solution of the nonlinear systems, then a linear
solver module header file will be required. The header files corresponding to the various linear solvers
availble for use with CVODE are:

e cvode_dense.h, which is used with the dense direct linear solver;

e cvode_band.h, which is used with the band direct linear solver;
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e cvode_lapack.h, which is used with Lapack implementations of dense or band direct linear
solvers;

e cvode_diag.h, which is used with the diagonal linear solver;

e cvode_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov linear solver
SPGMR;

e cvode_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab Krylov linear solver
SPBCG;

e cvode_sptfqmr.h, which is used with the scaled, preconditioned TFQMR Krylov solver SpT-
FQMR;

The header files for the dense and banded linear solvers (both internal and Lapack) include the file
cvode_direct.h, which defines common functions. This in turn includes a file (sundials_direct.h)
which defines the matrix type for these direct linear solvers (D1sMat), as well as various functions and
macros acting on such matrices.

The header files for the Krylov iterative solvers include cvode_spils.h which defines common
functions and which in turn includes a header file (sundials_iterative.h) which enumerates the
kind of preconditioning and (for the SPGMR solver only) the choices for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
cvDiurnal kry p example (see [15]), preconditioning is done with a block-diagonal matrix. For this,
even though the CVSPGMR linear solver is used, the header sundials_dense.h is included for access
to the underlying generic dense linear solver.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an
ODE IVP. Some steps are independent of the NVECTOR implementation used; where this is not the
case, usage specifications are given for the two implementations provided with CVODE: steps marked
[P] correspond to NVECTOR-PARALLEL, while steps marked [S] correspond to NVECTOR_SERIAL.

1. [P] Initialize MPI
Call MPI_Init(&argc, &argv) to initialize MPI if used by the user’s program. Here argc and
argv are the command line argument counter and array received by main, respectively.
2. Set problem dimensions
[S] Set N, the problem size N.
[P] Set Nlocal, the local vector length (the sub-vector length for this process); N, the global

vector length (the problem size N, and the sum of all the values of Nlocal); and the active set of
processes.

3. Set vector of initial values

To set the vector yO of initial values, use the appropriate functions defined by the particular
NVECTOR implementation. If a realtype array ydata containing the initial values of y already
exists, then make the call:

[S] yO = N_VMake Serial(N, ydata);

[P] yO = N_VMake Parallel(comm, Nlocal, N, ydata);
Otherwise, make the call:

[S] yO = N_VNew Serial(N);

[P] yO = N_VNew Parallel(comm, Nlocal, N);
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10.

11.

and load initial values into the structure defined by:
[S] NV_DATA_S(y0)
[P] NV_DATA P(y0)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active processes
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processes are
to be used, comm must be MPT_COMM_WORLD.

. Create CVODE object

Call cvode mem = CVodeCreate(lmm, iter) to create the CVODE memory block and to specify
the solution method (linear multistep method and nonlinear solver iteration type). CVodeCreate
returns a pointer to the CVODE memory structure. See §4.5.1 for details.

Initialize CVODE solver

Call CVodeInit(...) to provide required problem specifications, allocate internal memory for
CVODE, and initialize CVODE. CVodeInit returns a flag, the value of which indicates either
success or an illegal argument value. See §4.5.1 for details.

Specify integration tolerances

Call CVodeSStolerances(...) or CVodeSVtolerances(...) to specify either a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodeWFtolerances to specify a function which sets
directly the weights used in evaluating WRMS vector norms. See §4.5.2 for details.

Set optional inputs

Call CVodeSet* functions to change any optional inputs that control the behavior of CVODE from
their default values. See §4.5.6.1 for details.

Attach linear solver module

If Newton iteration is chosen, initialize the linear solver module with one of the following calls
(for details see §4.5.3):

S] ier = CVDense(...);

[

[S] ier = CVBand(...);

[S] flag = CVLapackDense(...);
[S] flag = CVLapackBand(...);

ier = CVDiag(...);
ier = CVSpgmr(...);
ier = CVSpbcg(...);

ier = CVSptfqmr(...);

Set linear solver optional inputs

Call CV*Set* functions from the selected linear solver module to change optional inputs specific
to that linear solver. See §4.5.6 for details.

Specify rootfinding problem

Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §4.5.4, and see §4.5.6.4 for relevant optional input calls.

Advance solution in time
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For each point at which output is desired, call ier = CVode(cvode mem, tout, yout, &tret,
itask). Here itask specifies the return mode. The vector y (which can be the same as the vector
yO above) will contain y(t). See §4.5.5 for details.

12. Get optional outputs

Call CV*Get* functions to obtain optional output. See §4.5.8 for details.

13. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y by calling the destructor
function defined by the NVECTOR implementation:

[S] N_VDestroy_Serial(y);
[P] N_VDestroy_Parallel(y);

14. Free solver memory

Call CVodeFree (&cvode mem) to free the memory allocated for CVODE.

15. [P] Finalize MPI
Call MPI_Finalize() to terminate MPI.

4.5 User-callable functions

This section describes the CVODE functions that are called by the user to setup and then solve an
IVP. Some of these are required. However, starting with §4.5.6, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of CVODE. In any
case, refer to §4.4 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.6.1).

4.5.1 CVODE initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the IVP solution is complete, as it frees the CVODE memory block created and allocated by the first
two calls.

CVodeCreate

Call cvode_mem = CVodeCreate(lmm, iter);

Description  The function CVodeCreate instantiates a CVODE solver object and specifies the solution
method.

Arguments 1lmm (int) specifies the linear multistep method and may be one of two possible values:
CV_ADAMS or CV_BDF.

iter (int) specifies the type of nonlinear solver iteration and may be either CV_NEWTON
or CV_FUNCTIONAL.

The recommended choices for (1mm, iter) are (CV_ADAMS, CV_FUNCTIONAL) for nonstiff
problems and (CV_BDF, CV_NEWTON) for stiff problems.

Return value If successful, CVodeCreate returns a pointer to the newly created CVODE memory block
(of type void *). Otherwise, it returns NULL.
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CVodelnit

Call

Description

Arguments

Return value

Notes

CVodeFree

Call
Description
Arguments

Return value

flag = CVodeInit(cvode mem, f, t0, y0);

The function CVodeInit provides required problem and solution specifications, allocates
internal memory, and initializes CVODE.

cvode mem (void *) pointer to the CVODE memory block returned by CVodeCreate.

f (CVRhsFn) is the C function which computes the right-hand side function
f in the ODE. This function has the form £(t, y, ydot, user_data) (for
full details see §4.6.1).

t0 (realtype) is the initial value of t.
yO (N_Vector) is the initial value of y.

The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeInit was successful.

CV_MEM_NULL The cVODE memory block was not initialized through a previous call to
CVodeCreate.

CV_MEM_FAIL A memory allocation request has failed.
CV_ILL_INPUT An input argument to CVodeInit has an illegal value.

If an error occurred, CVodeInit also sends an error message to the error handler func-
tion.

CVodeFree (&cvode_mem) ;
The function CVodeFree frees the memory allocated by a previous call to CVodeCreate.
The argument is the pointer to the CVODE memory block (of type void *).

The function CVodeFree has no return value.

4.5.2 CVODE tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to CVodeInit.

’CVodeSStolerances

Call
Description

Arguments

Return value

flag = CVodeSStolerances(cvode mem, reltol, abstol);
The function CVodeSStolerances specifies scalar relative and absolute tolerances.
cvodemem (void *) pointer to the CVODE memory block returned by CVodeCreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.
The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSStolerances was successful.

CV_MEM_NULL The CVODE memory block was not initialized through a previous call to
CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.
CV_ILL_INPUT One of the input tolerances was negative.
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’CVodeSVtolerances

Call flag = CVodeSVtolerances(cvode mem, reltol, abstol);

Description  The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments cvodemem (void *) pointer to the CVODE memory block returned by CVodeCreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (N_Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSVtolerances was successful.

CV_MEM_NULL The CVODE memory block was not initialized through a previous call to
CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.

CV_ILL_INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

’CVodeWFtolerances‘

Call flag = CVodeWFtolerances(cvode mem, efun);

Description The function CVodeWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights W; for use in the weighted RMS norm, which are normally
defined by Eq. (2.6).

Arguments cvode mem (void *) pointer to the CVODE memory block returned by CVodeCreate.
efun (CVEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeWFtolerances was successful.

CV_MEM_NULL The CVODE memory block was not initialized through a previous call to
CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 1074
means that errors are controlled to .01%. We do not recommend using reltol larger than 1073,
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1.0E-15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
cvRoberts_dns in the CVODE package, and the discussion of it in the CVODE Examples document [15].
In that problem, the three components vary betwen 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservately, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from
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the actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol
= 1075, But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried
by the solver are unaffected. Remember that a small negative value in y returned by CVODE, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s right-hand side routine £ should never change a negative value in the solution vector
y to a non-negative value, as a ”solution” to this problem. This can cause instability. If the £ routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input y vector) for the purposes of computing f(t,y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recover-
able error return feature in the user-supplied right-hand side function. However, because this option
involves some extra overhead cost, it should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

4.5.3 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (2.4).
There are six CVODE linear solvers currently available for this task: CVDENSE, CVBAND, CVDIAG,
CVSPGMR, CVSPBCG, and CVSPTFQMR.

The first two linear solvers are direct and derive their names from the type of approximation used
for the Jacobian J = df/dy; CVDENSE and CVBAND work with dense and banded approximations to
J, respectively. The SUNDIALS suite includes both internal implementations of these two linear solvers
and interfaces to Lapack implementations. Together, these linear solvers are referred to as CVDLS
(from Direct Linear Solvers).

