Traits 3 User Manual
Release 3.2.1

Enthought, Inc.

October 21, 2009

CONTENTS

1 Traits 3 User Manual 1
1.1 Traits3 UserManual e e e e e e e 1
1.2 Introduction e e 1
1.3 Defining Traits: Initialization and Validation 4
1.4 Trait Notification o e e e e e e e e e e 14
1.5 Deferring Trait Definitions L e 22
1.6 Custom Traits e e e e e e e e e 26
1.7 Advanced TODPICS o o o i e e e e e 34
2 Indices and tables 51
3 Traits 3 Tutorials 53
3.1 Writing a graphical application for scientific programming using TraitsUI 53
4 Indices and tables 73
5 Traits UI User Guide 75
5.1 Traits Ul User Guide i i e e e e e e e 75
5.2 IntroduCtion e e e e e 75
5.3 The View and Its Building Blocks e 78
54 Customizing a VIEW L L e e e e e 87
5.5 Advanced View Concepts e e 93
5.6 Controlling the Interface: the Handler 99
5.7 Traits UL Themes o o i e e e e e e e e e 106
5.8 Introduction to Trait Editor Factories 109
5.9 The Predefined Trait Editor Factories 115
5.10 Advanced Trait Editors e e e e 135
5.11 “Extra” Trait Editor Factories e 153
5.12 Tips, Tricks and Gotchas e 157
5.13 Appendix I: Glossary of Terms 0 e e e e e e e 158
5.14 Appendix II: Editor Factories for Predefined Traits 160
6 Indices and tables 163

CHAPTER
ONE

TRAITS 3 USER MANUAL

1.1 Traits 3 User Manual

Authors David C. Morrill, Janet M. Swisher
Version Document Version 4
Copyright 2005, 2006, 2008 Enthought, Inc. All Rights Reserved.

Redistribution and use of this document in source and derived forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source or derived format (for example, Portable Document Format or Hypertext Markup
Language) must retain the above copyright notice, this list of conditions and the following disclaimer.

* Neither the name of Enthought, Inc., nor the names of contributors may be used to endorse or promote products
derived from this document without specific prior written permission.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

All trademarks and registered trademarks are the property of their respective owners. Enthought, Inc.
515 Congress Avenue

Suite 2100

Austin TX 78701

1.512.536.1057 (voice)

1.512.536.1059 (fax)

http://www.enthought.com

info@enthought.com

1.2 Introduction

The Traits package for the Python language allows Python programmers to use a special kind of type definition called
a trait. This document introduces the concepts behind, and usage of, the Traits package.

http://www.enthought.com
mailto:info@enthought.com

Traits 3 User Manual, Release 3.2.1

For more information on the Traits package, refer to the Traits web page. This page contains links to downloadable
packages, the source code repository, and the Traits development website. Additional documentation for the Traits
package is available from the Traits web page, including:

* Traits API Reference
¢ Traits Ul User Guide

e Traits Technical Notes

1.2.1 What Are Traits?

A trait is a type definition that can be used for normal Python object attributes, giving the attributes some additional
characteristics:

* Initialization: A trait has a default value, which is automatically set as the initial value of an attribute, before
its first use in a program.

* Validation: A trait attribute is explicitly typed. The type of a trait-based attribute is evident in the code, and only
values that meet a programmer-specified set of criteria (i.e., the trait definition) can be assigned to that attribute.
Note that the default value need not meet the criteria defined for assignment of values. Traits 3.0 also supports
defining and using abstract interfaces, as well as adapters between interfaces.

¢ Deferral: The value of a trait attribute can be contained either in the defining object or in another object that is
deferred to by the trait.

* Notification: Setting the value of a trait attribute can notify other parts of the program that the value has changed.

* Visualization: User interfaces that allow a user to interactively modify the values of trait attributes can be
automatically constructed using the traits’ definitions. This feature requires that a supported GUI toolkit be
installed. However, if this feature is not used, the Traits package does not otherwise require GUI support. For
details on the visualization features of Traits, see the Traits UI User Guide.

A class can freely mix trait-based attributes with normal Python attributes, or can opt to allow the use of only a fixed
or open set of trait attributes within the class. Trait attributes defined by a class are automatically inherited by any
subclass derived from the class.

The following example ! illustrates each of the features of the Traits package. These features are elaborated in the rest
of this guide.

all traits features.py —-—— Shows primary features of the Traits
package

from enthought.traits.api import Delegate, HasTraits, Instance,\
Int, Str
import enthought.traits.ui
class Parent (HasTraits):
INITIALIZATION: last_name’ 1is initialized to ’7’:
last_name = Str('’)

class Child (HasTraits):

age = Int

! All code examples in this guide that include a file name are also available as examples in the tutorials/doc_examples/examples subdirectory of
the Traits docs directory. You can run them individually, or view them in a tutorial program by running:
python <Traits dir>/enthought/traits/tutor/tutor.py <Traits dir>/docs/tutorials/doc_examples

2 Chapter 1. Traits 3 User Manual

http://code.enthought.com/projects/traits

Traits 3 User Manual, Release 3.2.1

VALIDATION: ’father’ must be a Parent instance:
father = Instance(Parent)

DELEGATION: ’last_name’ 1is delegated to father’s ’last_name’:
last_name = Delegate('father’)

NOTIFICATION: This method is called when ’age’ changes:
def _age_changed (self, old, new):
print ’'Age changed from to % (old, new)

Set up the example:

joe = Parent ()
joe.last_name = ’Johnson’
moe = Child()

moe. father = Jjoe

DELEGATION in action:

print "Moe’s last name 1is " % moe.last_name
Result:

Moe’s last name is Johnson

NOTIFICATION in action
moe.age = 10

Result:

Age changed from 0 to 10

VISUALIZATION: Displays a UI for editing moe’s attributes
(if a supported GUI toolkit is installed)
moe.configure_traits/()

In addition, traits can be used to define type-checked method signatures. The Traits package can ensure that the
arguments and return value of a method invocation match the traits defined for the parameters and return value in the
method signature. This feature is described in Type-Checked Methods.

1.2.2 Background

Python does not require the data type of variables to be declared. As any experienced Python programmer knows, this
flexibility has both good and bad points. The Traits package was developed to address some of the problems caused by
not having declared variable types, in those cases where problems might arise. In particular, the motivation for Traits
came as a direct result of work done on Chaco, an open source scientific plotting package. Chaco provides a set of
high-level plotting objects, each of which has a number of user-settable attributes, such as line color, text font, relative
location, and so on. To make the objects easy for scientists and engineers to use, the attributes attempt to accept a wide
variety and style of values. For example, a color-related attribute of a Chaco object might accept any of the following
as legal values for the color red:

e ‘red’
¢ 0xFF0000
¢ (1.0,0.0,0.0,1.0)

Thus, the user might write:
plotitem.color = ’red’

In a predecessor to Chaco, providing such flexibility came at a cost:

1.2. Introduction 3

Traits 3 User Manual, Release 3.2.1

e When the value of an attribute was used by an object internally (for example, setting the correct pen color
when drawing a plot line), the object would often have to map the user-supplied value to a suitable internal
representation, a potentially expensive operation in some cases.

« If the user supplied a value outside the realm accepted by the object internally, it often caused disastrous or
mysterious program behavior. This behavior was often difficult to track down because the cause and effect were
usually widely separated in terms of the logic flow of the program.

So, one of the main goals of the Traits package is to provide a form of type checking that:

» Allows for flexibility in the set of values an attribute can have, such as allowing ‘red’, 0xFF0000 and (1.0, 0.0,
0.0, 1.0) as equivalent ways of expressing the color red.

* Catches illegal value assignments at the point of error, and provides a meaningful and useful explanation of the
error and the set of allowable values.

 Eliminates the need for an object’s implementation to map user-supplied attribute values into a separate internal
representation.

In the process of meeting these design goals, the Traits package evolved into a useful component in its own right,
satisfying all of the above requirements and introducing several additional, powerful features of its own. In projects
where the Traits package has been used, it has proven valuable for enhancing programmers’ ability to understand code,
during both concurrent development and maintenance.

The Traits 3.0 package works with version 2.4 and later of Python, and is similar in some ways to the Python property
language feature. Standard Python properties provide the similar capabilities to the Traits package, but with more
work on the part of the programmer.

1.3 Defining Traits: Initialization and Validation

Using the Traits package in a Python program involves the following steps:
1. Import the names you need from the Traits package enthought.traits.api.
2. Define the traits you want to use.

1. Define classes derived from HasTraits (or a subclass of HasTraits), with attributes that use the traits you have
defined.

In practice, steps 2 and 3 are often combined by defining traits in-line in an attribute definition. This strategy is used
in many examples in this guide. However, you can also define traits independently, and reuse the trait definitions
across multiple classes and attributes (see Reusing Trait Definitions). Type-checked method signatures typically use
independently defined traits.

In order to use trait attributes in a class, the class must inherit from the HasTraits class in the Traits package (or from
a subclass of HasTraits). The following example defines a class called Person that has a single trait attribute weight,
which is initialized to 150.0 and can only take floating point values.

minimal.py —-—-- Minimal example of using traits.
from enthought.traits.api import HasTraits, Float

class Person (HasTraits) :
weight = Float (150.0)

In this example, the attribute named weight specifies that the class has a corresponding trait called weight. The
value associated with the attribute weight (i.e., Float (150.0)) specifies a predefined trait provided with the Traits
package, which requires that values assigned be of the standard Python type float. The value 150.0 specifies the default
value of the trait.

4 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

The value associated with each class-level attribute determines the characteristics of the instance attribute identified
by the attribute name. For example:

>>> from minimal import Person
>>> # instantiate the class
>>> joe = Person()

>>> # Show the default value
>>> joe.weilght

150.0

>>> # Assign new values

>>> joe.weight = 161.9 # OK to assign a float

>>> joe.weight = 162 # OK to assign an int

>>> joe.weight = ’average’ # Error to assign a string

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "c:\svn\ets3\traits\enthought\traits\trait_handlers.py", line 175,
in error value)
enthought.traits.trait_errors.TraitError: The ’'weight’ trait of a Person
instance must be a float, but a value of ’"average’ <type ’'str’> was
specified.

In this example, joe is an instance of the Person class defined in the previous example. The joe object has an instance
attribute weight, whose initial value is the default value of the Person.weight trait (150.0), and whose assignment is
governed by the Person.weight trait’s validation rules. Assigning an integer to weight is acceptable because there is
no loss of precision (but assigning a float to an Int trait would cause an error).

The Traits package allows creation of a wide variety of trait types, ranging from very simple to very sophisticated.
The following section presents some of the simpler, more commonly used forms.

1.3.1 Predefined Traits

The Traits package includes a large number of predefined traits for commonly used Python data types. In the simplest
case, you can assign the trait name to an attribute of a class derived from HasTraits; any instances of the class will
have that attribute initialized to the built-in default value for the trait. For example:

account_balance = Float

This statement defines an attribute whose value must be a floating point number, and whose initial value is 0.0 (the
built-in default value for Floats).

If you want to use an initial value other than the built-in default, you can pass it as an argument to the trait:

account_balance = Float (10.0)
Most predefined traits are callable, > and can accept a default value and possibly other arguments; all that are callable

can also accept metadata as keyword arguments. (See Other Predefined Traits for information on trait signatures, and
see Trait Metadata for information on metadata arguments.)

Predefined Traits for Simple Types

There are two categories of predefined traits corresponding to Python simple types: those that coerce values, and those
that cast values. These categories vary in the way that they handle assigned values that do not match the type explicitly

2 Most callable predefined traits are classes, but a few are functions. The distinction does not make a difference unless you are trying to extend
an existing predefined trait. See the Traits API Reference for details on particular traits, and see Chapter 5 for details on extending existing traits.

1.3. Defining Traits: Initialization and Validation 5

Traits 3 User Manual, Release 3.2.1

defined for the trait. However, they are similar in terms of the Python types they correspond to, and their built-in
default values, as listed in the following table.

Predefined defaults for simple types

Coercing Trait Casting Trait | Python Type Built-in Default Value
Bool CBool Boolean False

Complex CComplex Complex number 0+0j

Float CFloat Floating point number | 0.0

Int Clnt Plain integer 0

Long CLong Long integer OL

Str CStr String o

Unicode CUnicode Unicode ue

Trait Type Coercion

For trait attributes defined using the predefined “coercing” traits, if a value is assigned to a trait attribute that is not
of the type defined for the trait, but it can be coerced to the required type, then the coerced value is assigned to the
attribute. If the value cannot be coerced to the required type, a TraitError exception is raised. Only widening coercions
are allowed, to avoid any possible loss of precision. The following table lists traits that coerce values, and the types
that each coerces.

