RRDTHREADS(1) rrdtool RRDTHREADS(1)

NAME

rrdthreads — Provisions for linking the RRD library to use in multi-threaded programs

SYNOPSIS

Using librrd in multi-threaded programs requires some extra precautions, RRQHibrary in its original
form was not thread-safe at all. This document describes requirements alisl gitfthe way to use the
multi-threaded &rsion of librrd in your own programs. It alsosgs hints for futureRRD development to
keep the library thread-safe.

Currently only som&RD operations are implemented in a thread-safg Whey all end in the usual 'r "
suffix.

DESCRIPTION

In order to use librrd in multi-threaded programs you must:
e Link with librrd_thinstead ofibrrd (use-Irrd_th when linking)
» Use the "r " functions instead of the normal API-functions

» Do not use anat-style time specifications.alising of such time specifications is terribly non-thread-
safe.

* Neveruse non *r functions unless it is explicitly documented that the function is tread-safe.
e Every threadSHOULD call rrd_get_context() before its first call to anlibrrd_th function

in order to set up thread specific data. This is not strictly required, but it is the only way to test if

memory allocation can be done by this function. Otherwise the program may dieSMiBEGVin a
low-memory situation.

e Always callrrd_error_clear() before ag call to the library Otherwise the call might fail due
to some earlier error.

NOTES FOR RRD CONTRIBUTORS

153

Some precautions must be followed whewettgoing RRD from now on:

» Only use thread-safe functions in library code. Maften used libc functions ardrthread-safe. dke
care in the following situations or when using the following library functions:

e Direct calls tostrerror() must be woided: userrd_strerror() instead, it provides a
per-thread error message.

e« Thegetpw* , getgr* , gethost* function families (and some moget* functions) are not
thread-safe: use the i variants

e Time functionsasctime , ctime , gmtime , localtime :use * r variants
e strtok :usestrtok r

e tmpnam: usetmpnam_r

e Marny others (lookup documentation)

* A header file namedrd is thread safe.h is provided that works with theNU C-preprocessor to
“poison’ some of the most common non-thread-safe functions usinggregma GCC poison
directive. Just include this header in source files you want to keep thread-safe.

* Do not introduce global variables!

If you really really hare o use a global variable you may add awnigeld to therrd_context
structure and modifyrd_error.c, rrd_thread safe.c andrrd _non_thread safe.c

Do not usegetopt orgetopt long in*_r (neither directly nor indirectly).

getopt uses global variables and bebs badly in a multi-threaded application when called
concurrently Instead provide a *_r function taking all options as function parameters.méay
provide argc and **argv arguments foanable length argument lists. Sed_update_r as an
example.

2012-09-11 1

RRDTHREADS(1) rrdtool RRDTHREADS(1)

* Do not use therd_parsetime function!

It uses lots of global variables. You may use it in functions not designed to be thread-safe, lik
functions wrapping the r version of some operation (e.grrd_create , but not in
rrd_create r)

CURRENTLY IMPLEMENTED THREAD SAFE FUNCTIONS
Currently there exist thread-safe variantsraf_update , rrd_create , rrd_dump , rrd_info
rrd_last , andrrd_fetch

AUTHOR
Peter Stamfest <peter@stamfest.at>

153 2012-09-11 2