The CVDIAG linear solver is also a direct linear solver, but it only uses a diagonal approximation
to J.

The last three CVODE linear solvers, CVSPGMR, CVSPBCG, and CVSPTFQMR, are Krylov itera-
tive solvers, which use scaled preconditioned GMRES, scaled preconditioned Bi-CGStab, and scaled
preconditioned TFQMR, respectively. Together, they are referred to as ¢vsPILS (from Scaled Precon-
ditioned Iterative Linear Solvers).

With any of the Krylov methods, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. For the specification of a preconditioner, see the iterative
linear solver sections in §4.5.6 and §4.6.

If preconditioning is done, user-supplied functions define left and right preconditioner matrices Py
and Py (either of which could be the identity matrix), such that the product P; P, approximates the
Newton matrix M = I —~.J of (2.5).

To specify a CVODE linear solver, after the call to CVodeCreate but before any calls to CVode,
the user’s program must call one of the functions CVDense/CVLapackDense, CVBand/CVLapackBand,
CVDiag, CVSpgmr, CVSpbcg, or CVSptfqgmr, as documented below. The first argument passed to these
functions is the CVODE memory pointer returned by CVodeCreate. A call to one of these functions
links the main CVODE integrator to a linear solver and allows the user to specify parameters which
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are specific to a particular solver, such as the half-bandwidths in the CVBAND case. The use of each of
the linear solvers involves certain constants and possibly some macros, that are likely to be needed in
the user code. These are available in the corresponding header file associated with the linear solver,
as specified below.

In each case except the diagonal approximation case CVDIAG and the Lapack direct solvers, the
linear solver module used by CVODE is actually built on top of a generic linear system solver, which may
be of interest in itself. These generic solvers, denoted DENSE, BAND, SPGMR, SPBCG, and SPTFQMR,
are described separately in Chapter 8.

Call flag = CVDense(cvode_mem, N);

Description The function CVDense selects the CVDENSE linear solver and indicates the use of the
internal direct dense linear algebra functions.

The user’s main program must include the cvode_dense.h header file.

Arguments cvode mem (void *) pointer to the CVODE memory block.
N (long int) problem dimension.

Return value The return value flag (of type int) is one of:

CVDLS_SUCCESS The CVDENSE initialization was successful.
CVDLS_MEM NULL The cvode_mem pointer is NULL.

CVDLS_ILL_INPUT The CVDENSE solver is not compatible with the current NVECTOR
module.

CVDLS_MEM_FAIL A memory allocation request failed.
Notes The CVDENSE linear solver may not be compatible with the particular implementation

of the NVECTOR module. Of the two NVECTOR modules provided with SUNDIALS, only
NVECTOR_SERIAL is compatible.

CVLapackDense

Call flag = CVLapackDense(cvode mem, N);

Description  The function CVLapackDense selects the CVDENSE linear solver and indicates the use of
Lapack functions.

The user’s main program must include the cvode_lapack.h header file.

Arguments cvodemem (void *) pointer to the CVODE memory block.
N (int) problem dimension.

Return value The values of the returned flag (of type int) are identical to those of CVDense.

Notes Note that N is restricted to be of type int here, because of the corresponding type
restriction in the Lapack solvers.

Call flag = CVBand(cvodemem, N, mupper, mlower);

Description The function CVBand selects the CVBAND linear solver and indicates the use of the
internal direct band linear algebra functions.

The user’s main program must include the cvode_band.h header file.
Arguments cvode mem (void *) pointer to the CVODE memory block.
N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).
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Return value

Notes

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).

The return value flag (of type int) is one of:

CVDLS_SUCCESS The CVBAND initialization was successful.
CVDLS_MEM NULL The cvode_mem pointer is NULL.

CVDLS_ILL_INPUT The CVBAND solver is not compatible with the current NVECTOR
module, or one of the Jacobian half-bandwidths is outside of its valid
range (0... N—1).

CVDLS_MEM_FAIL A memory allocation request failed.

The CVBAND linear solver may not be compatible with the particular implementa-
tion of the NVECTOR module. Of the two NVECTOR modules provided with SUNDIALS,
only NVECTOR_SERIAL is compatible. The half-bandwidths are to be set such that the
nonzero locations (i, 7) in the banded (approximate) Jacobian satisfy —mlower < j—i <
mupper.

CVLapackBand

Call

Description

Arguments

Return value

Notes

Call

Description

Arguments

Return value

Notes

flag = CVLapackBand(cvode mem, N, mupper, mlower);

The function CVLapackBand selects the CVBAND linear solver and indicates the use of
Lapack functions.

The user’s main program must include the cvode_lapack.h header file.

The input arguments are identical to those of CVBand, except that N, mupper, and mlower
are of type int here.

The values of the returned flag (of type int) are identical to those of CVBand.

Note that N, mupper, and mlower are restricted to be of type int here, because of the
corresponding type restriction in the Lapack solvers.

flag = CVDiag(cvode_mem) ;

The function CVDiag selects the CVDIAG linear solver.

The user’s main program must include the cvode_diag.h header file.
cvode mem (void *) pointer to the CVODE memory block.

The return value flag (of type int) is one of:

CVDIAG_SUCCESS The CVDIAG initialization was successful.
CVDIAG MEM NULL The cvode_mem pointer is NULL.

CVDIAG_ILL_INPUT The CVDIAG solver is not compatible with the current NVECTOR
module.

CVDIAG_MEM _FAIL A memory allocation request failed.

The CVDIAG solver is the simplest of all of the current CVODE linear solvers. The CVDIAG
solver uses an approximate diagonal Jacobian formed by way of a difference quotient.
The user does not have the option of supplying a function to compute an approximate
diagonal Jacobian.
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Call

Description

Arguments

Return value

Notes

Call

Description

Arguments

Return value

Notes

CVSptfqgmr

Call

Description

Arguments

Return value

flag = CVSpgmr(cvode mem, pretype, maxl);
The function CVSpgmr selects the CVSPGMR linear solver.
The user’s main program must include the cvode_spgmr.h header file.

cvode mem (void *) pointer to the CVODE memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC_NONE,
PREC_LEFT, PREC_RIGHT, or PREC_BOTH.

max1 (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS_MAXL = 5.

The return value flag (of type int) is one of

CVSPILS_SUCCESS The CVSPGMR initialization was successful.
CVSPILS_MEM_NULL The cvode_mem pointer is NULL.
CVSPILS_ILL_INPUT The preconditioner type pretype is not valid.
CVSPILS_MEM_FAIL A memory allocation request failed.

The CVSPGMR solver uses a scaled preconditioned GMRES iterative method to solve
the linear system (2.4).

flag = CVSpbcg(cvode mem, pretype, maxl);
The function CVSpbcg selects the CVSPBCG linear solver.
The user’s main program must include the cvode_spbcgs.h header file.

cvode mem (void *) pointer to the CVODE memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC_NONE,
PREC_LEFT, PREC_RIGHT, or PREC_BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS_MAXL = 5.

The return value flag (of type int) is one of

CVSPILS_SUCCESS The CVSPBCG initialization was successful.
CVSPILS_MEM NULL The cvode mem pointer is NULL.
CVSPILS_ILL_INPUT The preconditioner type pretype is not valid.
CVSPILS_MEM FAIL A memory allocation request failed.

The CVSPBCG solver uses a scaled preconditioned Bi-CGStab iterative method to solve
the linear system (2.4).

flag = CVSptfqmr(cvode mem, pretype, maxl);
The function CVSptfgmr selects the CVSPTFQMR linear solver.
The user’s main program must include the cvode_sptfqmr.h header file.

cvode mem (void *) pointer to the CVODE memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC_NONE,
PREC_LEFT, PREC_RIGHT, or PREC_BOTH.

max1 (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS_MAXL = 5.

The return value flag (of type int) is one of
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CVSPILS_SUCCESS The CVSPTFQMR initialization was successful.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS_ILL_INPUT The preconditioner type pretype is not valid.
CVSPILS_MEM_FAIL A memory allocation request failed.

Notes The CVSPTFQMR solver uses a scaled preconditioned TFQMR iterative method to solve
the linear system (2.4).

4.5.4 Rootfinding initialization function

While solving the IVP, cVODE has the capability to find the roots of a set of user-defined functions.
To activate the root finding algorithm, call the following function:

’CVodeRootInit‘

Call flag = CVodeRootInit(cvode mem, nrtfn, g);

Description  The function CVodeRootInit specifies that the roots of a set of functions g;(¢,y) are to
be found while the IVP is being solved.
Arguments cvode mem (void *) pointer to the CVODE memory block returned by CVodeCreate.
nrtfn (int) is the number of root functions g;.
g (CVRootFn) is the C function which defines the nrtfn functions g;(t,y)
whose roots are sought. See §4.6.4 for details.
Return value The return value flag (of type int) is one of

CV_SUCCESS  The call to CVodeRootInit was successful.
CV_MEM_NULL The cvode mem argument was NULL.
CV_MEM_FAIL A memory allocation failed.

CV_ILL_INPUT The function g is NULL, but nrtfn > 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

4.5.5 CVODE solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One
of the input arguments (itask) specifies one of two modes as to where CVODE is to return a solution.
But these modes are modified if the user has set a stop time (with CVodeSetStopTime) or requested
rootfinding.

Call flag = CVode(cvode mem, tout, yout, &tret, itask);
Description  The function CVode integrates the ODE over an interval in ¢.