Type coercions permitted for coercing traits

Trait Coercible Types

Complex | Floating point number, plain integer
Float Plain integer

Long Plain integer

Unicode | String

Trait Type Casting

For trait attributes defined using the predefined “casting” traits, if a value is assigned to a trait attribute that is not of
the type defined for the trait, but it can be cast to the required type, then the cast value is assigned to the attribute. If the
value cannot be cast to the required type, a TraitError exception is raised. Internally, casting is done using the Python
built-in functions for type conversion:

¢ bool()

e complex()
¢ float()

e int()

* str()

¢ unicode()

The following example illustrates the difference between coercing traits and casting traits:

6 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

>>> from enthought.traits.api import HasTraits, Float, CFloat
>>> class Person (HasTraits):
weight = Float

... cweight = CFloat
>>>
>>> bill = Person()
>>> bill.weight = 180 # OK, coerced to 180.0
>>> bill.cweight = 180 # OK, cast to float (180)
>>> bill.weight = 7180’ # Error, invalid coercion
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "c:\svn\ets3\traits\enthought\traits\trait_handlers.py",
in error value)
enthought.traits.trait_errors.TraitError: The ’'weight’
instance must be a float, but a value of 180’
>>> pbill.cweight = 7180’ # OK, cast to float(’180')
>>> print bill.cweight
180.0
>>>

Other Predefined Traits

trait of a Person
<type ’'str’> was specified.

line 175,

The Traits package provides a number of other predefined traits besides those for simple types, corresponding to other
commonly used data types; these predefined traits are listed in the following table. Refer to the Traits API Reference,
in the section for the module enthought.traits.traits, for details. Most can be used either as simple names, which use
their built-in default values, or as callables, which can take additional arguments. If the trait cannot be used as a simple

name, it is omitted from the Name column of the table.

Predefined traits beyond simple types

Name Callable Signature
Any Any([value = None, **metadata))
Array Array([dtype = None, shape = None,
Button Button([label = ©°, image = None, sty
Callable Callable([value = None, **metadata)
CArray CArray([dtype = None, shape = None
Class Class([value, **metadata))
Code Code([value = ©°, minlen = 0, maxlen
Color Color([*args, **metadata))
CSet CSet([trait = None, value = None, ite
n/a Constant(value*[, ***metadata])
Dict, DictStrAny, DictStrBool, DictStrFloat, DictStrInt, DictStrList, DictStrLong, DictStrStr | Dict([key_trait = None, value_trait =
Directory Directory([value = *°, auto_set = Fals
Disallow n/a
n/a Either(vall *[, *val2, ..., valN, **metc
Enum Enum(values*[, ***metadata))
Event Event([trait = None, **metadatal))
Expression Expression([value = ‘0’, **metadatal
false n/a
File File([value = ©, filter = None, auto_s.
Font ‘ Fc
\ Continued on next page |
1.3. Defining Traits: Initialization and Validation 7

Traits 3 User Manual, Release 3.2.1

Table 1.1 — continued from previous page

Function
Generic
generic_trait
HTML
Instance
List, ListBool, ListClass, ListComplex, ListFloat, ListFunction, ListInstance, ListInt, ListMethod, ListStr, ListThis, ListUnicode
Method
missing
Module
Password
Property
Python
PythonValue
Range
ReadOnly
Regex
RGBColor
self

Set

String

This
ToolbarButton
true

Tuple

Type
undefined
UStr

UUID *
WeakRef

This and self

A couple of predefined traits that merit special explanation are This and self. They are intended for attributes whose
values must be of the same class (or a subclass) as the enclosing class. The default value of This is None; the default
value of self is the object containing the attribute. The following is an example of using This:

this.py —-—-- Example of This predefined trait
from enthought.traits.api import HasTraits, This

class Employee (HasTraits):
manager = This

This example defines an Employee class, which has a manager trait attribute, which accepts only other Employee
instances as its value. It might be more intuitive to write the following:

bad_self ref.py —-— Non-working example with self- referencing
class definition
from enthought.traits.api import HasTraits, Instance
class Employee (HasTraits) :
manager = Instance (Employee)

3 Available in Python 2.5.

8 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

However, the Employee class is not fully defined at the time that the manager attribute is defined. Handling this
common design pattern is the main reason for providing the This trait.

Note that if a trait attribute is defined using This on one class and is referenced on an instance of a subclass, the This
trait verifies values based on the class on which it was defined. For example:

>>>
>>>

>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>

from enthought.traits.api import HasTraits, This
class Employee (HasTraits) :
manager = This

class Executive (Employee) :
pass

fred = Employee ()

mary = Executive ()

The following is OK, because fred’s manager can be an
instance of Employee or any subclass.

fred.manager

mary
This is also OK, because mary’s manager can be an Employee
fred

mary.manager

List of Possible Values

You can define a trait whose possible values include disparate types. To do this, use the predefined Enum trait, and
pass it a list of all possible values. The values must all be of simple Python data types, such as strings, integers, and
floats, but they do not have to be all of the same type. This list of values can be a typical parameter list, an explicit
(bracketed) list, or a variable whose type is list. The first item in the list is used as the default value. A trait defined in
this fashion can accept only values that are contained in the list of permitted values. The default value is the first value
specified; it is also a valid value for assignment.

>>>
>>>

>>>
>>>

>>>

from enthought.traits.api import Enum, HasTraits, Str
class InventoryItem(HasTraits):
name = Str # String value, default is '’
stock = Enum(None, 0, 1, 2, 3, 'many’)
Enumerated list, default value 1is

#’None’
hats = InventoryItem()
hats.name = ’Stetson’

print ’%s: %$s’ % (hats.name, hats.stock)

Stetson: None

>>>
>>>
>>>
>>>

hats.stock = 2 # OK
hats.stock = 'many’ # OK
hats.stock = 4 # Error, value is not in \

permitted list

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "c:\svn\ets3\traits_3.0.3\enthought\traits\trait_handlers.py", line 175,
in error value)
enthought.traits.trait_errors.TraitError: The ’'stock’ trait of an InventoryIltem
instance must be None or 0 or 1 or 2 or 3 or ’'many’, but a value of 4 <type
"int’> was specified.

1.3.

Defining Traits: Initialization and Validation 9

Traits 3 User Manual, Release 3.2.1

This example defines an Inventoryltem class, with two trait attributes, name, and stock. The name attribute is simply
a string. The stock attribute has an initial value of None, and can be assigned the values None, 0, 1, 2, 3, and ‘many’.
The example then creates an instance of the Inventoryltem class named hats, and assigns values to its attributes.

1.3.2 Trait Metadata

Trait objects can contain metadata attributes, which fall into three categories:
* Internal attributes, which you can query but not set.
* Recognized attributes, which you can set to determine the behavior of the trait.
* Arbitrary attributes, which you can use for your own purposes.

You can specify values for recognized or arbitrary metadata attributes by passing them as keyword arguments to
callable traits. The value of each keyword argument becomes bound to the resulting trait object as the value of an
attribute having the same name as the keyword.

Internal Metadata Attributes

The following metadata attributes are used internally by the Traits package, and can be queried:
e array: Indicates whether the trait is an array.
¢ default: Returns the default value for the trait, if known; otherwise it returns Undefined.

¢ default_kind: Returns a string describing the type of value returned by the default attribute for the trait. The
possible values are:

value: The default attribute returns the actual default value.

— list: A copy of the list default value.

— dict: A copy of the dictionary default value.

self: The default value is the object the trait is bound to; the default attribute returns Undefined.

factory: The default value is created by calling a factory; the default attribute returns Undefined.

method: The default value is created by calling a method on the object the trait is bound to; the default
attribute returns Undefined.

 delegate: The name of the attribute on this object that references the object that this object delegates to.

* inner_traits: Returns a tuple containing the “inner” traits for the trait. For most traits, this is empty, but for List
and Dict traits, it contains the traits that define the items in the list or the keys and values in the dictionary.

e parent: The trait from which this one is derived.

* prefix: A prefix or substitution applied to the delegate attribute. See Deferring Trait Definitions for details.
* trait_type: Returns the type of the trait, which is typically a handler derived from TraitType.

¢ type: One of the following, depending on the nature of the trait:

— constant

delegate

- event

property

- trait

10 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

Recognized Metadata Attributes

The following metadata attributes are not predefined, but are recognized by HasTraits objects:

 desc: A string describing the intended meaning of the trait. It is used in exception messages and fly-over help
in user interface trait editors.

* editor: Specifies an instance of a subclass of TraitEditor to use when creating a user interface editor for the trait.
Refer to the Traits UI User Guide for more information on trait editors.

¢ label: A string providing a human-readable name for the trait. It is used to label trait attribute values in user
interface trait editors.

* rich_compare: A Boolean indicating whether the basis for considering a trait attribute value to have changed
is a “rich” comparison (True, the default), or simple object identity (False). This attribute can be useful in cases
where a detailed comparison of two objects is very expensive, or where you do not care if the details of an object
change, as long as the same object is used.

* trait_value: A Boolean indicating whether the trait attribute accepts values that are instances of TraitValue.
The default is False. The TraitValue class provides a mechanism for dynamically modifying trait definitions.
See the Traits API Reference for details on TraitValue. If trait_value is True, then setting the trait attribute to
TraitValue(), with no arguments, resets the attribute to it original default value.

* transient: A Boolean indicating whether the trait value is persisted when the object containing it is persisted.
The default value for most predefined traits is True. You can set it to False for traits whose values you know you
do not want to persist. Do not set it to False on traits where it is set internally to True, as doing so is likely to
create unintended consequences. See Persistence for more information.

Other metadata attributes may be recognized by specific predefined traits.

Accessing Metadata Attributes
Here is an example of setting trait metadata using keyword arguments:

keywords.py Example of trait keywords
from enthought.traits.api import HasTraits, Str

class Person (HasTraits) :
first_name = Str('’,
desc=’'first or personal name’,
label="First Name’)
last_name = Str(’’,
desc=’last or family name’,
label="TLast Name’)

In this example, in a user interface editor for a Person object, the labels “First Name” and “Last Name” would be used
for entry fields corresponding to the first_name and last_name trait attributes. If the user interface editor supports
rollover tips, then the first_name field would display “first or personal name” when the user moves the mouse over it;
the last_name field would display “last or family name” when moused over.

To get the value of a trait metadata attribute, you can use the trait() method on a HasTraits object to get a reference to
a specific trait, and then access the metadata attribute:

metadata.py —-—-—- Example of accessing trait metadata attributes
from enthought.traits.api import HasTraits, Int, List, Float, \
Instance, Any, TraitType

class Foo(HasTraits): pass

1.3. Defining Traits: Initialization and Validation 11

Traits 3 User Manual, Release 3.2.1

class Test (

i

HasTraits) :
Int (99)

1f List (Float)

foo = Instance(Foo, ())

any = Any([1, 2, 3 1)
t = Test ()
print t.trait(i’).default # 99
print t.trait(i’).default_kind # value
print t.trait(i’).inner_traits # ()
print t.trait(i’).is_trait_type(Int) # True
print t.trait("i’).is_trait_type(Float) # False
print t.trait("1f’).default # []
print t.trait("1f’) .default_kind # 1list
print t.trait("1f’).inner_traits

(<enthought.traits.traits.CTrait object at 0x01B24138>,)

print t.trait("1f’).is_trait_type(List) # True
print t.trait("1f’).is_trait_type(TraitType) # True
print t.trait(’1f’).is_trait_type(Float) # False
print t.trait("1f’).inner_traits[0].is_trait_type(Float) # True
print t.trait(’foo’) .default # <undefined>
print t.trait("foo’).default_kind # factory
print t.trait(’foo’).inner_traits # ()
print t.trait("foo’).is_trait_type(Instance) # True
print t.trait("foo’).is_trait_type(List) # False
print t.trait(’any’) .default # [1, 2, 3]
print t.trait("any’).default_kind # list
print t.trait("any’).inner_traits # ()
print t.trait("any’).is_trait_type(Any) # True
print t.trait("any’).is_trait_type(List) # False

1.4 Trait Notification

When the value of an attribute changes, other parts of the program might need to be notified that the change has
occurred. The Traits package makes this possible for trait attributes. This functionality lets you write programs using
the same, powerful event-driven model that is used in writing user interfaces and for other problem domains.

Requesting trait attribute change notifications can be done in several ways: .. index:: notification; stragies

* Dynamically, by calling on_trait_change() or on_trait_event() to establish (or remove) change notification han-

dlers.

« Statically, by decorating methods on the class with the @on_trait_change decorator to indicate that they handle

notification for specified attributes.

« Statically, by using a special naming convention for methods on the class to indicate that they handle notifications

for specific trait attributes.