Arguments cvode mem (void *) pointer to the CVODE memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N_Vector) the computed solution vector.

tret (realtype) the time reached by the solver (output).

itask (int) a flag indicating the job of the solver for the next user step. The

CV_NORMAL option causes the solver to take internal steps until it has reached
or just passed the user-specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV_ONE_STEP
option tells the solver to take just one internal step and then return the
solution at the point reached by that step.
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Return value CVode returns a vector yout and a corresponding independent variable value ¢t = tret,

Notes

such that yout is the computed value of y(t).
In CV_NORMAL mode (with no errors), tret will be equal to tout and yout = y(tout).
The return value flag (of type int) will be one of the following:

CV_SUCCESS CVode succeeded and no roots were found.

CV_TSTOP_RETURN CVode succeeded by reaching the stopping point specified through
the optional input function CVodeSetStopTime (see §4.5.6.1).

CV_ROOT_RETURN  CVode succeeded and found one or more roots. If nrtfn > 1, call
CVodeGetRootInfo to see which g; were found to have a root.

CV_MEM_NULL The cvode mem argument was NULL.
CV_NO_MALLOC The CVODE memory was not allocated by a call to CVodeInit.
CV_ILL_INPUT One of the inputs to CVode was illegal, or some other input to the

solver was either illegal or missing. The latter category includes the
following situations: (a) The tolerances have not been set. (b) A
component of the error weight vector became zero during internal
time-stepping. (¢) The linear solver initialization function (called by
the user after calling CVodeCreate) failed to set the linear solver-
specific 1solve field in cvode mem. (d) A root of one of the root
functions was found both at a point ¢ and also very near ¢t. In any
case, the user should see the error message for details.

CV_TOO_CLOSE The initial time tg and the final time ¢,,; are too close to each other
and the user did not specify an initial step size.

CV_TOO-MUCH_WORK The solver took mxstep internal steps but still could not reach tout.
The default value for mxstep is MXSTEP_DEFAULT = 500.

CV_TOO_MUCH_ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV_ERR FAILURE Either error test failures occurred too many times (MXNEF = 7) dur-
ing one internal time step, or with |h| = hpin.

CV_CONV_FAILURE Either convergence test failures occurred too many times (MXNCF =
10) during one internal time step, or with |h| = hynin.

CV_LINIT FAIL The linear solver’s initialization function failed.

CV_LSETUP FAIL  The linear solver’s setup function failed in an unrecoverable manner.

CV_LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV_RHSFUNC_FAIL The right-hand side function failed in an unrecoverable manner.

CV_FIRST_RHSFUNC_FAIL The right-hand side function had a recoverable error at the
first call.

CV_REPTD_RHSFUNC_ERR Convergence test failures occurred too many times due to re-
peated recoverable errors in the right-hand side function. This flag
will also be returned if the right-hand side function had repeated
recoverable errors during the estimation of an initial step size.

CV_UNREC_RHSFUNC_ERR The right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
right-hand side function fails recoverably after an error test failed
while at order one.

CV_RTFUNC_FAIL The rootfinding function failed.

The vector yout can occupy the same space as the vector yO of initial conditions that
was passed to CVodeInit.

In the CV_ONE_STEP mode, tout is used only on the first call, and only to get the direction
and a rough scale of the independent variable.

All failure return values are negative and so the test ier < 0 will trap all CVode failures.
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Table 4.1: Optional inputs for CVODE, CVDLS, and CVSPILS

Optional input \ Function name \ Default
CVODE main solver
Pointer to an error file CVodeSetErrFile stderr
Error handler function CVodeSetErrHandlerFn internal fn.
User data CVodeSetUserData NULL
Maximum order for BDF method CVodeSetMax0rd 5
Maximum order for Adams method CVodeSetMax0rd 12
Maximum no. of internal steps before oyt CVodeSetMaxNumSteps 500
Maximum no. of warnings for t, + h =t, CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet FALSE
Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep 00
Value of t5¢0p CVodeSetStopTime undefined
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
Nonlinear iteration type CVodeSetIterType none
Direction of zero-crossing CVodeSetRootDirection both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn | none
CVDLS linear solvers
Dense Jacobian function CVDlsSetDenseJacFn DQ
Band Jacobian function CVDlsSetBandJacFn DQ
CVSPILS linear solvers
Preconditioner functions CVSpilsSetPreconditioner NULL, NULL
Jacobian-times-vector function CVSpilsSetJacTimesVecFn DQ
Preconditioning type CVSpilsSetPrecType none
Ratio between linear and nonlinear tolerances | CVSpilsSetEpsLin 0.05
Type of Gram-Schmidt orthogonalization(®) CVSpilsSetGSType classical GS
Maximum Krylov subspace size(®) CVSpilsSetMaxl 5

(@) Only for cCVSPGMR
() Only for cvSPBCG and CVSPTFQMR

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the inte-
gration. On all other error returns, tret and yout are left unchanged from the previous
CVode return.

4.5.6 Optional input functions

There are numerous optional input parameters that control the behavior of the CVODE solver. CVODE
provides functions that can be used to change these optional input parameters from their default
values. Table 4.1 lists all optional input functions in CVODE which are then described in detail in the
remainder of this section, begining with those for the main CVODE solver and continuing with those
for the linear solver modules. Note that the diagonal linear solver module has no optional inputs. For
the most casual use of CVODE, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. We also note that all error return values are negative, so the test flag < 0
will catch all errors.
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4.5.6.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions CVodeSetErrFile
or CVodeSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.

’CVodeSetErrFile‘

Call

Description

Arguments

Return value

flag = CVodeSetErrFile(cvode mem, errfp);

The function CVodeSetErrFile specifies a pointer to the file where all CVODE messages
should be directed when the default CVODE error handler function is used.

cvode mem (void *) pointer to the CVODE memory block.

errfp (FILE *) pointer to output file.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value for errfp is stderr.
Passing a value of NULL disables all future error message output (except for the case in
which the CVODE memory pointer is NULL). This use of CVodeSetErrFile is strongly
discouraged.
If CVodeSetErrFile is to be called, it should be called before any other optional input
functions, in order to take effect for any later error message.

’ CVodeSetErrHandlerFn

Call flag = CVodeSetErrHandlerFn(cvode mem, ehfun, eh_ data);

Description  The function CVodeSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

ehfun (CVErrHandlerFn) is the C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.
The return value flag (of type int) is one of

CV_SUCCESS The function ehfun and data pointer eh_data have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes Error messages indicating that the CVODE solver memory is NULL will always be directed
to stderr.

’CVodeSetUserData‘

Call flag = CVodeSetUserData(cvode mem, user_data);

Description The function CVodeSetUserData specifies the user data block user_data and attaches
it to the main CVODE memory block.

Arguments cvodemem (void *) pointer to the CVODE memory block.

Return value

user_data (void *) pointer to the user data.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
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Notes If specified, the pointer to user_data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.
If user_data is needed in user preconditioner functions, the call to CVodeSetUserData
must be made before the call to specify the linear solver.

| CVodeSetMax0rd |

Call flag = CVodeSetMaxOrder (cvode mem, maxord);

Description The function CVodeSetMaxOrder specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

maxord (int) value of the maximum method order. This must be positive.
The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.
CV_ILL_INPUT The specified value maxord is < 0, or larger than its previous value.

Notes The default value is ADAMS_Q_MAX = 12 for the Adams-Moulton method and BDF_Q_MAX
= 5 for the BDF method. Since maxord affects the memory requirements for the internal
CVODE memory block, its value cannot be increased past its previous value.
An input value greater than the default will result in the default value.

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description  The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

mxsteps (long int) maximum allowed number of steps.
The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.

Notes Passing mxsteps = 0 results in CVODE using the default value (500).
Passing mxsteps < 0 disables the test (not recommended).

’CVodeSetMaanilWarns‘

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued
by the solver warning that ¢ + h =t on the next internal step.

Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

Notes

mxhnil (int) maximum number of warning messages (> 0).
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

The default value is 10. A negative value for mxhnil indicates that no warning messages
should be issued.
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’ CVodeSetStabLimDet
Call flag = CVodeSetstabLimDet (cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates if the BDF stability limit detection algo-
rithm should be used. See §2.3 for further details.
Arguments cvodemem (void *) pointer to the CVODE memory block.
stldet (booleantype) flag controlling stability limit detection (TRUE = on; FALSE
= off).
Return value The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_ILL_INPUT The linear multistep method is not set to CV_BDF.
Notes The default value is FALSE. If stldet = TRUE when BDF is used and the method order

is greater than or equal to 3, then an internal function, CVsldet, is called to detect a
possible stability limit. If such a limit is detected, then the order is reduced.

CVodeSetInitStep ‘

Call flag = CVodeSetInitStep(cvode mem, hin);
Description  The function CVodeSetInitStep specifies the initial step size.

Arguments cvode mem (void *) pointer to the CVODE memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to use
the default value.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes By default, CVODE estimates the initial step size to be the solution h of the equation
10.5h24j||wrms = 1, where §j is an estimated second derivative of the solution at t0.

CVodeSetMinStep‘

Call flag = CVodeSetMinStep(cvode mem, hmin) ;

Description The function CVodeSetMinStep specifies a lower bound on the magnitude of the step
size.

Arguments cvodemem (void *) pointer to the CVODE memory block.
hmin (realtype) minimum absolute value of the step size (> 0.0).

Return value The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.
CV_ILL_INPUT Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes The default value is 0.0.

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax) ;

Description  The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step
size.

Arguments cvodemem (void *) pointer to the CVODE memory block.
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hmax (realtype) maximum absolute value of the step size (> 0.0).
Return value The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_ILL_INPUT Either hmax is nonpositive or it is smaller than the minimum allowable

step size.
Notes Pass hmax = 0.0 to obtain the default value co.
CVodeSetStopTime
Call flag = CVodeSetStopTime(cvode mem, tstop);

Description The function CVodeSetStopTime specifies the value of the independent variable ¢ past
which the solution is not to proceed.

Arguments cvode mem (void *) pointer to the CVODE memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_ILL_INPUT The value of tstop is beyond the current ¢ value, t,.

Notes The default, if this routine is not called, is that no stop time is imposed.

| CVodeSetMaxErrTestFails |

Call flag = CVodeSetMaxErrTestFails(cvode mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures permitted in attempting one step.

Arguments cvodemem (void *) pointer to the CVODE memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value is 7.

| CVodeSetMaxNonlinIters]|

Call flag = CVodeSetMaxNonlinIters(cvode mem, maxcor) ;

Description The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations permitted per step.

Arguments cvodemem (void *) pointer to the CVODE memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed per step (> 0).
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value is 3.
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’CVodeSetMaXConvFails‘

Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description  The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures permitted during one step.

Arguments cvode mem (void *) pointer to the CVODE memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures
per step (> 0).

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.

Notes The default value is 10.

’ CVodeSetNonlinConvCoef ‘
Call flag = CVodeSetNonlinConvCoef (cvode mem, nlscoef);

Description  The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear
convergence test (see §2.1).

Arguments cvodemem (void *) pointer to the CVODE memory block.
nlscoef (realtype) coeflicient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value is 0.1.
CVodeSetIterType‘
Call flag = CVodeSetIterType(cvode mem, iter);

Description  The function CVodeSetIterType resets the nonlinear solver iteration type to iter.

Arguments cvodemem (void *) pointer to the CVODE memory block.

iter (int) specifies the type of nonlinear solver iteration and may be either
CV_NEWTON or CV_FUNCTIONAL.

Return value The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_ILL_INPUT The iter value passed is neither CV_NEWTON nor CV_FUNCTIONAL.

Notes The nonlinear solver iteration type is initially specified in the call to CVodeCreate (see
84.5.1). This function call is needed only if iter is being changed from its value in the
prior call to CVodeCreate.

4.5.6.2 Direct linear solvers optional input functions

The CVDENSE solver needs a function to compute a dense approximation to the Jacobian matrix
J(t,y). This function must be of type CVDlsDenseJacFn. The user can supply his/her own dense
Jacobian function, or use the default internal difference quotient approximation that comes with the
CVDENSE solver. To specify a user-supplied Jacobian function djac, CVDENSE provides the function
CVDlsSetDenseJacFn. The CVDENSE solver passes the pointer user_data to the dense Jacobian
function. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied Jacobian function, without using global data in the
program. The pointer user_data may be specified through CVodeSetUserData.
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’ CVD1lsSetDenseJacFn ‘

Call flag = CVDlsSetDenseJacFn(cvode mem, djac);

Description  The function CVD1sSetDenseJacFn specifies the dense Jacobian approximation function
to be used.

Arguments cvode mem (void *) pointer to the CVODE memory block.
djac (CVDlsDenseJacFn) user-defined dense Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVDLS_SUCCESS  The optional value has been successfully set.
CVDLS_MEM NULL The cvode_mem pointer is NULL.
CVDLS_LMEM_NULL The CVDENSE linear solver has not been initialized.

Notes By default, CVDENSE uses an internal difference quotient function. If NULL is passed to
djac, this default function is used.

The function type CVD1lsDenseJacFn is described in §4.6.5.

The CVBAND solver needs a function to compute a banded approximation to the Jacobian matrix
J(t,y). This function must be of type CVD1sBandJacFn. The user can supply his/her own banded
Jacobian approximation function, or use the default internal difference quotient approximation that
comes with the CVBAND solver. To specify a user-supplied Jacobian function bjac, CVBAND provides
the function CVDlsSetBandJacFn. The CVBAND solver passes the pointer user_data to the banded
Jacobian approximation function. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied Jacobian function, without using
global data in the program. The pointer user_data may be specified through CVodeSetUserData.

[ CVD1sSetBandJacFn
Call flag = CVDlsSetBandJacFn(cvode mem, bjac);

Description  The function CVD1sSetBandJacFn specifies the banded Jacobian approximation function
to be used.

Arguments cvode mem (void *) pointer to the CVODE memory block.
bjac (CvBandJacFn) user-defined banded Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVDLS_SUCCESS  The optional value has been successfully set.
CVDLS_MEM NULL The cvode_mem pointer is NULL.
CVDLS_LMEM_NULL The CVBAND linear solver has not been initialized.

Notes By default, CVBAND uses an internal difference quotient function. If NULL is passed to
bjac, this default function is used.

The function type CVBandJacFn is described in §4.6.6.

4.5.6.3 Iterative linear solvers optional input functions

If any preconditioning is to be done within one of the CVSPILS linear solvers, then the user must supply
a preconditioner solve function psolve and specify its name in a call to CVSpilsSetPreconditioner.

The evaluation and preprocessing of any Jacobian-related data needed by the user’s precondi-
tioner solve function is done in the optional user-supplied function psetup. Both of these func-
tions are fully specified in §4.6. If used, the psetup function should also be specified in the call to
CVSpilsSetPreconditioner.

The pointer user_data received through CVodeSetUserData (or a pointer to NULL if user_data
was not specified) is passed to the preconditioner psetup and psolve functions. This allows the user
to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied preconditioner functions without using global data in the program.
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Ther CVSPILS solvers require a function to compute an approximation to the product between
the Jacobian matrix J(¢,y) and a vector v. The user can supply his/her own Jacobian-times-vector
approximation function, or use the default internal difference quotient function that comes with the
CVSPILS solvers. A user-defined Jacobian-vector function must be of type CVSpilsJacTimesVecFn
and can be specified through a call to CVSpilsSetJacTimesVecFn (see §4.6.7 for specification de-
tails). As with the preconditioner user-supplied functions, a pointer to the user-defined data struc-
ture, user data, specified through CVodeSetUserData (or a NULL pointer otherwise) is passed to the
Jacobian-times-vector function jtimes each time it is called.

’ CVSpilsSetPreconditioner

Call flag = CVSpilsSetPreconditioner(cvode mem, psetup, psolve);

Description The function CVSpilsSetPreconditioner specifies the preconditioner setup and solve
functions.
Arguments cvode mem (void *) pointer to the CVODE memory block.

psetup (CVSpilsPrecSetupFn) user-defined preconditioner setup function. Pass
NULL if no setup is to be done.

psolve (CVSpilsPrecSolveFn) user-defined preconditioner solve function.
Return value The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional values have been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

Notes The function type CVSpilsPrecSolveFn is described in §4.6.8. The function type
CVSpilsPrecSetupFn is described in §4.6.9.

CVSpilsSetJacTimesVecFn ‘

Call flag = CVSpilsSetJacTimesVecFn(cvode mem, jtimes);
Description  The function CVSpilsSetJacTimesFn specifies the Jacobian-vector function to be used.
Arguments cvode mem (void *) pointer to the CVODE memory block.

jtimes (CVSpilsJacTimesVecFn) user-defined Jacobian-vector product function.
Return value The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional value has been successfully set.

CVSPILS_MEM NULL The cvode _mem pointer is NULL.

CVSPILS_LMEM NULL The CVSPILS linear solver has not been initialized.

Notes By default, the CVSPILS linear solvers use an internal difference quotient function. If
NULL is passed to jtimes, this default function is used.

The function type CVSpilsJacTimesVecFn is described in §4.6.7.

CVSpilsSetPrecType ‘

Call flag = CVSpilsSetPrecType(cvode mem, pretype);
Description  The function CVSpilsSetPrecType resets the type of preconditioning to be used.

Arguments cvode mem (void *) pointer to the CVODE memory block.

pretype (int) specifies the type of preconditioning and must be one of: PREC_NONE,
PREC_LEFT, PREC_RIGHT, or PREC_BOTH.

Return value The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional value has been successfully set.
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CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.
CVSPILS_ILL_INPUT The preconditioner type pretype is not valid.

Notes The preconditioning type is initially set in the call to the linear solver’s specification
function (see §4.5.3). This function call is needed only if pretype is being changed from
its original value.

CVSpilsSetGSType‘

Call flag = CVSpilsSetGSType(cvode mem, gstype);

Description  The function CVSpilsSetGSType specifies the Gram-Schmidt orthogonalization to be
used with the CVSPGMR solver (one of the enumeration constants MODIFIED_GS or
CLASSICAL_GS). These correspond to using modified Gram-Schmidt and classical Gram-
Schmidt, respectively.

Arguments cvodemem (void *) pointer to the CVODE memory block.

Return value

gstype (int) type of Gram-Schmidt orthogonalization.

The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional value has been successfully set.
CVSPILS_MEM NULL The cvode mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.
CVSPILS_ILL_INPUT The value of gstype is not valid.

Notes The default value is MODIFIED_GS.
This option is available only for the CVSPGMR linear solver.
’ CVSpilsSetEpsLin
Call flag = CVSpilsSetEpsLin(cvode mem, eplifac);
Description  The function CVSpilsSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.
Arguments cvodemem (void *) pointer to the CVODE memory block.

Return value

eplifac (realtype) linear convergence safety factor (> 0.0).

The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional value has been successfully set.
CVSPILS_MEM NULL The cvode mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.
CVSPILS_ILL_INPUT The factor eplifac is negative.

Notes The default value is 0.05.
Passing a value eplifac= 0.0 also indicates using the default value.