12

Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

1.4.1 Dynamic Notification

Dynamic notification is useful in cases where a notification handler cannot be defined on the class (or a subclass) whose
trait attribute changes are to be monitored, or if you want to monitor changes on certain instances of a class, but not all
of them. To use dynamic notification, you define a handler method or function, and then invoke the on_trait_change()
or on_trait_event() method to register that handler with the object being monitored. Multiple handlers can be defined
for the same object, or even for the same trait attribute on the same object. The handler registration methods have the
following signatures:

on_trait_change (handler, [name=None, remove=False, dispatch="same’])
on_trait_event (handler, [name=None, remove=False, dispatch="same’])
In these signatures:

* handler: Specifies the function or bound method to be called whenever the trait attributes specified by the name
parameter are modified.

* name: Specifies trait attributes whose changes trigger the handler being called. If this parameter is omitted or is
None, the handler is called whenever any trait attribute of the object is modified. The syntax supported by this
parameter is discussed in The name Parameter.

* remove: If True (or non-zero), then handler will no longer be called when the specified trait attributes are
modified. In other words, it causes the handler to be “unhooked”.

* dispatch: String indicating the thread on which notifications must be run. In most cases, it can be omitted. See
the Traits API Reference for details on non-default values.

Example of a Dynamic Notification Handler
Setting up a dynamic trait attribute change notification handler is illustrated in the following example:

dynamic_notification.py ——-- Example of dynamic notification
from enthought.traits.api import Float, HasTraits, Instance

class Part (HasTraits):
cost = Float (0.0)

class Widget (HasTraits):

partl = Instance (Part)
part2 = Instance (Part)
cost = Float (0.0)

def _ init__ (self):
self.partl = Part()
self.part2 = Part()
self.partl.on_trait_change (self.update_cost, ’'cost’)
self.part2.on_trait_change (self.update_cost, ’'cost’)

def update_cost (self):
self.cost = self.partl.cost + self.part2.cost

Example:

= Widget ()
.partl.cost = 2.25
.part2.cost = 5.31
print w.cost

Result: 7.56

s = = %

1.4. Trait Notification 13

Traits 3 User Manual, Release 3.2.1

In this example, the Widget constructor sets up a dynamic trait attribute change notification so that its update_cost()
method is called whenever the cost attribute of either its partl or part2 attribute is modified. This method then updates
the cost attribute of the widget object.

The name Parameter

The name parameter of on_trait_change() and on_trait_event() provides significant flexibility in specifying the name
or names of one or more trait attributes that the handler applies to. It supports syntax for specifying names of trait
attributes not just directly on the current object, but also on sub-objects referenced by the current object.

The name parameter can take any of the following values:
* Omitted, None, or ‘anytrait’: The handler applies to any trait attribute on the object.
* A name or list of names: The handler applies to each trait attribute on the object with the specified names.

* An “extended” name or list of extended names: The handler applies to each trait attribute that matches the
specified extended names.

Syntax

Extended names use the following syntax:

xname n= xname?2 [’ .’ xname2]
xnamez2 = (xname3 | ‘[’xname3[’,’xname3]x"]1") ['*']
xname3 = xname | [+’ |’'="] [name] | name[’?’/ | (" |"=") [name]]

A name is any valid Python attribute name.

14 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

Semantics

Semantics of extended name notation

Pattern Meaning

iteml.item?2 A trait named item1 contains an object (or objects, if item! is a list or dictionary), with a trait
named ifem2. Changes to either iteml or item?2 trigger a notification.

iteml:item2 A trait named item1 contains an object (or objects, if ifem] is a list or dictionary), with a trait

named ifem2. Changes to item2 trigger a notification, while changes to item/ do not (i.e., the -’
indicates that changes to the link object are not reported.
[iteml, item2, | A list that matches any of the specified items. Note that at the topmost level, the surrounding

..., itemN] square brackets are optional.

item A trait named item is a list. Changes to ifem or to its members triggers a notification.

name? If the current object does not have an attribute called name, the reference can be ignored. If the
‘P character is omitted, the current object must have a trait called name; otherwise, an exception
is raised.

prefix+ Matches any trait attribute on the object whose name begins with prefix.

+meta- Matches any trait on the object that has a metadata attribute called metadata_name.

data_name

- Matches any trait on the current object that does not have a metadata attribute called
metadata_name metadata_name.

pre- Matches any trait on the object whose name begins with prefix and that has a metadata attribute
Sfix+metadata_nawdled metadata_name.

prefix- Matches any trait on the object whose name begins with prefix and that does not have a metadata
metadata_name attribute called metadata_name.

+ Matches all traits on the object.

pattern*® Matches object graphs where pattern occurs one or more times. This option is useful for setting

up listeners on recursive data structures like trees or linked lists.

Examples of extended name notation

Example Meaning

" foo, bar, Matches object.foo, object.bar, and object.baz.

baz’

[’ foo’, Equivalentto ' foo, bar, baz’,but may be useful in cases where the individual items
"bar’, are computed.

"baz’]

"foo.bar.baz’| Matches object.foo.bar.baz

" foo. [bar, baz|] Matches object.foo.bar and object.foo.baz

"fool]’ Matches a list trait on object named foo.

" ([left, right|] Mateches ffe name trait of each tree node object that is linked from the left or right traits of a
parent node, starting with the current object as the root node. This pattern also matches the
name trait of the current object, as the left and right modifiers are optional.

"+dirty’ Matches any trait on the current object that has a metadata attribute named dirty set.
"foo.+dirty’ | Matches any trait on object.foo that has a metadata attribute named dirty set.

" foo. [bar, ~dirMaltéhes object.foo.bar or any trait on object.foo that does not have a metadata attribute
named dirty set.

For a pattern that references multiple objects, any of the intermediate (non-final) links can be traits of type Instance,
List, or Dict. In the case of List or Dict traits, the subsequent portion of the pattern is applied to each item in the list
or value in the dictionary. For example, if self.children is a list, a handler set for / children.name’ listens for
changes to the name trait for each item in the self.children list.

1.4. Trait Notification 15

Traits 3 User Manual, Release 3.2.1

The handler routine is also invoked when items are added or removed from a list or dictionary, because this is treated
as an implied change to the item’s trait being monitored.

Notification Handler Signatures

The handler passed to on_trait_change() or on_trait_event() can have any one of the following signatures:
¢ handler()
¢ handler(new)

¢ handler(name, new)

handler(object, name, new)
* handler(object, name, old, new)
These signatures use the following parameters:
* object: The object whose trait attribute changed.

* name: The attribute that changed. If one of the objects in a sequence is a List or Dict, and its membership
changes, then this is the name of the trait that references it, with ‘_items appended. For example, if the handler
is monitoring ’ foo.bar .baz’, where bar is a List, and an item is added to bar, then the value of the name
parameter is ‘bar_items’.

* new: The new value of the trait attribute that changed. For changes to List and Dict objects, this is a list of items
that were added.

* old: The old value of the trait attribute that changed. For changes to List and Dict object, this is a list of items
that were deleted. For event traits, this is Undefined.

If the handler is a bound method, it also implicitly has self as a first argument.

Dynamic Handler Special Cases

In the one- and two-parameter signatures, the handler does not receive enough information to distinguish between a
change to the final trait attribute being monitored, and a change to an intermediate object. In this case, the notification
dispatcher attempts to map a change to an intermediate object to its effective change on the final trait attribute. This
mapping is only possible if all the intermediate objects are single values (such as Instance or Any traits), and not List
or Dict traits. If the change involves a List or Dict, then the notification dispatcher raises a TraitError when attempting
to call a one- or two-parameter handler function, because it cannot unambiguously resolve the effective value for the
final trait attribute.

Zero-parameter signature handlers receive special treatment if the final trait attribute is a List or Dict, and if the string
used for the name parameter is not just a simple trait name. In this case, the handler is automatically called when
the membership of a final List or Dict trait is changed. This behavior can be useful in cases where the handler needs
to know only that some aspect of the final trait has changed. For all other signatures, the handler function must be
explicitly set for the name_items trait in order to called when the membership of the name trait changes. (Note that
the prefix+ and item[] syntaxes are both ways to specify both a trait name and its ‘_items’ variant.)

This behavior for zero-parameter handlers is not triggered for simple trait names, to preserve compatibility with code
written for versions of Traits prior to 3.0. Earlier versions of Traits required handlers to be separately set for a trait
and its items, which would result in redundant notifications under the Traits 3.0 behavior. Earlier versions also did not
support the extended trait name syntax, accepting only simple trait names. Therefore, to use the “new style” behavior
of zero-parameter handlers, be sure to include some aspect of the extended trait name syntax in the name specifier.

16 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

list_notifier.py -- Example of zero-parameter handlers for an object
containing a list
from enthought.traits.api import HasTraits, List

class Employee: pass

class Department (HasTraits):
employees = List (Employee)

def a_handler(): print "A handler"
def b_handler(): print "B handler"
def c_handler(): print "C handler"

fred = Employee ()
mary = Employee ()
donna = Employee ()

dept = Department (employees=[fred, mary])

"0Old style" name syntax

a_handler is called only if the list is replaced:
dept.on_trait_change(a_handler, ’'employees’)

b_handler is called if the membership of the list changes:
dept.on_trait_change(b_handler, ’'employees_items’)

"New style" name syntax
c_handler is called if ’‘employees’ or its membership change:

dept.on_trait_change(c_handler, 'employees[]’)

print "Changing list items"

dept .employees[1] = donna # Calls B and C
print "Replacing list"
dept.employees = [donna] # Calls A and C

1.4.2 Static Notification

The static approach is the most convenient option, but it is not always possible. Writing a static change notification
handler requires that, for a class whose trait attribute changes you are interested in, you write a method on that class (or
a subclass). Therefore, you must know in advance what classes and attributes you want notification for, and you must
be the author of those classes. Static notification also entails that every instance of the class has the same notification
handlers.

To indicate that a particular method is a static notification handler for a particular trait, you have two options:
* Apply the @on_trait_change decorator to the method.

* Give the method a special name based on the name of the trait attribute it “listens” to.

Handler Decorator

The most flexible method of statically specifying that a method is a notification handler for a trait is to use the
@on_trait_change() decorator. The @on_trait_change() decorator is more flexible than specially-named method han-
dlers, because it supports the very powerful extended trait name syntax (see The name Parameter). You can use the
decorator to set handlers on multiple attributes at once, on trait attributes of linked objects, and on attributes that are
selected based on trait metadata.

1.4. Trait Notification 17

Traits 3 User Manual, Release 3.2.1

Decorator Syntax

The syntax for the decorator is:

@on_trait_change(’'extended_trait_name’)
def any_method_name(self, ...):

In this case, extended_trait_name is a specifier for one or more trait attributes, using the syntax described in 7he name
Parameter.

The signatures that are recognized for “decorated” handlers are the same as those for dynamic notification handlers,
as described in Notification Handler Signatures. That is, they can have an object parameter, because they can handle
notifications for trait attributes that do not belong to the same object.

Decorator Semantics

The functionality provided by the @on_trait_change() decorator is identical to that of specially-named handlers, in that
both result in a call to on_trait_change() to register the method as a notification handler. However, the two approaches
differ in when the call is made. Specially-named handlers are registered at class construction time; decorated handers
are registered at instance creation time, prior to setting any object state.

A consequence of this difference is that the @on_trait_change() decorator causes any default initializers for the traits it
references to be executed at instance construction time. In the case of specially-named handlers, any default initializers
are executed lazily.

Specially-named Notification Handlers

There are two kinds of special method names that can be used for static trait attribute change notifications. One is
attribute-specific, and the other applies to all trait attributes on a class. To notify about changes to a single trait
attribute named name, define a method named _name_changed() or _name_fired(). The leading underscore indicates
that attribute-specific notification handlers are normally part of a class’s private API. Methods named _name_fired()
are normally used with traits that are events, described in Trait Events.

To notify about changes to any trait attribute on a class, define a method named _anytrait_changed(). Both of these
types of static trait attribute notification methods are illustrated in the following example:

static_notification.py —-—-—- Example of static attribute
notification
from enthought.traits.api import HasTraits, Float

class Person (HasTraits) :
weight_kg = Float (0.0)
height_m = Float (1.0)
bmi = Float (0.0)

def _weight_kg_changed(self, old, new):
print ‘weight_kg changed from to "% (old, new)
if self.height_m != 0.0:
self.bmi = self.weight_kg / (self.height_mxx2)

def _anytrait_changed(self, name, old, new):
print ’The trait changed from to AN
% (name, old, new)

mmwn

18 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

>>> bob = Person /()

>>> bob.height_m = 1.75

The height_m trait changed from 1.0 to 1.75

>>> bob.weight_kg = 100.0

The weight_kg trait changed from 0.0 to 100.0
weight_kg changed from 0.0 to 100.0

The bmi trait changed from 0.0 to 32.6530612245

mwn

In this example, the attribute-specific notification function is _weight_kg_changed(), which is called only when
the weight_kg attribute changes. The class-specific notification handler is _anytrait_changed(), and is called when
weight_kg, height_m, or bmi changes. Thus, both handlers are called when the weight_kg attribute changes. Also,
the _weight_kg_changed() function modifies the bmi attribute, which causes _anytrait_changed() to be called for that
attribute.

The arguments that are passed to the trait attribute change notification method depend on the method signature and on
which type of static notification handler it is.

Attribute-specific Handler Signatures

For an attribute specific notification handler, the method signatures supported are:
_name_changed ()

_name_changed (new)

_name_changed (old, new)

_name_changed (name, old, new)

The method name can also be _name_fired(), with the same set of signatures.

In these signatures:

* new is the new value assigned to the trait attribute. For List and Dict objects, this is a list of the items that were
added.

* old is the old value assigned to the trait attribute. For List and Dict objects, this is a list of the items that were
deleted.

* name is the name of the trait attribute. The extended trait name syntax is not supported. *
Note that these signatures follow a different pattern for argument interpretation from dynamic handlers and decorated

static handlers. Both of the following methods define a handler for an object’s name trait:

def _name_changed(self, argl, arg2, arg3):
pass

@on_trait_change (' name’)
def some_method(self, argl, arg2, arg3):

pass

However, the interpretation of arguments to these methods differs, as shown in the following table.

4 For List and Dict trait attributes, you can define a handler with the name _name_items_changed(), which receives notifications of changes
to the contents of the list or dictionary. This feature exists for backward compatibility. The preferred approach is to use the @on_trait_change
decorator with extended name syntax. For a static _name_items_changed() handler, the new parameter is a TraitListEvent or TraitDictEvent whose
index, added, and removed attributes indicate the nature of the change, and the old parameter is Undefined.

1.4. Trait Notification 19

Traits 3 User Manual, Release 3.2.1

Handler argument interpretation

Argument | _name_changed @on_trait_change
argl name object

arg2 old name

arg3 new new

General Static Handler Signatures

In the case of a non-attribute specific handler, the method signatures supported are:
_anytrait_changed ()

_anytrait_changed (name)

_anytrait_changed (name, new)

_anytrait_changed (name, old, new)

The meanings for name, new, and old are the same as for attribute-specific notification functions.

1.4.3 Trait Events

The Traits package defines a special type of trait called an event. Events are instances of (subclasses of) the Event
class.

There are two major differences between a normal trait and an event:

¢ All notification handlers associated with an event are called whenever any value is assigned to the event. A
normal trait attribute only calls its associated notification handlers when the previous value of the attribute is
different from the new value being assigned to it.

* An event does not use any storage, and in fact does not store the values assigned to it. Any value assigned to
an event is reported as the new value to all associated notification handlers, and then immediately discarded.
Because events do not retain a value, the old argument to a notification handler associated with an event is
always the special Undefined object (see Undefined Object). Similarly, attempting to read the value of an event
results in a TraitError exception, because an event has no value.

As an example of an event, consider:

event.py —-—— Example of trait event
from enthought.traits.api import Event, HasTraits, List, Tuple

point_2d = Tuple (0, 0)

class Line2D (HasTraits) :
points = List (point_2d)
line_color = RGBAColor ("black’)
updated = Event

def redraw() :
pass # Not implemented for this example

def _points_changed() :
self.updated = True

20 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

def _updated_fired():
self.redraw()

In support of the use of events, the Traits package understands attribute-specific notification handlers with names of the
form _name_fired(), with signatures identical to the _name_changed() functions. In fact, the Traits package does not
check whether the trait attributes that _name_fired() handlers are applied to are actually events. The function names
are simply synonyms for programmer convenience.

Similarly, a function named on_trait_event() can be used as a synonym for on_trait_change() for dynamic notification.

Undefined Object

Python defines a special, singleton object called None. The Traits package introduces an additional special, singleton
object called Undefined.

The Undefined object is used to indicate that a trait attribute has not yet had a value set (i.e., its value is undefined).
Undefined is used instead of None, because None is often used for other meanings, such as that the value is not used.
In particular, when a trait attribute is first assigned a value and its associated trait notification handlers are called,
Undefined is passed as the value of the old parameter to each handler, to indicate that the attribute previously had no
value. Similarly, the value of a trait event is always Undefined.

1.5 Deferring Trait Definitions

One of the advanced capabilities of the Traits package is its support for trait attributes to defer their definition and
value to another object than the one the attribute is defined on. This has many applications, especially in cases where
objects are logically contained within other objects and may wish to inherit or derive some attributes from the object
they are contained in or associated with. Deferring leverages the common “has-a” relationship between objects, rather
than the “is-a” relationship that class inheritance provides. There are two ways that a trait attribute can defer to
another object’s attribute: delegation and prototyping. In delegation, the deferring attribute is a complete reflection
of the delegate attribute. Both the value and validation of the delegate attribute are used for the deferring attribute;
changes to either one are reflected in both. In prototyping, the deferring attribute gets its value and validation from the
prototype attribute, until the deferring attribute is explicitly changed. At that point, while the deferring attribute still
uses the prototype’s validation, the link between the values is broken, and the two attributes can change independently.
This is essentially a “copy on write” scheme.

The concepts of delegation and prototyping are implemented in the Traits package by two classes derived from Trait-
Type: DelegatesTo and PrototypedFrom. >

1.5.1 DelegatesTo

class DelegatesTo (delegate, [prefix=", listenable=True, **metadata])

The delegate parameter is a string that specifies the name of an attribute on the same object, which refers to the object
whose attribute is deferred to; it is usually an Instance trait. The value of the delegating attribute changes whenever:

» The value of the appropriate attribute on the delegate object changes.
* The object referenced by the trait named in the delegate parameter changes.

» The delegating attribute is explicitly changed.

5 Both of these class es inherit from the Delegate class. Explicit use of Delegate is deprecated, as its name and default behavior (prototyping)
are incongruous.

1.5. Deferring Trait Definitions 21

Traits 3 User Manual, Release 3.2.1

Changes to the delegating attribute are propagated to the delegate object’s attribute.

The prefix and listenable parameters to the initializer function specify additional information about how to do the
delegation. If prefix is the empty string or omitted, the delegation is to an attribute of the delegate object with the
same name as the trait defined by the DelegatesTo object. Consider the following example:

delegate.py —-——- Example of trait delegation
from enthought.traits.api \
import DelegatesTo, HasTraits, Instance, Str

class Parent (HasTraits) :
first_name = Str

last_name = Str

class Child (HasTraits):

first_name = Str
last_name = DelegatesTo(’ father’)
father = Instance (Parent)
mother = Instance (Parent)
nmwn
>>> tony = Parent (first_name=’Anthony’, last_name=’Jones’)

>>> alice = Parent (first_name='"Alice’, last_name=’Smith’)
>>> sally = Child(first_name=’Sally’, father=tony, mother=alice)
>>> print sally.last_name
Jones
>>> sally.last_name = ’'Cooper’ # Updates delegatee
>>> print tony.last_name
Cooper
>>> sally.last_name = sally.mother # ERR: string expected
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "c:\src\trunk\enthought\traits\trait_handlers.py", line
163, in error

raise TraitError, (object, name, self.info(), value)

enthought.traits.trait_errors.TraitError: The ’'last_name’ trait of a
Parent instance must be a string, but a value of <__main__.Parent object at
0x014D6D80> <class ’'__main__ .Parent’> was specified.

wnn

A Child object delegates its last_name attribute value to its father object’s last_name attribute. Because the prefix
parameter was not specified in the DelegatesTo initializer, the attribute name on the delegatee is the same as the original
attribute name. Thus, the last_name of a Child is the same as the last_name of its father. When either the last_name
of the Child or the last_name of the father is changed, both attributes reflect the new value.

1.5.2 PrototypedFrom

class PrototypedFrom (prototype, [prefix=", listenable=True, **metadata])

The prototype parameter is a string that specifies the name of an attribute on the same object, which refers to the object
whose attribute is prototyped; it is usually an Instance trait. The prototyped attribute behaves similarly to a delegated
attribute, until it is explicitly changed; from that point forward, the prototyped attribute changes independently from
its prototype.

The prefix and listenable parameters to the initializer function specify additional information about how to do the
prototyping.

22 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

1.5.3 Keyword Parameters

The prefix and listenable parameters of the DelegatesTo and PrototypedFrom initializer functions behave similarly for
both classes.

Prefix Keyword
When the prefix parameter is a non-empty string, the rule for performing trait attribute look-up in the deferred-to object
is modified, with the modification depending on the format of the prefix string:

o If prefix is a valid Python attribute name, then the original attribute name is replaced by prefix when looking up
the deferred-to attribute.

o If prefix ends with an asterisk (‘*’), and is longer than one character, then prefix, minus the trailing asterisk, is
added to the front of the original attribute name when looking up the object attribute.

* If prefix is equal to a single asterisk (‘*’), the value of the object class’s __prefix__ attribute is added to the front
of the original attribute name when looking up the object attribute.

Each of these three possibilities is illustrated in the following example, using PrototypedFrom:
prototype prefix.py —--—- Examples of PrototypedFrom/()
prefix parameter

from enthought.traits.api import \
PrototypedFrom, Float, HasTraits, Instance, Str

class Parent (HasTraits):

first_name = Str
family_name = "'
favorite_first_name = Str

child_allowance = Float (1.00)
class Child (HasTraits):
__prefix___ = ’‘child_ '

first_name = PrototypedFrom(’'mother’, ’favorite «’)
last_name = PrototypedFrom(’ father’, ’'family_ name’)
allowance = PrototypedFrom(’ father’, ’=x’)
father = Instance (Parent)
mother = Instance (Parent)
mon
>>> fred = Parent (first_name = ’'Fred’, family name = ’Lopez’, \
favorite_first_name = ’‘Diego’, child _allowance = 5.0)
>>> maria = Parent (first_name = ’"Maria’, family name = ’‘Gonzalez’,\
.. favorite first_name = ’Tomas’, child allowance = 10.0)
>>> nino = Child(father=fred, mother=maria)
>>> print ’%s %s gets $%.2f for allowance’ % (nino.first_name, \ ... nino.last_name, nino.allowance)

Tomas Lopez gets $5.00 for allowance
mmn

In this example, instances of the Child class have three prototyped trait attributes:
* first_name, which prototypes from the favorite_first_name attribute of its mother object.
* last_name, which prototyped from the family_name attribute of its father object.

« allowance, which prototypes from the child_allowance attribute of its father object.

1.5. Deferring Trait Definitions 23

Traits 3 User Manual, Release 3.2.1

Listenable Keyword

By default, you can attach listeners to deferred trait attributes, just as you can attach listeners to most other trait
attributes, as described in the following section. However, implementing the notifications correctly requires hooking
up complicated listeners under the covers. Hooking up these listeners can be rather more expensive than hooking up
other listeners. Since a common use case of deferring is to have a large number of deferred attributes for static object
hierarchies, this feature can be turned off by setting 1istenable=False in order to speed up instantiation.

1.5.4 Notification with Deferring

While two trait attributes are linked by a deferring relationship (either delegation, or prototyping before the link is
broken), notifications for changes to those attributes are linked as well. When the value of a deferred-to attribute
changes, notification is sent to any handlers on the deferring object, as well as on the deferred-to object. This behavior
is new in Traits version 3.0. In previous versions, only handlers for the deferred-to object (the object directly changed)
were notified. This behavior is shown in the following example:

deferring_notification.py —-- Example of notification with deferring
from enthought.traits.api \
import HasTraits, Instance, PrototypedFrom, Str

class Parent (HasTraits):
first_name = Str
last_name = Str

def _last_name_changed(self, new):
print "Parent’s last name changed to %s." % new

class Child (HasTraits):

father = Instance(Parent)
first_name = Str
last_name = PrototypedFrom(’'father’)

def _last_name_changed(self, new):
print "Child’s last name changed to %s." % new

wnn

>>> dad = Parent (first_name='William’, last_name=’Chase’)
Parent’s last name changed to Chase.

>>> son = Child(first_name=’John’, father=dad)
Child’s last name changed to Chase.

>>> dad.last_name=’Jones’

Parent’s last name changed to Jones.

Child’s last name changed to Jones.

>>> son.last_name=’Thomas’

Child’s last name changed to Thomas.

>>> dad.last_name='Riley’

Parent’s last name changed to Riley.

>>> del son.last_name

Child’s last name changed to Riley.

>>> dad.last_name=’Simmons’

Parent’s last name changed to Simmons.