CVSpilsSetMaxl

Call flag = CVSpilsSetMaxl(cv.mem, maxl);

Description  The function CVSpilsSetMax1 resets the maximum Krylov subspace dimension for the
Bi-CGStab or TFQMR methods.

Arguments cvmem (void *) pointer to the CVODE memory block.

Return value

maxl (int) maximum dimension of the Krylov subspace.

The return value flag (of type int) is one of
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Notes

CVSPILS_SUCCESS The optional value has been successfully set.

CVSPILS_ MEM NULL The cvode mem pointer is NULL.

CVSPILS_LMEM NULL The CVSPILS linear solver has not been initialized.
CVSPILS_ILL_INPUT The current linear solver is SPGMR.

The maximum subspace dimension is initially specified in the call to the linear solver

specification function (see §4.5.3). This function call is needed only if maxl is being
changed from its previous value.

An input value maxl < 0 will result in the default value, 5.

This option is available only for the cvSPBCG and CVSPTFQMR linear solvers.

4.5.6.4 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

’ CVodeSetRootDirection ‘

Call

Description

Arguments

Return value

Notes

flag = CVodeSetRootDirection(cvode mem, rootdir);

The function CVodeSetRootDirection specifies the direction of zero-crossings to be
located and returned.
cvode mem (void *) pointer to the CVODE memory block.

rootdir (int *) state array of length nrtfn, the number of root functions g;, as spec-
ified in the call to the function CVodeRootInit. A value of O for rootdir [i]
indicates that crossing in either direction for g; should be reported. A value
of +1 or —1 indicates that the solver should report only zero-crossings where
g; is increasing or decreasing, respectively.

The return value flag (of type int) is one of

CV_SUCCESS  The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.
CV_ILL_INPUT rootfinding has not been activated through a call to CVodeRootInit.

The default behavior is to monitor for both zero-crossing directions.

’ CVodeSetNoInactiveRootWarn

Call

Description

Arguments

Return value

Notes

flag = CVodeSetNoInactiveRootWarn(cvode mem) ;

The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root
function appears to be identically zero at the beginning of the integration.

cvode mem (void *) pointer to the CVODE memory block.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.

CcVODE will not report the initial conditions as a possible zero-crossing (assuming that
one or more components g; are zero at the initial time). However, if it appears that
some g; is identically zero at the initial time (i.e., g; is zero at the initial time and after
the first step), CVODE will issue a warning which can be disabled with this optional
input function.
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4.5.7 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
should only be called after a successful return from CVode as it provides interpolated values either of
y or of its derivatives (up to the current order of the integration method) interpolated to any value of
t in the last internal step taken by CVODE.

The call to the CVodeGetDky function has the following form:

CVodeGetDky

Call flag = CVodeGetDky(cvodemem, t, k, dky);

Description  The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e.
d("f)y/dt(k)(t)7 where t, —h, <t < t,, t, denotes the current internal time reached, and
h,, is the last internal step size successfully used by the solver. The user may request k
=0,1,...,qu, where g, is the current order (optional output qlast).

Arguments cvodemem (void *) pointer to the CVODE memory block.

t (realtype) the value of the independent variable at which the derivative is
to be evaluated.

k (int) the derivative order requested.

dky (N_Vector) vector containing the derivative. This vector must be allocated
by the user.

Return value The return value flag (of type int) is one of

CV_SUCCESS CVodeGetDky succeeded.

CV_BAD K k is not in the range 0,1,...,¢q,.
CV_BAD_T t is not in the interval [t, — hy, t5].
CV_BAD_DKY The dky argument was NULL.
CV_MEM_NULL The cvode_mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to t,, qu, and h,, respectively.

4.5.8 Optional output functions

CVODE provides an extensive set of functions that can be used to obtain solver performance informa-
tion. Table 4.2 lists all optional output functions in CVODE, which are then described in detail in the
remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the CVODE solver is in doing its job. For example, the counters nsteps and nfevals
provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps
measures the performance of the Newton iteration in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a direct
linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.
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Table 4.2: Optional outputs from CVODE, CVDLS, CVDIAG, and CVSPILS

Optional output

\ Function name

CVODE main solver

Size of CVODE real and integer workspaces
Cumulative number of internal steps

No. of calls to r.h.s. function

No. of calls to linear solver setup function

No. of local error test failures that have occurred
Order used during the last step

Order to be attempted on the next step

No. of order reductions due to stability limit detection
Actual initial step size used

Step size used for the last step

Step size to be attempted on the next step
Current internal time reached by the solver
Suggested factor for tolerance scaling

Error weight vector for state variables
Estimated local error vector

No. of nonlinear solver iterations

No. of nonlinear convergence failures

All CVODE integrator statistics

CVODE nonlinear solver statistics

Array showing roots found

No. of calls to user root function

Name of constant associated with a return flag

CVodeGetWorkSpace
CVodeGetNumSteps
CVodeGetNumRhsEvals
CVodeGetNumLinSolvSetups
CVodeGetNumErrTestFails
CVodeGetLastOrder
CVodeGetCurrentOrder
CVodeGetNumStabLimOrderReds
CVodeGetActualInitStep
CVodeGetLastStep
CVodeGetCurrentStep
CVodeGetCurrentTime
CVodeGetTolScaleFactor
CVodeGetErrWeights
CVodeGetEstLocalErrors
CVodeGetNumNonlinSolvIters
CVodeGetNumNonlinSolvConvFails
CVodeGetIntegratorStats
CVodeGetNonlinSolvStats
CvodeGetRootInfo
CVodeGetNumGEvals
CVodeGetReturnFlagName

CVDLS linear solvers

Size of real and integer workspaces

No. of Jacobian evaluations

No. of r.h.s. calls for finite diff. Jacobian evals.
Last return from a linear solver function

Name of constant associated with a return flag

CVD1lsGetWorkSpace
CVDlsGetNumJacEvals
CVD1sGetNumRhsEvals
CVD1lsGetLastFlag
CVDlsGetReturnFlagName

CVDIAG linear solver

Size of CVDIAG real and integer workspaces
No. of r.h.s. calls for finite diff. Jacobian evals.
Last return from a cvDIAG function

Name of constant associated with a return flag

CVDiagGetWorkSpace
CVDiagGetNumRhsEvals
CVDiagGetLastFlag
CVDiagGetReturnFlagName

CVSPILS linear solvers

Size of real and integer workspaces

No. of linear iterations

No. of linear convergence failures

No. of preconditioner evaluations

No. of preconditioner solves

No. of Jacobian-vector product evaluations

No. of r.h.s. calls for finite diff. Jacobian-vector evals.
Last return from a linear solver function

Name of constant associated with a return flag

CVSpilsGetWorkSpace
CVSpilsGetNumLinIters
CVSpilsGetNumConvFails
CVSpilsGetNumPrecEvals
CVSpilsGetNumPrecSolves
CVSpilsGetNumJtimesEvals
CVSpilsGetNumRhsEvals
CVSpilsGetLastFlag
CVSpilsGetReturnFlagName
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4.5.8.1 Main solver optional output functions

CVODE provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the CVODE memory block (a suggested tolerance scaling factor, the
error weight vector, and the vector of estimated local errors). Functions are also provided to extract
statistics related to the performance of the CVODE nonlinear solver used. As a convenience, addi-
tional information extraction functions provide the optional outputs in groups. These optional output
functions are described next.

CVodeGetWorkSpace‘

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);
Description  The function CVodeGetWorkSpace returns the CVODE real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the CVODE memory block.
lenrw (long int) the number of realtype values in the CVODE workspace.
leniw (long int) the number of integer values in the CVODE workspace.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes In terms of the problem size N, the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.4), the actual size of the real workspace, in realtype
words, is given by the following:

e base value: lenrw = 96 + (maxord+5) * N, + 3snrtfn;

e using CVodeSVtolerances: lenrw = lenrw +/N,;

where N, is the number of real words in one N_Vector (= N).
The size of the integer workspace (without distinction between int and long int words)
is given by:

e base value: leniw = 40 + (maxord+5) * V; + nrtfn;

e using CVodeSVtolerances: leniw = leniw +1/V;;
where N; is the number of integer words in one N_Vector (= 1 for NVECTOR_SERIAL
and 2*npes for NVECTOR_PARALLEL and npes processors).
For the default value of maxord, no rootfinding, and without using CVodeSVtolerances,
these lengths are given roughly by:

e For the Adams method: lenrw = 96 + 17N and leniw = 57

e For the BDF method: lenrw = 96 + 10N and leniw = 50

CVodeGetNumSteps‘

Call flag = CVodeGetNumSteps(cvode mem, &nsteps);

Description  The function CVodeGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments cvode mem (void *) pointer to the CVODE memory block.
nsteps (long int) number of steps taken by CVODE.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
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’CVodeGetNumRhsEvals‘
Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description  The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand
side function.

Arguments cvode mem (void *) pointer to the CVODE memory block.

nfevals (long int) number of calls to the user’s f function.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to £ by a linear solver or preconditioner module.

CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvodemem (void *) pointer to the CVODE memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

’CVodeGetNumErrTestFails

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description  The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvodemem (void *) pointer to the CVODE memory block.

netfails (long int) number of error test failures.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

’CVodeGetLastOrder‘

Call flag = CVodeGetLastOrder (cvode_mem, &qlast);

Description The function CVodeGetLastOrder returns the integration method order used during the
last internal step.