Child’s last name changed to Simmons.
nmwnw

24 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

Initially, changing the last name of the father triggers notification on both the father and the son. Explicitly setting the
son’s last name breaks the deferring link to the father; therefore changing the father’s last name does not notify the
son. When the son reverts to using the father’s last name (by deleting the explicit value), changes to the father’s last
name again affect and notif

1.6 Custom Traits

The predefined traits such as those described in Predefined Traits are handy shortcuts for commonly used types.
However, the Traits package also provides facilities for defining complex or customized traits:

* Subclassing of traits
* The Trait() factory function

¢ Predefined or custom trait handlers

1.6.1 Trait Subclassing

Starting with Traits version 3.0, most predefined traits are defined as subclasses of en-
thought.traits.trait_handlers.TraitType. As a result, you can subclass one of these traits, or TraitType, to derive
new traits. Refer to the Traits API Reference to see whether a particular predefined trait derives from TraitType.
Here’s an example of subclassing a predefined trait class:

trait_subclass.py ——- Example of subclassing a trait class
from enthought.traits.api import BaselInt

class OddInt (BaselInt):

Define the default value
default_value = 1

Describe the trait type

info_text = ’"an odd integer’
def validate (self, object, name, value):
value = super (0ddInt, self).validate (object, name, value)

if (value % 2) ==
return value

self.error(object, name, value)

The OddlInt class defines a trait that must be an odd integer. It derives from Baselnt, rather than Int, as you might
initially expect. Baselnt and Int are exactly the same, except that Int has a fast_validate attribute, which causes it to
quickly check types at the C level, not go through the expense of executing the general validate() method. ©

As a subclass of Baselnt, OddInt can reuse and change any part of the Baselnt class behavior that it needs to. In this
case, it reuses the Baselnt class’s validate() method, via the call to super() in the OddInt validate() method. Further,
OddInt is related to Baselnt, which can be useful as documentation, and in programming.

You can use the subclassing strategy to define either a trait type or a trait property, depending on the specific methods
and class constants that you define. A trait type uses a validate() method, while a trait property uses get() and set()
methods.

6 All of the basic predefined traits (such as Float and Str) have a BaseType version that does not have the fast_validate attribute.

1.6. Custom Traits 25

Traits 3 User Manual, Release 3.2.1

Defining a Trait Type

The members that are specific to a trait type subclass are:
e validate() method
* post_setattr() method
¢ default_value attribute or get_default_value() method
Of these, only the validate() method must be overridden in trait type subclasses.

A trait type uses a validate() method to determine the validity of values assigned to the trait. Optionally, it can define
a post_setattr() method, which performs additional processing after a value has been validated and assigned.

The signatures of these methods are:

validate (object, name, value)

post_setattr(object, name, value()

The parameters of these methods are:
* object: The object whose trait attribute whose value is being assigned.
* name: The name of the trait attribute whose value is being assigned.
* value: The value being assigned.

The validate() method returns either the original value or any suitably coerced or adapted value that is legal for the
trait. If the value is not legal, and cannot be coerced or adapted to be legal, the method must either raise a TraitError,
or calls the error() method to raise a TraitError on its behalf.

The subclass can define a default value either as a constant or as a computed value. To use a constant, set the class-level
default_value attribute. To compute the default value, override the TraitType class’s get_default_value() method.

Defining a Trait Property
A trait property uses get() and set() methods to interact with the value of the trait. If a TraitType subclass contains a
get() method or a set() method, any definition it might have for validate() is ignored.
The signatures of these methods are:
get (object, name)
set (object, name, value)
In these signatures, the parameters are:
* object: The object that the property applies to.
* name: The name of the trait property attribute on the object.
* value: The value being assigned to the property.

If only a get() method is defined, the property behaves as read-only. If only a set() method is defined, the property
behaves as write-only.

The get() method returns the value of the name property for the specified object. The set() method does not return a
value, but will raise a TraitError if the specified value is not valid, and cannot be coerced or adapted to a valid value.

26 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

Other TraitType Members

The following members can be specified for either a trait type or a trait property:
« info_text attribute or info() method
¢ init() method
e create_editor() method

A trait must have an information string that describes the values accepted by the trait type (for example ‘an odd
integer’). Similarly to the default value, the subclass’s information string can be either a constant string or a computed
string. To use a constant, set the class-level info_text attribute. To compute the info string, override the TraitType
class’s info() method, which takes no parameters.

If there is type-specific initialization that must be performed when the trait type is created, you can override the init()
method. This method is automatically called from the __init__ () method of the TraitType class.

If you want to specify a default Traits UI editor for the new trait type, you can override the create_editor() method.
This method has no parameters, and returns the default trait editor to use for any instances of the type.

For complete details on the members that can be overridden, refer to the Traits API Reference sections on the TraitType
and BaseTraitHandler classes.

1.6.2 The Trait() Factory Function

The Trait() function is a generic factory for trait definitions. It has many forms, many of which are redundant with
the predefined shortcut traits. For example, the simplest form Trait(default_value), is equivalent to the functions for
simple types described in Predefined Traits for Simple Types. For the full variety of forms of the Trait() function, refer
to the Traits API Reference.

The most general form of the Trait() function is:
Trait (default_value, {type | constant_value | dictionary | class | function | trait_handler | trait }+)

The notation { | | }+ means a list of one or more of any of the items listed between the braces. Thus, this form
of the function consists of a default value, followed by one or more of several possible items. A trait defined with
multiple items is called a compound trait. When more than one item is specified, a trait value is considered valid if it
meets the criteria of at least one of the items in the list. The following is an example of a compound trait with multiple
criteria:

compound.py —-— Example of multiple criteria in a trait definition
from enthought.traits.api import HasTraits, Trait, Range

class Die (HasTraits):

Define a compound trait definition:
value = Trait(1, Range(1, 6),
"one’, "two’, ’'three’, ’four’, ’'five’, ’'six’)
The Die class has a value trait, which has a default value of 1, and can have any of the following values:

* An integer in the range of 1 to 6

* One of the following strings: ‘one’, ‘two’, ‘three’, ‘four’, ‘five’, ‘six’

1.6. Custom Traits 27

Traits 3 User Manual, Release 3.2.1

Trait () Parameters

The items listed as possible arguments to the Trait() function merit some further explanation.

type: See Type.
constant_value: See Constant Value.
dictionary: See Mapped Traits.

class: Specifies that the trait value must be an instance of the specified class or one of its subclasses.

* function: A “validator” function that determines whether a value being assigned to the attribute is a legal value.

Traits version 3.0 provides a more flexible approach, which is to subclass an existing trait (or TraitType) and
override the validate() method.

trait_handler: See Trait Handlers.

trait: Another trait object can be passed as a parameter; any value that is valid for the specified trait is also valid
for the trait referencing it.

Type

A type parameter to the Trait() function can be any of the following standard Python types:

str or StringType
unicode or UnicodeType
int or IntType

long or LongType

float or FloatType
complex or ComplexType
bool or BooleanType
list or ListType

tuple or TupleType

dict or DictType
FunctionType
MethodType

ClassType

InstanceType

TypeType

NoneType

Specifying one of these types means that the trait value must be of the corresponding Python type.

Constant Value

A constant_value parameter to the Trait() function can be any constant belonging to one of the following standard
Python types:

28

Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

* NoneType
* int

* long

* float

* complex
* bool

® str

* unicode

Specifying a constant means that the trait can have the constant as a valid value. Passing a list of constants to the
Trait() function is equivalent to using the Enum predefined trait.

Mapped Traits
If the Trait() function is called with parameters that include one or more dictionaries, then the resulting trait is called
a “mapped” trait. In practice, this means that the resulting object actually contains two attributes:

* An attribute whose value is a key in the dictionary used to define the trait.

* An attribute containing its corresponding value (i.e., the mapped or “shadow” value). The name of the shadow
attribute is simply the base attribute name with an underscore appended.

Mapped traits can be used to allow a variety of user-friendly input values to be mapped to a set of internal, program-
friendly values. The following examples illustrates mapped traits that map color names to tuples representing red,
green, blue, and transparency values:

mapped.py —-—-- Example of a mapped trait
from enthought.traits.api import HasTraits, Trait

standard_color = Trait ('black’,

{"black’: (0.0, 0.0, 0.0, 1.0),
"blue’ : (0.0, 0.0, 1.0, 1.0),
"cyan’ : (0.0, 1.0, 1.0, 1.0),
"green’ : (0.0, 1.0, 0.0, 1.0),
"magenta’ : (1.0, 0.0, 1.0, 1.0),
"orange’ : (0.8, 0.196, 0.196, 1.0),
"purple’ : (0.69, 0.0, 1.0, 1.0),
"red’ : (1.0, 0.0, 0.0, 1.0),
"violet’ : (0.31, 0.184, 0.31, 1.0),
"yvellow’ : (1.0, 1.0, 0.0, 1.0),
"white’ : (1.0, 1.0, 1.0, 1.0),
"transparent’: (1.0, 1.0, 1.0, 0.0) 1})

red_color = Trait ('red’, standard_color)

class GraphicShape (HasTraits):
line_color = standard_color
fill_color = red_color

The GraphicShape class has two attributes: line_color and fill_color. These attributes are defined in terms of the
standard_color trait, which uses a dictionary. The standard_color trait is a mapped trait, which means that each
GraphicShape instance has two shadow attributes: line_color_ and fill_color_. Any time a new value is assigned to
either line_color or fill_color, the corresponding shadow attribute is updated with the value in the dictionary corre-
sponding to the value assigned. For example:

1.6. Custom Traits 29

Traits 3 User Manual, Release 3.2.1

>>> import mapped

>>> my_shapel = mapped.GraphicShape ()

>>> print my_shapel.line_color, my_shapel.fill_color
black red

>>> print my_shapel.line_color_, my_shapel.fill color_
(0.0, 0.0, 0.0, 1.0) (1.0, 0.0, 0.0, 1.0)

>>> my_shape2 = mapped.GraphicShape ()

>>> my_shape2.line_color = ’"blue’

>>> my_shape2.fill_color = ’green’

>>> print my_shape2.line_color, my_shape2.fill_color
blue green

>>> print my_shape2.line_color_, my_shape2.fill_ color_
(0.0, 0.0, 1.0, 1.0) (0.0, 1.0, 0.0, 1.0)

This example shows how a mapped trait can be used to create a user-friendly attribute (such as line_color) and a
corresponding program-friendly shadow attribute (such as line_color_). The shadow attribute is program-friendly
because it is usually in a form that can be directly used by program logic.

There are a few other points to keep in mind when creating a mapped trait:

* If not all values passed to the Trait() function are dictionaries, the non-dictionary values are copied directly to
the shadow attribute (i.e., the mapping used is the identity mapping).

* Assigning directly to a shadow attribute (the attribute with the trailing underscore in the name) is not allowed,
and raises a TraitError.

The concept of a mapped trait extends beyond traits defined via a dictionary. Any trait that has a shadow value is a
mapped trait. For example, for the Expression trait, the assigned value must be a valid Python expression, and the
shadow value is the compiled form of the expression.

1.6.3 Trait Handlers

In some cases, you may want to define a customized trait that is unrelated to any predefined trait behavior, or that
is related to a predefined trait that happens to not be derived from TraitType. The option for such cases is to use
a trait handler, either a predefined one or a custom one that you write. A trait handler is an instance of the en-
thought.traits.trait_handlers.TraitHandler class, or of a subclass, whose task is to verify the correctness of values
assigned to object traits. When a value is assigned to an object trait that has a trait handler, the trait handler’s validate()
method checks the value, and assigns that value or a computed value, or raises a TraitError if the assigned value is not
valid. Both TraitHandler and TraitType derive from BaseTraitHandler; TraitHandler has a more limited interface.

The Traits package provides a number of predefined TraitHandler subclasses. A few of the predefined trait handler
classes are described in the following sections. These sections also demonstrate how to define a trait using a trait
handler and the Trait() factory function. For a complete list and descriptions of predefined TraitHandler subclasses,
refer to the Traits API Reference, in the section on the enthought.traits.trait_handlers module.

TraitPrefixList

The TraitPrefixList handler accepts not only a specified set of strings as values, but also any unique prefix substring of
those values. The value assigned to the trait attribute is the full string that the substring matches. For example:

>>> from enthought.traits.api import HasTraits, Trait
>>> from enthought.traits.api import TraitPrefixList
>>> class Alien (HasTraits):
heads = Trait (’one’, TraitPrefixList ([’one’,’two’,’three’]))

30 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

>>> alf = Alien()
>>> alf.heads = "o’
>>> print alf.heads
one
>>> alf.heads = "tw’
>>> print alf.heads
two
>>> alf.heads = "t’ # Error, not a unique prefix
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "c:\svn\ets3\traits_3.0.3\enthought\traits\trait_handlers.py", line 1802,
in validate self.error(object, name, value)
File "c:\svn\ets3\traits_3.0.3\enthought\traits\trait_handlers.py", line 175,
in error value)
enthought.traits.trait_errors.TraitError: The ’'heads’ trait of an Alien instance
must be ’‘one’ or 'two’ or ’'three’ (or any unique prefix), but a value of 't’
<type ’str’> was specified.

TraitPrefixMap

The TraitPrefixMap handler combines the TraitPrefixList with mapped traits. Its constructor takes a parameter that is
a dictionary whose keys are strings. A string is a valid value if it is a unique prefix for a key in the dictionary. The
value assigned is the dictionary value corresponding to the matched key. The following example uses TraitPrefixMap
to define a Boolean trait that accepts any prefix of ‘true’, ‘yes’, ‘false’, or ‘no’, and maps them to 1 or 0.

traitprefixmap.py ———- Example of using the TraitPrefixMap handler
from enthought.traits.api import Trait, TraitPrefixMap

boolean_map = Trait ('true’, TraitPrefixMap({
"true’: 1,

"yes’: 1,
"false’: O,
"no’ : 01})

1.6.4 Custom Trait Handlers

If you need a trait that cannot be defined using a predefined trait handler class, you can create your own subclass of
TraitHandler. The constructor (i.e., __init__() method) for your TraitHandler subclass can accept whatever additional
information, if any, is needed to completely specify the trait. The constructor does not need to call the TraitHandler
base class’s constructor.

The only method that a custom trait handler must implement is validate(). Refer to the Traits API Reference for details
about this function.

Example Custom Trait Handler

The following example defines the OddInt trait (also implemented as a trait type in Defining a Trait Type) using a
TraitHandler subclass.

custom_traithandler.py —-—-- Example of a custom TraitHandler
import types
from enthought.traits.api import TraitHandler

1.6. Custom Traits 31

Traits 3 User Manual, Release 3.2.1

class TraitOddInteger (TraitHandler) :
def validate(self, object, name, value):
if ((type(value) is types.IntType) and
(value > 0) and ((value % 2) == 1)):
return value
self.error (object, name, value)

def info(self):
return ’+xa positive odd integerxx’

An application could use this new trait handler to define traits such as the following:

use_custom_th.py —--- Example of using a custom TraitHandler
from enthought.traits.api import HasTraits, Trait, TraitRange
from custom_traithandler import TraitOddInteger

class AnOddClass (HasTraits) :
oddball = Trait(l, TraitOddInteger())
very_odd = Trait (-1, TraitOddInteger(),
TraitRange (-10, -1))

The following example demonstrates why the info() method returns a phrase rather than a complete sentence:

>>> from use_custom_th import AnOddClass
>>> odd_stuff = AnOddClass ()
>>> odd_stuff.very_odd = 0
Traceback (most recent call last):
File "test.py", line 25, in ?
odd_stuff.very_odd = 0
File "C:\wrk\src\lib\enthought\traits\traits.py", line 1119, in validate
raise TraitError, excp
traits.traits.TraitError: The ’'very_odd’ trait of an AnOddClass instance
must be *%a positive odd integerxx or -10 <= an integer <= -1, but a value
of 0 <type ’'int’> was specified.

Note the emphasized result returned by the info() method, which is embedded in the exception generated by the invalid
assignment.

1.7 Advanced Topics

The preceding sections provide enough information for you to use traits for manifestly-typed attributes, with initial-
ization and validation. This section describes the advanced features of the Traits package

1.7.1 Initialization and Validation Revisited

The following sections present advanced topics related to the initialization and validation features of the Traits package.
* Dynamic initialization
* Overriding default values
* Reusing trait definitions
e Trait attribute definition strategies

* Type-checked methods

32 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

Dynamic Initialization

When you define trait attributes using predefined traits, the Trait() factory function or trait handlers, you typically
specify their default values statically. You can also define a method that dynamically initializes a trait attribute the first
time that the attribute value is accessed. To do this, you define a method on the same class as the trait attribute, with a
name based on the name of the trait attribute:

_name_default ()

This method initializes the name trait attribute, returning its initial value. The method overrides any default value
specified in the trait definition. It is also possible to define a dynamic method for the default value in a trait type
subclass (get_default_value()). However, however, using a _name_default() method avoids the overhead of subclassing
a trait.

Overriding Default Values in a Subclass

Often, a subclass must override a trait attribute in a parent class by providing a different default value. You can specify
a new default value without completely re-specifying the trait definition for the attribute. For example:

override default.py ——- Example of overriding a default value for
a trait attribute in a subclass
from enthought.traits.api import HasTraits, Range, Str

class Employee (HasTraits) :
name = Str

salary_grade = Range (value=1, low=1, high=10)

class Manager (Employee) :
salary_grade = 5

In this example, the salary_grade of the Employee class is a range from 1 to 10, with a default value of 1. In the

Manager subclass, the default value of salary_grade is 5, but it is still a range as defined in the Employee class.

Reusing Trait Definitions

As mentioned in Defining Traits: Initialization and Validation, in most cases, traits are defined in-line in attribute
definitions, but they can also be defined independently. A trait definition only describes the characteristics of a trait,
and not the current value of a trait attribute, so it can be used in the definition of any number of attributes. For example:

trait_reuse.py —--- Example of reusing trait definitions
from enthought.traits.api import HasTraits, Range

coefficient = Range(-1.0, 1.0, 0.0))

class quadratic (HasTraits):

c2 = coefficient
cl = coefficient
c0 = coefficient

x = Range(-100.0, 100.0, 0.0)

In this example, a trait named coefficient is defined externally to the class quadratic, which references coefficient in
the definitions of its trait attributes ¢2, c1, and ¢0. Each of these attributes has a unique value, but they all use the same
trait definition to determine whether a value assigned to them is valid.

1.7. Advanced Topics 33

Traits 3 User Manual, Release 3.2.1

Trait Attribute Definition Strategies

In the preceding examples in this guide, all trait attribute definitions have bound a single object attribute to a specified
trait definition. This is known as “explicit” trait attribute definition. The Traits package supports other strategies for
defining trait attributes. You can associate a category of attributes with a particular trait definition, using the trait
attribute name wildcard. You can also dynamically create trait attributes that are specific to an instance, using the
add_trait() method, rather than defined on a class. These strategies are described in the following sections.

Trait Attribute Name Wildcard

The Traits package enables you to define a category of trait attributes associated with a particular trait definition, by
including an underscore (‘_’) as a wildcard at the end of a trait attribute name. For example:

temp_wildcard.py ———- Example of using a wildcard with a Trait
attribute name
from enthought.traits.api import Any, HasTraits

class Person (HasTraits) :
temp_ = Any

This example defines a class Person, with a category of attributes that have names beginning with temp, and that are
defined by the Any trait. Thus, any part of the program that uses a Person instance can reference attributes such as
tempCount, temp_name, or temp_whatever, without having to explicitly declare these trait attributes. Each such
attribute has None as the initial value and allows assignment of any value (because it is based on the Any trait).

You can even give all object attributes a default trait definition, by specifying only the wildcard character for the
attribute name:

all wildcard.py —-—-- Example of trait attribute wildcard rules
from enthought.traits.api import Any, HasTraits, Int, Str

class Person (HasTraits):

Normal, explicitly defined trait:
name = Str

By default, let all traits have any value:
— = Any

Except for this one, which must be an Int:

age = Int
>>> pill = Person()
>>> # These assignments should all work:
>>> bill.name = ’'William’
>>> pill.address = 7121 Drury Lane’
>>> bill.zip _code = 55212
>>> bill.age = 49
>>> # This should generate an error (must be an Int):
>>> pill.age = ’‘middle age’

Traceback (most recent call last):
File "all wildcard.py", line 33, in <module>
bill.age = ‘middle age’
File "c:\wrk\src\lib\enthought\traits\\trait_handlers.py", line 163, in error
raise TraitError, (object, name, self.info(), value)
TraitError: The ’"age’ trait of a Person instance must be an integer, but a value

34 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

of 'middle age’ <type ’str’> was specified.
mmn

In this case, all Person instance attributes can be created on the fly and are defined by the Any trait.

Wildcard Rules When using wildcard characters in trait attribute names, the following rules are used to determine
what trait definition governs an attribute:

1. If an attribute name exactly matches a name without a wildcard character, that definition applies.

2. Otherwise, if an attribute name matches one or more names with wildcard characters, the definition with the
longest name applies.

Note that all possible attribute names are covered by one of these two rules. The base HasTraits class implicitly
contains the attribute definition _ = Python. This rule guarantees that, by default, all attributes have standard
Python language semantics.

These rules are demonstrated by the following example:

wildcard rules.py —-- Example of trait attribute wildcard rules
from enthought.traits.api import Any, HasTraits, Int, Python

class Person (HasTraits) :

temp_count = Int(-1)
temp_ = Any
_ = Python

In this example, the Person class has a temp_count attribute, which must be an integer and which has an initial value
of -1. Any other attribute with a name starting with temp has an initial value of None and allows any value to be
assigned. All other object attributes behave like normal Python attributes (i.e., they allow any value to be assigned, but
they must have a value assigned to them before their first reference).

Disallow Object The singleton object Disallow can be used with wildcards to disallow all attributes that are not
explicitly defined. For example:

disallow.py ——- Example of using Disallow with wildcards
from enthought.traits.api import \
Disallow, Float, HasTraits, Int, Str

class Person (HasTraits):

name = Str
age = Int
weight = Float

= Disallow

In this example, a Person instance has three trait attributes:
* name: Must be a string; its initial value is “’.
* age: Must be an integer; its initial value is 0.
¢ weight: Must be a float; its initial value is 0.0.

All other object attributes are explicitly disallowed. That is, any attempt to read or set any object attribute other than
name, age, or weight causes an exception.

1.7. Advanced Topics 35

Traits 3 User Manual, Release 3.2.1

HasTraits Subclasses Because the HasTraits class implicitly contains the attribute definition _ = Python, sub-
classes of HasTraits by default have very standard Python attribute behavior for any attribute not explicitly defined as
a trait attribute. However, the wildcard trait attribute definition rules make it easy to create subclasses of HasTraits
with very non-standard attribute behavior. Two such subclasses are predefined in the Traits package: HasStrictTraits
and HasPrivateTraits.

HasStrictTraits This class guarantees that accessing any object attribute that does not have an explicit or wildcard
trait definition results in an exception. This can be useful in cases where a more rigorous software engineering approach
is employed than is typical for Python programs. It also helps prevent typos and spelling mistakes in attribute names
from going unnoticed; a misspelled attribute name typically causes an exception. The definition of HasStrictTraits is
the following:

class HasStrictTraits (HasTraits):
= Disallow

HasStrictTraits can be used to create type-checked data structures, as in the following example:

class TreeNode (HasStrictTraits) :
left = This
right = This
value = Str

This example defines a TreeNode class that has three attributes: left, right, and value. The left and right attributes
can only be references to other instances of TreeNode (or subclasses), while the value attribute must be a string.
Attempting to set other types of values generates an exception, as does attempting to set an attribute that is not one of
the three defined attributes. In essence, TreeNode behaves like a type-checked data structure.

HasPrivateTraits This class is similar to HasStrictTraits, but allows attributes beginning with ‘_’ to have an initial
value of None, and to not be type-checked. This is useful in cases where a class needs private attributes, which
are not part of the class’s public API, to keep track of internal object state. Such attributes do not need to be type-
checked because they are only manipulated by the (presumably correct) methods of the class itself. The definition of
HasPrivateTraits is the following:

class HasPrivateTraits (HasTraits) :
= Any
= Disallow

These subclasses of HasTraits are provided as a convenience, and their use is completely optional. However, they do
illustrate how easy it is to create subclasses with customized default attribute behavior if desired.

Per-Object Trait Attributes The Traits package allows you to define dynamic trait attributes that are object-, rather
than class-, specific. This is accomplished using the add_trait() method of the HasTraits class:

add_trait (name, trait)

For example:

object_trait_attrs.py —-—-—- Example of per-object trait attributes
from enthought.traits.api import HasTraits, Range

class GUISlider (HasTraits):

def _ init_ (self, eval=None, label='Value’,
trait=None, min=0.0, max=1.0,

36 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

initial=None, **traits):

HasTraits._ init_ (self, =**traits)
if trait is None:
if min > max:

min, max = max, min
if initial is None:
initial = min
elif not (min <= initial <= max):
initial = [min, max] [
abs (initial - min) >
abs (initial - max)]
trait = Range (min, max, value = initial)

self.add_trait (label, trait)

This example creates a GUISlider class, whose __init__() method can accept a string label and either a trait definition
or minimum, maximum, and initial values. If no trait definition is specified, one is constructed based on the max and
min values. A trait attribute whose name is the value of label is added to the object, using the trait definition (whether
specified or constructed). Thus, the label trait attribute on the GUISlider object is determined by the calling code, and
added in the __init__ () method using add_trait().