Arguments cvodemem (void *) pointer to the CVODE memory block.

qlast (int) method order used on the last internal step.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
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’CVodeGetCurrentOrder‘

Call flag = CVodeGetCurrentOrder(cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvodemem (void *) pointer to the CVODE memory block.

qcur (int) method order to be used on the next internal step.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the CVODE memory block.

hlast (realtype) step size taken on the last internal step.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description  The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvode mem (void *) pointer to the CVODE memory block.

hcur (realtype) step size to be attempted on the next internal step.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused) ;

Description  The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.
Arguments cvode mem (void *) pointer to the CVODE memory block.

hinused (realtype) actual value of initial step size.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by CVODE to ensure
that the step size is within the prescribed bounds (Amin < ho < hmax), Or to satisfy the
local error test condition.
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’ CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

tcur (realtype) current internal time reached.
The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

] CVodeGetNumStabLimOrderReds

Call

Description

Arguments

Return value

Notes

flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §2.3).

cvode mem (void *) pointer to the CVODE memory block.
nslred (long int) number of order reductions due to stability limit detection.

The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet was
not called), then nslred = 0.

’CVodeGetTolScaleFactor‘

Call

Description

Arguments

Return value

flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

cvode mem (void *) pointer to the CVODE memory block.
tolsfac (realtype) suggested scaling factor for user-supplied tolerances.

The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the W; given by (2.6).

Arguments cvodemem (void *) pointer to the CVODE memory block.

Return value

Notes

eweight (N_Vector) solution error weights at the current time.
The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

The user must allocate memory for eweight.
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’CVodeGetEstLocalErrors
Call flag = CVodeGetEstLocalErrors(cvode mem, ele);

Description The function CVodeGetEstLocalErrors returns the vector of estimated local errors.
Arguments cvode mem (void *) pointer to the CVODE memory block.
ele (N_Vector) estimated local errors.
Return value The return value flag (of type int) is one of
CV_SUCCESS The optional output value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.
Notes The user must allocate memory for ele.
The values returned in ele are valid only if CVode returned a non-negative value.

The ele vector, togther with the eweight vector from CVodeGetErrWeights, can be
used to determine how the various components of the system contributed to the es-
timated local error test. Specifically, that error test uses the RMS norm of a vector
whose components are the products of the components of these two vectors. Thus, for
example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight [i]*ele[i].

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,
&nlinsetups, &netfails, &qlast, &qcur,
&hinused, &hlast, &hcur, &tcur);

Description  The function CVodeGetIntegratorStats returns the CVODE integrator statistics as a
group.

Arguments cvodemem (void *) pointer to the CVODE memory block.
nsteps (long int) number of steps taken by CVODE.
nfevals (long int) number of calls to the user’s f function.
nlinsetups (long int) number of calls made to the linear solver setup function.
netfails (long int) number of error test failures.
qlast (in ) method order used on the last internal step.
qcur (int) method order to be used on the next internal step.
hinused (realtype) actual value of initial step size.
hlast (realtype) step size taken on the last internal step.
hcur (realtype) step size to be attempted on the next internal step.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV_SUCCESS the optional output values have been successfully set.
CV_MEM_NULL the cvode_mem pointer is NULL.

[ CVodeGetNumNonlinSolvIters |

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description The function CVodeGetNumNonlinSolvIters returns the number of nonlinear (func-
tional or Newton) iterations performed.

Arguments cvode mem (void *) pointer to the CVODE memory block.
nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of
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CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

’CVodeGetNumNonlinSovaonvFails

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description  The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear con-
vergence failures that have occurred.

Arguments cvodemem (void *) pointer to the CVODE memory block.

nncfails (long int) number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

[ CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description  The function CVodeGetNonlinSolvStats returns the CVODE nonlinear solver statistics
as a group.
Arguments cvodemem (void *) pointer to the CVODE memory block.
nniters (long int) number of nonlinear iterations performed.
nncfails (long int) number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of
CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CVodeGetReturnFlagName

Call name = CVodeGetReturnFlagName (flag);

Description  The function CVodeGetReturnFlagName returns the name of the CVODE constant cor-
responding to flag.

Arguments  The only argument, of type int, is a return flag from a CVODE function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.2 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

’CVodeGetRootInfo‘
Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description  The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.

Arguments cvodemem (void *) pointer to the CVODE memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions g;
found to have a root. For i = 0,... nrtfn—1, rootsfound[i]# 0 if g; has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output values have been successfully set.
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CV_MEM NULL The cvode_mem pointer is NULL.

Notes Note that, for the components g; for which a root was found, the sign of rootsfound]i]
indicates the direction of zero-crossing. A value of +1 indicates that g; is increasing,
while a value of —1 indicates a decreasing g;.

The user must allocate memory for the vector rootsfound.

’CVodeGetNumGEvals‘

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description  The function CVodeGetNumGEvals returns the cumulative number of calls made to the
user-supplied root function g.

Arguments cvode mem (void *) pointer to the CVODE memory block.
ngevals (long int) number of calls made to the user’s function g thus far.

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

4.5.8.3 Direct linear solvers optional output functions

The following optional outputs are available from the cvDLS modules: workspace requirements, num-
ber of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-difference
Jacobian approximation, and last return value from a cvDLS function. Note that, where the name of
an output would otherwise conflict with the name of an optional output from the main solver, a suffix
LS (for Linear Solver) has been added here (e.g. lenrwLS).

’CVDlsGetWorkSpace‘

Call flag = CVDlsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description  The function CVD1lsGetWorkSpace returns the sizes of the real and integer workspaces
used by a CVDLS linear solver (CVDENSE or CVBAND).

Arguments cvode mem (void *) pointer to the CVODE memory block.
lenrwLS (long int) the number of realtype values in the CvDLS workspace.
leniwLS (long int) the number of integer values in the CvVDLS workspace.

Return value The return value flag (of type int) is one of

CVDLS_SUCCESS  The optional output values have been successfully set.
CVDLS_MEM_NULL The cvode_mem pointer is NULL.
CVDLS_LMEM NULL The cvDLS linear solver has not been initialized.

Notes For the CVDENSE linear solver, in terms of the problem size N, the actual size of the real
workspace is 2N? realtype words, and the actual size of the integer workspace is N in-
teger words. For the CVBAND linear solver, in terms of N and Jacobian half-bandwidths,
the actual size of the real workspace is (2 mupper+3 mlower+2) N realtype words, and
the actual size of the integer workspace is N integer words.

’CVDlsGetNumJacEvals‘

Call flag = CVDlsGetNumJacEvals(cvode mem, &njevals);

Description The function CVDlsGetNumJacEvals returns the number of calls made to the CVDLS
(dense or band) Jacobian approximation function.

Arguments cvodemem (void *) pointer to the CVODE memory block.
njevals (long int) the number of calls to the Jacobian function.
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Return value The return value flag (of type int) is one of
CVDLS_SUCCESS  The optional output value has been successfully set.

CVDLS_MEM NULL The cvode_mem pointer is NULL.
CVDLS_LMEM_NULL The cvDLS linear solver has not been initialized.

| CVD1sGetNumRhsEvals |
Call flag = CVDlsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVD1lsGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference (dense or band) Jacobian
approximation.

Arguments cvode mem (void *) pointer to the CVODE memory block.
nfevalsLS (long int) the number of calls made to the user-supplied right-hand side

function.

Return value The return value flag (of type int) is one of

CVDLS_SUCCESS  The optional output value has been successfully set.
CVDLS_MEM_NULL The cvode_mem pointer is NULL.
CVDLS_LMEM NULL The cvDLS linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default internal difference quotient
function is used.

CVDlsGetLastFlag‘

Call flag = CVDlsGetLastFlag(cvode mem, &lsflag);
Description  The function CVD1sGetLastFlag returns the last return value from a CVDLS routine.

Arguments cvode mem (void *) pointer to the CVODE memory block.

lsflag (long int) the value of the last return flag from a cvDLS function.
Return value The return value flag (of type int) is one of

CVDLS_SUCCESS  The optional output value has been successfully set.
CVDLS_MEM NULL The cvode_mem pointer is NULL.
CVDLS_LMEM_NULL The CcVDLS linear solver has not been initialized.
Notes If the CVDENSE setup function failed (CVode returned CV_LSETUP_FAIL), then the value
of 1sflag is equal to the column index (numbered from one) at which a zero diagonal

element was encountered during the LU factorization of the (dense or banded) Jacobian
matrix. For all other failures, 1sflag is negative.

CVD1lsGetReturnFlagName

Call name = CVDlsGetReturnFlagName(lsflag) ;

Description  The function CVD1sGetReturnFlagName returns the name of the CVDLS constant corre-
sponding to 1sflag.

Arguments The only argument, of type long int, is a return flag from a CvDLS function.
Return value The return value is a string containing the name of the corresponding constant.

If 1 <1sflag < N (LU factorization failed), this routine returns “NONE”.
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4.5.8.4 Diagonal linear solver optional output functions

The following optional outputs are available from the CVDIAG module: workspace requirements, num-
ber of calls to the right-hand side routine for finite-difference Jacobian approximation, and last return
value from a CVDIAG function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwlS).

’CVDiagGetWorkSpace‘

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description  The function CVDiagGetWorkSpace returns the CVDIAG real and integer workspace sizes.
Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

lenrwLS (long int) the number of realtype values in the CVDIAG workspace.

leniwLS (long int) the number of integer values in the CVDIAG workspace.
The return value flag (of type int) is one of
CVDIAG_SUCCESS The optional output valus have been successfully set.

CVDIAG_MEM NULL The cvode mem pointer is NULL.
CVDIAG_LMEM_NULL The CVDIAG linear solver has not been initialized.

Notes In terms of the problem size N, the actual size of the real workspace is roughly 3N
realtype words.

CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsLS);

Description  The function CVDiagGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.

Arguments cvodemem (void *) pointer to the CVODE memory block.

Return value

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

The return value flag (of type int) is one of
CVDIAG_SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode _mem pointer is NULL.
CVDIAG_LMEM_NULL The CVDIAG linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
made to the linear solver setup function (see CVodeGetNumLinSolvSetups).

CVDiagGetLastFlag‘

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);

Description  The function CVDiagGetLastFlag returns the last return value from a CVDIAG routine.

Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

lsflag (long int) the value of the last return flag from a CvDIAG function.
The return value flag (of type int) is one of
CVDIAG_SUCCESS The optional output value has been successfully set.

CVDIAG_MEM NULL The cvode_mem pointer is NULL.
CVDIAG_LMEM_NULL The CVDIAG linear solver has not been initialized.
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Notes If the cvDIAG setup function failed (CVode returned CV_LSETUP_FAIL), the value of
1sflag is equal to CVDIAG_INV_FAIL, indicating that a diagonal element with value zero
was encountered. The same value is also returned if the CVDIAG solve function failed
(CVode returned CV_LSOLVE_FAIL).

CVDiagGetReturnFlagName

Call name = CVDiagGetReturnFlagName(lsflag) ;

Description The function CVDiagGetReturnFlagName returns the name of the CVDIAG constant
corresponding to 1sflag.

Arguments  The only argument, of type long int, is a return flag from a CVDIAG function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.5 Iterative linear solvers optional output functions

The following optional outputs are available from the CVSPILS modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector product routine, number of calls to the
right-hand side routine for finite-difference Jacobian-vector product approximation, and last return
value from a linear solver function. Note that, where the name of an output would otherwise conflict
with the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been
added here (e.g. lenrwLS).

CVSpilsGetWorkSpace ‘

Call flag = CVSpilsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description  The function CVSpilsGetWorkSpace returns the global sizes of the CVSPGMR real and
integer workspaces.

Arguments cvode mem (void *) pointer to the CVODE memory block.
lenrwlS (long int) the number of realtype values in the CvspILS workspace.
leniwLS (long int) the number of integer values in the CVSPILS workspace.

Return value The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM NULL The cvode_mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.
Notes In terms of the problem size N and maximum subspace size max1, the actual size of the
real workspace is roughly:
(max1l+5) * N+ maxl *( maxl+4) + 1 realtype words for CVSPGMR,
9% N realtype words for CVSPBCG,
and 11 %« IV realtype words for CVSPTFQMR.

In a parallel setting, the above values are global, summed over all processors.

CVSpilsGetNumLinIters

Call flag = CVSpilsGetNumLinIters(cvode mem, &nliters);

Description  The function CVSpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments cvode mem (void *) pointer to the CVODE memory block.
nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of
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CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM_NULL The cvode_mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

CVSpilsGetNumConvFails

Call flag = CVSpilsGetNumConvFails(cvode mem, &nlcfails);

Description  The function CVSpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments cvode mem (void *) pointer to the CVODE memory block.
nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM_NULL The cvode_mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

CVSpilsGetNumPrecEvals

Call flag = CVSpilsGetNumPrecEvals(cvode mem, &npevals);

Description  The function CVSpilsGetNumPrecEvals returns the number of preconditioner evalua-
tions, i.e., the number of calls made to psetup with jok = FALSE.

Arguments cvode mem (void *) pointer to the CVODE memory block.
npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS_LMEM NULL The CVSPILS linear solver has not been initialized.

CVSpilsGetNumPrecSolves

Call flag = CVSpilsGetNumPrecSolves(cvode mem, &npsolves);

Description  The function CVSpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.
Arguments cvodemem (void *) pointer to the CVODE memory block.
npsolves (long int) the current number of calls to psolve.
Return value The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM NULL The cvode mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

CVSpilsGetNumJtimesEvals

Call flag = CVSpilsGetNumJtimesEvals(cvode mem, &njvevals);

Description  The function CVSpilsGetNumJtimesEvals returns the cumulative number made to the
Jacobian-vector function, jtimes.

Arguments cvodemem (void *) pointer to the CVODE memory block.
njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of
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CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS_MEM NULL The cvode _mem pointer is NULL.
CVSPILS_LMEM_NULL The cVSPILS linear solver has not been initialized.

CVSpilsGetNumRhsEvals

Call flag = CVSpilsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVSpilsGetNumRhsEvals returns the number of calls to the user right-
hand side function for finite difference Jacobian-vector product approximation.

Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

nfevalsLS (long int) the number of calls to the user right-hand side function.
The return value flag (of type int) is one of
CVSPILS_SUCCESS The optional output value has been successfully set.

CVSPILS_MEM NULL The cvode _mem pointer is NULL.
CVSPILS_LMEM_NULL The cVSPILS linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default CVSpilsDQJtimes difference
quotient function is used.

CVSpilsGetLastFlag‘

Call flag = CVSpilsGetLastFlag(cvode mem, &lsflag);

Description  The function CVSpilsGetLastFlag returns the last return value from a CVSPILS routine.

Arguments cvode mem (void *) pointer to the CVODE memory block.

Return value

Notes

lsflag (long int) the value of the last return flag from a cvsPILS function.
The return value flag (of type int) is one of

CVSPILS_SUCCESS The optional output value has been successfully set.
CVSPILS MEM NULL The cvode mem pointer is NULL.
CVSPILS_LMEM_NULL The CVSPILS linear solver has not been initialized.

If the cvSPILS setup function failed (CVode returned CV_LSETUP_FAIL), 1sflag will be
SPGMR_PSET_FAIL_UNREC, SPBCG_PSET_FAIL_UNREC, or SPTFQMR_PSET_FAIL_UNREC.

If the CVSPGMR solve function failed (CVode returned CV_LSOLVE_FAIL), 1sflag contains
the error return flag from SpgmrSolve and will be one of: SPGMR_MEM_NULL, indicating
that the SPGMR memory is NULL; SPGMR_ATIMES FAIL UNREC, indicating an unrecover-
able failure in the J*v function; SPGMR_PSOLVE_FAIL_UNREC, indicating that the precon-
ditioner solve function psolve failed unrecoverably; SPGMR_GS_FAIL, indicating a failure
in the Gram-Schmidt procedure; or SPGMR_QRSOL_FAIL, indicating that the matrix R
was found to be singular during the QR solve phase.

If the cvsPBCG solve function failed (CVode returned CV_LSOLVE_FAIL), 1sflag contains
the error return flag from SpbcgSolve and will be one of: SPBCG_MEM_NULL, indicating
that the SPBCG memory is NULL; SPBCG_ATIMES FAIL UNREC, indicating an unrecover-
able failure in the J % v function; or SPBCG_PSOLVE_FAIL_UNREC, indicating that the
preconditioner solve function psolve failed unrecoverably.

If the CVSPTFQMR solve function failed (CVode returned CV_LSOLVE_FAIL), 1sflag con-
tains the error return flag from SptfgqmrSolve and will be one of: SPTFQMR_MEM_NULL,
indicating that the SPTFQMR memory is NULL; SPTFQMR_ATIMES_FAIL_UNREC, indicating
an unrecoverable failure in the J*v function; or SPTFQMR_PSOLVE_FAIL UNREC, indicating
that the preconditioner solve function psolve failed unrecoverably.
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CVSpilsGetReturnFlagName

Call name = CVSpilsGetReturnFlagName(1lsflag);

Description  The function CVSpilsGetReturnFlagName returns the name of the CVSPILS constant
corresponding to lsflag.

Arguments  The only argument, of type long int, is a return flag from a CvSPILS function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.9 CVODE reinitialization function

The function CVodeReInit reinitializes the main CVODE solver for the solution of a problem, where a
prior call to CVodeInit been made. The new problem must have the same size as the previous one.
CVodeReInit performs the same input checking and initializations that CVodeInit does, but does no
memory allocation as it assumes that the existing internal memory is sufficient for the new problem.

The use of CVodeReInit requires that the maximum method order, denoted by maxord, be no
larger for the new problem than for the previous problem. This condition is automatically fulfilled
if the multistep method parameter lmm is unchanged (or changed from CV_ADAMS to CV_BDF) and the
default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate CV*Set* calls, as
described in §4.5.3

CVodeRelInit

Call flag = CVodeRelInit(cvode mem, t0, yO0);

Description The function CVodeReInit provides required problem specifications and reinitializes
CVODE.

Arguments cvode mem (void *) pointer to the CVODE memory block.
t0 (realtype) is the initial value of t.
yO (N_Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:

CV_SUCCESS  The call to CVodeReInit was successful.

CV_MEM NULL The cvODE memory block was not initialized through a previous call to
CVodeCreate.

CV_NO_MALLOC Memory space for the CVODE memory block was not allocated through
a previous call to CVodeInit.

CV_ILL_INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also sends an error message to the error handler
function.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) a function that provides Jacobian-related information for the linear solver (if Newton
iteration is chosen), and (optionally) one or two functions that define the preconditioner for use in
any of the Krylov iterative algorithms.

4.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:
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Definition
Purpose

Arguments

Return value

Notes

typedef int (*CVRhsFn) (realtype t, N_Vector y, N_Vector ydot,

void *user_data);
This function computes the ODE right-hand side for a given value of the independent
variable ¢ and state vector y.

t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
ydot is the output vector f(t,y).

user_data is the user_data pointer passed to CVodeSetUserData.

A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case CVODE will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CV_RHSFUNC_FAIL is returned).

Allocation of memory for ydot is handled within CVODE.