You can require that add_trait() must be used in order to add attributes to a class, by deriving the class from HasStrict-
Traits (see HasStrictTraits). When a class inherits from HasStrictTraits, the program cannot create a new attribute
(either a trait attribute or a regular attribute) simply by assigning to it, as is normally the case in Python. In this case,
add_trait() is the only way to create a new attribute for the class outside of the class definition.

Type-Checked Methods

In addition type-checked attributes, the Traits package provides the ability to create type-checked methods. A type-
checked method is created by writing a normal method definition within a class, preceded by a method() signature
function call, as shown in the following example:

type_checked _methods.py —-—-—- Example of traits-based method type
checking
from enthought.traits.api import HasTraits, method, Tuple

Color = Tuple(int, int, int, int)
class Palette (HasTraits):

method (Color, colorl=Color, color2=Color)
def blend (self, colorl, color2):

return ((colorl[0] + color2[0

(colorl[l] + color2[1l

(colorl[2] + color2(2

(colorl[3] + color2[3

(01
[(11)
[21)
(31

method (Color, Color, Color)
def max (self, colorl, color2):

return (max(colorl[0], color2([0]),
max (colorl[1l], color2[1]),
max (colorl[2], color2[2]),
max (colorl[3], color2[3]))

In this example, Color is defined to be a trait that accepts tuples of four integer values. The method() signature function
appearing before the definition of the blend() method ensures that the two arguments to blend() both match the Color

1.7. Advanced Topics 37

Traits 3 User Manual, Release 3.2.1

trait definition, as does the result returned by blend(). The method signature appearing before the max() method does
exactly the same thing, but uses positional rather than keyword arguments. When

Use of the method() signature function is optional. Methods not preceded by a method() function have standard
Python behavior (i.e., no type-checking of arguments or results is performed). Also, the method() function can be
used in classes that do not subclass from HasTraits, because the resulting method performs the type checking directly.
And finally, when the method() function is used, it must directly precede the definition of the method whose type
signature it defines. (However, white space is allowed.) If it does not, a TraitError is raised.

1.7.2 Interfaces

Starting in version 3.0, the Traits package supports declaring and implementing interfaces. An interface is an abstract
data type that defines a set of attributes and methods that an object must have to work in a given situation. The interface
says nothing about what the attributes or methods do, or how they do it; it just says that they have to be there. Interfaces
in Traits are similar to those in Java. They can be used to declare a relationship among classes which have similar
behavior but do not have an inheritance relationship. Like Traits in general, Traits interfaces don’t make anything
possible that is not already possible in Python, but they can make relationships more explicit and enforced. Python
programmers routinely use implicit, informal interfaces (what’s known as “duck typing”). Traits allows programmers
to define explicit and formal interfaces, so that programmers reading the code can more easily understand what kinds
of objects are actually intended to be used in a given situation.

Defining an Interface
To define an interface, create a subclass of Interface:

interface definition.py —-- Example of defining an interface
from enthought.traits.api import Interface

class IName (Interface):

def get_name (self):
7/’ Returns a string which is the name of an object. 777

Interface classes serve primarily has documentation of the methods and attributes that the interface defines. In this
case, a class that implements the IName interface must have a method named get_name(), which takes no arguments
and returns a string. Do not include any implementation code in an interface declaration. However, the Traits package
does not actually check to ensure that interfaces do not contain implementations.

By convention, interface names have a capital ‘I’ at the beginning of the name.

Implementing an Interface

A class declares that it implements one or more interfaces using the implements() function, which has the signature:
implements (interface, [interface2, ..., interfaceN])

Interface names beyond the first one are optional. The call to implements() must occur at class scope within the class
definition. For example:

interface_implementation.py —-- Example of implementing an
interface

from enthought.traits.api import HasTraits, implements, Str
from interface definition import IName

38 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

class Person (HasTraits) :
implements (IName)

first_name = Str("John’)
last_name = Str("Doe’)

Implementation of the ’IName’ interface:
def get_name (self):
7/’ Returns the name of an object. 7’7’

)

return ('’ "% (self.first_name, self.last_name))

A class can contain at most one call to implements().

In version 3.0, you can specify whether the implements() function verifies that the class calling it actually implements
the interface that it says it does. This is determined by the CHECK_INTERFACES variable, which can take one of
three values:

¢ 0 (default): Does not check whether classes implement their declared interfaces.
* 1: Verifies that classes implement the interfaces they say they do, and logs a warning if they don’t.
 2: Verifies that classes implement the interfaces they say they do, and raises an InterfaceError if they don’t.

The CHECK_INTERFACES variable must be imported directly from the enthought.traits.has_traits module:

import enthought.traits.has_traits
enthought.traits.has_traits.CHECK_INTERFACES = 1

Using Interfaces

You can use an interface at any place where you would normally use a class name. The most common way to use
interfaces is with the Instance trait:

>>> from enthought.traits.api import HasTraits, Instance
>>> from interface_definition import IName
>>> class Apartment (HasTraits) :
renter = Instance (IName)
>>> from interface_implementation import Person
>>> william = Person(first_name='William’, last_name=’Adams’)
>>> aptl = Apartment (renter=william)
>>> print 'Renter is: ', aptl.renter.get_name ()
Renter is: William Adams

Using an interface class with an Instance trait definition declares that the trait accepts only values that implement the
specified interface. (If the assigned object does not implement the interface, the Traits package may automatically
substitute an adapter object that implements the specified interface. See Adaptation for more information.)

1.7.3 Adaptation

Adaptation is the process of transforming an object that does not implement a specific interface (or set of interfaces)
into an object that does. In Traits, this process is accomplished with adapters, which are special classes whose
purpose is to adapt objects from one set of interfaces to another. Once adapter classes are defined, they are implicitly
instantiated whenever they are needed to fulfill interface requirements. That is, if an Instance trait requires its values
to implement interface IFoo, and an object is assigned to it which is of class Bar, which does not implement IFoo, then
an adapter from Bar to IFoo is instantiated (if such an adapter class exists), and the adapter object is assigned to the
trait. If necessary, a “chain” of adapter objects might be created, in order to perform the required adaptation.

1.7. Advanced Topics 39

Traits 3 User Manual, Release 3.2.1

Defining Adapters

The Traits package provides several mechanisms for defining adapter classes:
 Subclassing Adapter
* Defining an adapter class without subclassing Adapter

* Declaring a class to be an adapter externally to the class

Subclassing Adapter

The Traits package provides an Adapter class as convenience. This class streamlines the process of creating a new
adapter class. It has a standard constructor that does not normally need to be overridden by subclasses. This constructor
accepts one parameter, which is the object to be adapted, and assigns that object to the adaptee trait attribute.

As an adapter writer, the only members you need to add to a subclass of Adapter are:
e A call to implements() declaring which interfaces the adapter class implements on behalf of the object it is
adapting.
* A trait attribute named adaptee that declares what type of object it is an adapter for. Usually, this is an Instance

trait.

* Implementations of the interfaces declared in the implements() call. Usually, these methods are implemented
using appropriate members on the adaptee object.

The following code example shows a definition of a simple adapter class:

simple adapter.py —-- Example of adaptation using Adapter
from enthought.traits.api import Adapter, Instance, implements
from interface definition import IName

from interface_ implementation import Person

class PersonINameAdapter (Adapter):

Declare what interfaces this adapter implements for its
client:
implements (IName)

Declare the type of client it supports:
adaptee = Instance(Person)

Implement the ’'IName’ interface on behalf of its client:
def get_name (self):
return (' " % (self.adaptee.first_name,
self.adaptee.last_name))

Creating an Adapter from Scratch

You can create an adapter class without subclassing Adapter. If so, you must provide the same information and setup
that are implicitly provided by Adapter.

In particular, you must use the adapts() function instead of the implements() function, and you must define a constructor
that corresponds to the constructor of Adapter. The adapts() function defines the class that contains it as an adapter
class, and declares the set of interfaces that the class implements.

The signature of the adapts() function is:

40 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

adapts (adaptee_class, interface, [interface2, ..., interfaceN])

This signature is very similar to that of implements(), but adds the class being adapted as the first parameter. Interface
names beyond the first one are optional.

The constructor for the adapter class must accept one parameter, which is the object being adapted, and it must save
this reference in an attribute that can be used by implementation code. The following code shows an example of
implementing an adapter without subclassing Adapter:

scratch_adapter.py —-- Example of writing an adapter from scratch
from enthought.traits.api import HasTraits, Instance, adapts

from interface definition import IName

from interface_ implementation import Person

class PersonINameAdapter (HasTraits):
Declare what interfaces this adapter implements,
and for what class:
adapts (Person, IName)
Declare the type of client it supports:
client = Instance(Person)

Implement the adapter’s constructor:
def _ init_ (self, client):
self.client = client

Implement the ’IName’ interface on behalf of its client:
def get_name (self):

return (' %s %s’ % (self.client.first_name,
self.client.last_name))

Declaring a Class as an Adapter Externally

You can declare a class to be an adapter by calling the adapts() function externally to the class definition. The class
must provide the same information and setup as the Adapter class, just as in the case where adapts() is called within
the class definition. That is, it must provide a constructor that accepts the object being adapted as a parameter, and it
must implement the interfaces specified in the call to adapts().

In this case, signature of the adapts() function is:

As with implements() and the other form of adapts(), interface names beyond the first one are optional. The following
code shows this use of the adapts() function:

external_adapter.py -- Example of declaring a class as an
adapter externally to the class
from enthought.traits.api import adapts

from interface definition import IName

from interface implementation import Person

class AnotherPersonAdapter (object):
Implement the adapter’s constructor:
def _ _init___ (self, person):

self.person = person

Implement the ’IName’ interface on behalf of its client:
def get_name (self):

1.7. Advanced Topics 4

Traits 3 User Manual, Release 3.2.1

return ('’ " % (self.person.first_name,
self.person.last_name))

adapts (AnotherPersonAdapter, Person, IName)

Using Adapters

You define adapter classes as described in the preceding sections, but you do not explicitly create instances of these
classes. The Traits package automatically creates them whenever an object is assigned to an interface Instance trait,
and the object being assigned does not implement the required interface. If an adapter class exists that can adapt the
specified object to the required interface, an instance of the adapter class is created for the object, and is assigned as
the actual value of the Instance trait.

In some cases, no single adapter class exists that adapts the object to the required interface, but a series of adapter
classes exist that together perform the required adaptation. In such cases, the necessary set of adapter objects are
created, and the “last” link in the chain, the one that actually implements the required interface, is assigned as the trait
value. When a situation like this arises, the adapted object assigned to the trait always contains the smallest set of
adapter objects needed to adapt the original object.

Controlling Adaptation

Adaptation normally happens automatically when needed, and when appropriate adapter classes are available. How-
ever, the Instance trait lets you control how adaptation is performed, through its adapt metadata attribute. The adapt
metadata attribute can have one of the following values:

» no: Adaptation is not allowed for this trait attribute.
* yes: Adaptation is allowed. If adaptation fails, an exception is raised.
e default: Adaptation is allowed. If adaptation fails, the default value for the trait is assigned instead.
The default value for the adapt metadata attribute is yes. The following code is an example of an interface Instance

trait attribute that uses adapt metadata:

adapt_metadata.py Example of using ’adapt’ metadata
from enthought.traits.api import HasTraits, Instance
from interface definition import IName

class Apartment (HasTraits):
renter = Instance(IName, adapt='no’)

Using this definition, any value assigned to renter must implement the IName interface. Otherwise, an exception is
raised.

1.7.4 Property Traits

The predefined Property() trait factory function defines a Traits-based version of a Python property, with “getter” and
“setter” methods. This type of trait provides a powerful technique for defining trait attributes whose values depend on
the state of other object attributes. In particular, this can be very useful for creating synthetic trait attributes which are
editable or displayable in a Trait UI view.

42 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

Property Factory Function

The Property() function has the following signature:
Property ([fget=None, fset=None, fvalidate=None, force=False, handler=None, trait=None, **metadata])

All parameters are optional, including the fget “getter” and fser “setter” methods. If no parameters are specified, then
the trait looks for and uses methods on the same class as the attribute that the trait is assigned to, with names of the
form _get_name() and _set_name(), where name is the name of the trait attribute.

If you specify a trait as either the fget parameter or the frait parameter, that trait’s handler supersedes the handler
argument, if any. Because the fget parameter accepts either a method or a trait, you can define a Property trait by
simply passing another trait. For example:

source = Property(Code)

This line defines a trait whose value is validated by the Code trait, and whose getter and setter methods are defined
elsewhere on the same class.

If a Property trait has only a getter function, it acts as read-only; if it has only a setter function, it acts as write-only. It
can lack a function due to two situations:

* A function with the appropriate name is not defined on the class.

* The force option is True, (which requires the Property() factory function to ignore functions on the class) and
one of the access functions was not specified in the arguments.