A recoverable failure error return from the CVRhsFn is typically used to flag a value of
the dependent variable y that is “illegal” in some way (e.g., negative where only a non-
negative value is physically meaningful). If such a return is made, CVODE will attempt
to recover (possibly repeating the Newton iteration, or reducing the step size) in order
to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged
solution of the nonlinear solver. Therefore, in general, a recoverable error in that con-
verged value cannot be corrected. (It may be detected when the right-hand side function
is called the first time during the following integration step, but a successful step cannot
be undone.)

There are two other situations in which recovery is not possible even if the right-hand
side function returns a recoverable error flag. One is when this occurs at the very
first call to the CVRhsFn (in which case CVODE returns CV_FIRST_RHSFUNC_ERR). The
other is when a recoverable error is reported by CVRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case CVODE returns
CV_UNREC_RHSFUNC_ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed
to by errfp (see CVSetErrFile), the user may provide a function of type CVErrHandlerFn to process
any such messages. The function type CVErrHandlerFn is defined as follows:

’CVErrHandlean‘

Definition

Purpose

Arguments

Return value
Notes

typedef void (*CVErrHandlerFn) (int error_code, const char *module,
const char *function, char *msg,
void *eh_data);

This function processes error and warning messages from CVODE and its sub-modules.

error_code is the error code.
module is the name of the CVODE module reporting the error.
function is the name of the function in which the error occurred.

msg is the error message.
eh_data is a pointer to user data, the same as the eh_data parameter passed to
CVodeSetErrHandlerFn.

A CVErrHandlerFn function has no return value.

error_code is negative for errors and positive (CV_.WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error_code to 0.
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4.6.3 Error weight function
As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm || v|wrms =

\/(1/]\7) ZiV(Wl -v;)2. These weights will be used in place of those defined by Eq. (2.6). The function
type CVEwtFn is defined as follows:

Definition typedef int (*#CVEwtFn) (N_Vector y, N Vector ewt, void *user_data);
Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.
ewt is the output vector containing the error weights.
user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVEwtFn function type must return 0 if it successfully set the error weights and —1
otherwise.

Notes Allocation of memory for ewt is handled within CVODE.

The error weight vector must have all components positive. It is the user’s responsiblity
to perform this test and return —1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

Definition typedef int (*CVRootFn) (realtype t, N_Vector y, realtype *gout,
void *user_data);

Purpose This function implements a vector-valued function g(¢,y) such that the roots of the
nrtfn components g;(t,y) are sought.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
gout is the output array, of length nrtfn, with components g;(t, ).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVRootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and CVode returns CV_RTFUNC_FAIL).

Notes Allocation of memory for gout is automatically handled within CVODE.

4.6.5 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e., CVDense or CVLapackDense
is called in Step 8 of §4.4), the user may provide a function of type CVD1sDenseJacFn defined by:
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CVDlsDenseJaan‘

Definition ~ typedef (*#CVDlsDenseJacFn)(long int N, realtype t, N_Vector y, N_Vector fy,
DlsMat Jac, void *user_data,
N_Vector tmpl, N_Vector tmp2, N_Vector tmp3);

Purpose This function computes the dense Jacobian J = 9f /0y (or an approximation to it).
Arguments N is the problem size.
t is the current value of the independent variable.
y is the current value of the dependent variable vector, namely the predicted
value of y(t).
fy is the current value of the vector f(¢,y).
Jac is the output dense Jacobian matrix (of type D1sMat).
user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.
tmpl
tmp2
tmp3 are pointers to memory allocated for variables of type N_Vector which can

be used by a CVDlsDenseJacFn as temporary storage or work space.

Return value A CVDlsDenseJacFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case CVODE will attempt to correct, while CVDENSE sets last_flag
on CVDLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVode returns CV_LSETUP_FAIL and CVDENSE sets last_flag
on CVDLS,JACFUNC,UNRECVR).

Notes A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an
approximation to the Jacobian matrix J(¢,y) at the point (t, y). Only nonzero elements
need to be loaded into Jac because Jac is set to the zero matrix before the call to the
Jacobian function. The type of Jac is D1sMat.

The accessor macros DENSE_ELEM and DENSE_COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation
of the DlsMat type. DENSE_ELEM(J, i, j) references the (i, j)-th element of the
dense matrix Jac (i, j = 0...N —1). This macro is meant for small problems for
which efficiency of access is not a major concern. Thus, in terms of the indices m
and n ranging from 1 to IV, the Jacobian element J,, ,, can be set using the statement
DENSE_ELEM(J, m-1, n-1) = .J,, . Alternatively, DENSE_COL(J, j) returns a pointer
to the first element of the j-th column of Jac (j =0...N —1), and the elements of the
j-th column can then be accessed using ordinary array indexing. Consequently, Jp, »
can be loaded using the statements col.n = DENSE_COL(J, n-1); colm[m-1] = J,, ,.
For large problems, it is more efficient to use DENSE_COL than to use DENSE_ELEM. Note
that both of these macros number rows and columns starting from 0.

The D1sMat type and accessor macros DENSE_ELEM and DENSE_COL are documented in
§8.1.3.

If the user’s CVDenseJacFn function uses difference quotient approximations, then it
may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, use the CVodeGet* functions de-
scribed in §4.5.8.1. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in
sundials_types.h.

For the sake of uniformity, the argument N is of type long int, even in the case that
the Lapack dense solver is to be used.
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4.6.6 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. CVBand or CVLapackBand
is called in Step 8 of §4.4), the user may provide a function of type CVD1sBandJacFn defined as follows:

| CVD1sBandJacFn |

Definition

Purpose

Arguments

Return value

Notes

typedef int (*CVBandJacFn) (long int N, long int mupper, long int mlower,
realtype t, N_Vector y, N_Vector fy,
DlsMat Jac, void *user_data,
N_Vector tmpl, N_Vector tmp2, N_Vector tmp3);

This function computes the banded Jacobian J = df/dy (or a banded approximation
to it).

N is the problem size.

mlower

mupper are the lower and upper half-bandwidths of the Jacobian.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t,y).

Jac is the output band Jacobian matrix (of type D1sMat).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

tmpl

tmp2

tmp3 are pointers to memory allocated for variables of type N_Vector which can

be used by CVDlsBandJacFn as temporary storage or work space.

A CVDlsBandJacFn function should return 0 if successful, a positive value if a recover-
able error occurred (in which case CVODE will attempt to correct, while CVBAND sets
last_flag on CVDLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in
which case the integration is halted, CVode returns CV_LSETUP_FAIL and CVBAND sets
last_flag on CVDLS,JACFUNC,UNRECVR).

A user-supplied band Jacobian function must load the band matrix Jac of type D1sMat
with the elements of the Jacobian J(¢,y) at the point (t,y). Only nonzero elements
need to be loaded into Jac because Jac is initialized to the zero matrix before the call
to the Jacobian function.

The accessor macros BAND_ELEM, BAND_COL, and BAND_COL_ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the D1sMat type. BAND_ELEM(J, i, j) references the (i, j)-th element
of the band matrix Jac, counting from 0. This macro is meant for use in small problems
for which efficiency of access is not a major concern. Thus, in terms of the indices
m and n ranging from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element .J,, , can be loaded using the statement BAND_ELEM(J,
m-1, n-1) = Jp, ,. The elements within the band are those with -mupper < m-n <
mlower. Alternatively, BAND_COL(J, j) returns a pointer to the diagonal element of the
j-th column of Jac, and if we assign this address to realtype *col_j, then the i-th
element of the j-th column is given by BAND_COL_ELEM(col_j, i, j), counting from 0.
Thus, for (m,n) within the band, J,, , can be loaded by setting col.n = BAND_COL(J,
n-1); BAND_COL_ELEM(coln, m-1, n-1) =.J,, . The elements of the j-th column can
also be accessed via ordinary array indexing, but this approach requires knowledge of the
underlying storage for a band matrix of type D1sMat. The array col_n can be indexed
from —mupper to mlower. For large problems, it is more efficient to use BAND_COL and
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BAND_COL_ELEM than to use the BAND_ELEM macro. As in the dense case, these macros
all number rows and columns starting from 0.

The D1sMat type and the accessor macros BAND_ELEM, BAND_COL and BAND_COL_ELEM are
documented in §8.1.4.

If the user’s CVBandJacFn function uses difference quotient approximations, then it
may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, use the CVodeGet* functions de-
scribed in §4.5.8.1. The unit roundoff can be accessed as UNIT_ROUNDOFF defined in
sundials_types.h.

For the sake of uniformity, the arguments N, mlower, and mupper are of type long int,
even in the case that the Lapack band solver is to be used.

4.6.7 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers SPGMR, SPBCG, or SPTFQMR is selected (CVSpx is called in
step 8 of §4.4), the user may provide a function of type CVSpilsJacTimesVecFn in the following form,
to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

] CVSpilsJacTimesVecFn

Definition typedef int (*CVSpilsJacTimesVecFn) (N_Vector v, N_Vector Jv,
realtype t, N_Vector y, N_Vector fy,
void *user_data, N_Vector tmp);

Purpose This function computes the product Jv = (9f/9y)v (or an approximation to it).
Arguments v is the vector by which the Jacobian must be multiplied.
Jv is the output vector computed.

is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(¢,y).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

tmp is a pointer to memory allocated for a variable of type N_Vector which can

be used for work space.

Return value The value to be returned by the Jacobian-vector product function should be 0 if success-
ful. Any other return value will result in an unrecoverable error of the SPGMR generic
solver, in which case the integration is halted.

Notes If the user’s CVSpilsJacTimesVecFn function uses difference quotient approximations,
it may 