Caching a Property Value

In some cases, the cost of computing the value of a property trait attribute may be very high. In such cases, it is a good
idea to cache the most recently computed value, and to return it as the property value without recomputing it. When a
change occurs in one of the attributes on which the cached value depends, the cache should be cleared, and the property
value should be recomputed the next time its value is requested. One strategy to accomplish caching would be to
use a private attribute for the cached value, and notification listener methods on the attributes that are depended on.
However, to simplify the situation, Property traits support a @cached_property decorator and depends_on metadata.
Use @cached_property to indicate that a getter method’s return value should be cached. Use depends_on to indicate
the other attributes that the property depends on. For example:

cached_prop.py —- Example of (@cached property decorator
from enthought.traits.api import HasPrivateTraits, List, Int,\
Property, cached_property

class TestScores (HasPrivateTraits):

scores = List(Int)
average = Property(depends_on = ’'scores’)

@cached property
def _get_average (self):
s = self.scores
return (float (reduce(lambda nl, n2: nl + n2, s, 0))
/ len(s))

The @cached_property decorator takes no arguments. Place it on the line preceding the property’s getter method.

The depends_on metadata attribute accepts extended trait references, using the same syntax as the on_trait_change()
method’s name parameter, described in The name Parameter. As a result, it can take values that specify attributes on
referenced objects, multiple attributes, or attributes that are selected based on their metadata attributes.

1.7. Advanced Topics 43

Traits 3 User Manual, Release 3.2.1

1.7.5 Persistence

In version 3.0, the Traits package provides __ getstate_ () and __setstate__() methods on HasTraits, to implement
traits-aware policies for serialization and deserialization (i.e., pickling and unpickling).

Pickling HasTraits Objects

Often, you may wish to control for a HasTraits subclass which parts of an instance’s state are saved, and which are
discarded. A typical approach is to define a __getstate__() method that copies the object’s __dict__ attribute, and
deletes those items that should not be saved. This approach works, but can have drawbacks, especially related to
inheritance. The HasTraits __getstate__ () method uses a more generic approach, which developers can customize
through the use of traits metadata attributes, often without needing to override or define a __getstate__() method in
their application classes. In particular, the HasTraits __getstate__ () method discards the values of all trait attributes
that have the transient metadata attribute set to True, and saves all other trait attributes. So, to mark which trait values
should not be saved, you set transient to True in the metadata for those trait attributes. The benefits of this approach
are that you do not need to override __getstate__(), and that the metadata helps document the pickling behavior of the
class. For example:

transient_metadata.py —-- Example of using ’‘transient’ metadata
from enthought.traits.api import HasTraits, File, Any

class DataBase (HasTraits):
The name of the data base file:
file name = File

The open file handle used to access the data base:
file = Any(transient = True)

In this example, the DataBase class’s file trait is marked as transient because it normally contains an open file handle
used to access a data base. Since file handles typically cannot be pickled and restored, the file handle should not be
saved as part of the object’s persistent state. Normally, the file handle would be re-opened by application code after
the object has been restored from its persisted state.

Predefined Transient Traits
A number of the predefined traits in the Traits package are defined with transient set to True, so you do not need to
explicitly mark them. The automatically transient traits are:

* Constant

* Event

* Read-only and write-only Property traits (See Property Factory Function)

» Shadow attributes for mapped traits (See Mapped Traits)

* Private attributes of HasPrivateTraits subclasses (See HasPrivateTraits)

* Delegate traits that do not have a local value overriding the delegation. Delegate traits with a local value are
non-transient, i.e., they are serialized. (See DelegatesTo) You can mark a Delegate trait as transient if you do
not want its value to ever be serialized.

Overriding __getstate_ ()

In general, try to avoid overriding __getstate__() in subclasses of HasTraits. Instead, mark traits that should not be
pickled with transient = True metadata.

44 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

However, in cases where this strategy is insufficient, use the following pattern to override __getstate__() to remove
items that should not be persisted:

def _ getstate_ (self):
state = super (XXX, self)._ _getstate__ ()
for key in [’"foo’, ’'bar’ 1]:

if state.has_key(key):
del state[key]

return state

Unpickling HasTraits Objects

The __setstate__() method of HasTraits differs from the default Python behavior in one important respect: it explicitly
sets the value of each attribute using the values from the state dictionary, rather than simply storing or copying the
entire state dictionary to its __dict__ attribute. While slower, this strategy has the advantage of generating trait change
notifications for each attribute. These notifications are important for classes that rely on them to ensure that their
internal object state remains consistent and up to date.

Overriding __setstate_ ()

You may wish to override the HasTraits __setstate__ () method, for example for classes that do not need to receive trait
change notifications, and where the overhead of explicitly setting each attribute is undesirable. You can override __set-
state__ () to update the object’s __dict__ directly. However, in such cases, it is important ensure that trait notifications
are properly set up so that later change notifications are handled. You can do this in two ways:

e Call the __setstate__() super method (for example, with an empty state dictionary).

* Call the HasTraits class’s private _init_trait_listeners() method; this method has no parameters and does not
return a result.

1.7.6 Useful Methods on HasTraits

The HasTraits class defines a number of methods, which are available to any class derived from it, i.e., any class that
uses trait attributes. This section provides examples of a sampling of these methods. Refer to the Traits API Reference
for a complete list of HasTraits methods.

add_trait()

This method adds a trait attribute to an object dynamically, after the object has been created. For more information,
see Per-Object Trait Attributes.

clone_traits()

This method copies trait attributes from one object to another. It can copy specified attributes, all explicitly defined
trait attributes, or all explicitly and implicitly defined trait attributes on the source object.

This method is useful if you want to allow a user to edit a clone of an object, so that changes are made permanent only
when the user commits them. In such a case, you might clone an object and its trait attributes; allow the user to modify
the clone; and then re-clone only the trait attributes back to the original object when the user commits changes.

1.7. Advanced Topics 45

Traits 3 User Manual, Release 3.2.1

set()

This method takes a list of keyword-value pairs, and sets the trait attribute corresponding to each keyword to the
matching value. This shorthand is useful when a number of trait attributes need to be set on an object, or a trait
attribute value needs to be set in a lambda function. For example:

person.set (name='Bill’, age=27)
The statement above is equivalent to the following:

person.name = 'Bill’
person.age = 27

add_class_trait()

The add_class_trait() method is a class method, while the preceding HasTraits methods are instance methods. This
method is very similar to the add_trait() instance method. The difference is that adding a trait attribute by using
add_class_trait() is the same as having declared the trait as part of the class definition. That is, any trait attribute added
using add_class_trait() is defined in every subsequently-created instance of the class, and in any subsequently-defined
subclasses of the class. In contrast, the add_trait() method adds the specified trait attribute only to the object instance
it is applied to.

In addition, if the name of the trait attribute ends with a ‘_’, then a new (or replacement) prefix rule is added to the
class definition, just as if the prefix rule had been specified statically in the class definition. It is not possible to define
new prefix rules using the add_trait() method.

One of the main uses of the add_class_trait() method is to add trait attribute definitions that could not be defined
statically as part of the body of the class definition. This occurs, for example, when two classes with trait attributes are
being defined and each class has a trait attribute that should contain a reference to the other. For the class that occurs
first in lexical order, it is not possible to define the trait attribute that references the other class, since the class it needs
to refer to has not yet been defined. This is illustrated in the following example:

circular_definition.py —-— Non-working example of mutually-
referring classes
from enthought.traits.api import HasTraits, Trait

class Chicken (HasTraits) :
hatched_from = Trait (Egg)

class Egg(HasTraits):
created_by = Trait (Chicken)

As it stands, this example will not run because the hatched_from attribute references the Egg class, which has not yet
been defined. Reversing the definition order of the classes does not fix the problem, because then the created_by trait
references the Chicken class, which has not yet been defined.

The problem can be solved using the add_class_trait() method, as shown in the following code:
add _class_trait.py ——-- Example of mutually-referring classes

using add_class_trait ()
from enthought.traits.api import HasTraits, Trait

class Chicken (HasTraits) :
pass

46 Chapter 1. Traits 3 User Manual

Traits 3 User Manual, Release 3.2.1

class Egg(HasTraits):
created_by = Trait (Chicken)

Chicken.add_class_trait (' hatched_from’, Egg)

1.7.7 Performance Considerations of Traits

Using traits can potentially impose a performance penalty on attribute access over and above that of normal Python
attributes. For the most part, this penalty, if any, is small, because the core of the Traits package is written in C, just
like the Python interpreter. In fact, for some common cases, subclasses of HasTraits can actually have the same or
better performance than old or new style Python classes.

However, there are a couple of performance-related factors to keep in mind when defining classes and attributes using
traits:

* Whether a trait attribute defers its value through delegation or prototyping
* The complexity of a trait definition

If a trait attribute does not defer its value, the performance penalty can be characterized as follows:
* Getting a value: No penalty (i.e., standard Python attribute access speed or faster)

* Setting a value: Depends upon the complexity of the validation tests performed by the trait definition. Many of
the predefined trait handlers defined in the Traits package support fast C-level validation. For most of these, the
cost of validation is usually negligible. For other trait handlers, with Python-level validation methods, the cost
can be quite a bit higher.

If a trait attribute does defer its value, the cases to be considered are:

* Getting the default value: Cost of following the deferral chain. The chain is resolved at the C level, and is quite
fast, but its cost is linear with the number of deferral links that must be followed to find the default value for the
trait.

 Getting an explicitly assigned value for a prototype: No penalty (i.e., standard Python attribute access speed or
faster)

 Getting an explicitly assigned value for a delegate: Cost of following the deferral chain.

* Setting: Cost of following the deferral chain plus the cost of performing the validation of the new value. The
preceding discussions about deferral chain following and fast versus slow validation apply here as well.

In a typical application scenario, where attributes are read more often than they are written, and deferral is not used,
the impact of using traits is often minimal, because the only cost occurs when attributes are assigned and validated.

The worst case scenario occurs when deferral is used heavily, either for delegation, or for prototyping to provide
attributes with default values that are seldom changed. In this case, the cost of frequently following deferral chains
may impose a measurable performance detriment on the application. Of course, this is offset by the convenience
and flexibility provided by the deferral model. As with any powerful tool, it is best to understand its strengths and
weaknesses and apply that understanding in determining when use of the tool is justified and appropriate.

1.7. Advanced Topics 47

Traits 3 User Manual, Release 3.2.1

48 Chapter 1. Traits 3 User Manual

CHAPTER
TWO

INDICES AND TABLES

o Index
e Search Page

49

Traits 3 User Manual, Release 3.2.1

50 Chapter 2. Indices and tables

CHAPTER
THREE

TRAITS 3 TUTORIALS

3.1 Writing a graphical application for scientific programming using
TraitsUlI

A step by step guide for a non-programmer
Author Gael Varoquaux
Date 2009-10-21
License BSD

Building interactive Graphical User Interfaces (GUIs) is a hard problem, especially for somebody who has not had
training in IT. TraitsUI is a python module that provides a great answer to this problem. I have found that I am
incredibly productive when creating graphical application using traitsUL. However I had to learn a few new concepts
and would like to lay them down together in order to make it easier for others to follow my footsteps.

This document is intended to help a non-programmer to use traits and traitsUI to write an interactive graphical applica-
tion. The reader is assumed to have some basic python scripting knowledge (see ref ! for a basic introduction). Knowl-
edge of numpy/scipy > helps understanding the data processing aspects of the examples, but may not be paramount.
Some examples rely on matplotlib * . This document is not a replacement for user manuals and references of the
different packages (traitsUI “, scipy, matplotlib). It provides a “cookbook” approach, and not a reference.

This tutorial provides step-by-step guide to building a medium-size application. The example chosen is an application
used to do control of a camera, analysis of the retrieved data and display of the results. This tutorial focuses on
building the general structure and flow-control of the application, and on the aspects specific to traitsUI programming.
Interfacing with the hardware or processing the data is left aside. The tutorial progressively introduces the tools
used, and in the end present the skeleton of a real application that has been developed for real-time controlling of an
experiment, monitoring through a camera, and processing the data. The tutorial goes into more and more intricate
details that are necessary to build the final application. Each section is in itself independent of the following ones. The
complete beginner trying to use this as an introduction should not expect to understand all the details in a first pass.

The author’s experience while working on several projects in various physics labs is that code tends to be created in
an ‘organic’ way, by different people with various levels of qualification in computer development, and that it rapidly
decays to a disorganized and hard-to-maintain code base. This tutorial tries to prevent this by building an application
shaped for modularity and readability.

! python tutorial: http://docs.python.org/tut/tut.html

2 The scipy website: http://www.scipy.org

3 The matplotlib website: http:/matplotlib.sourceforge.net

4 The traits and traitsUI user guide: http:/code.enthought.com/traits

51

http://docs.python.org/tut/tut.html
http://www.scipy.org
http://matplotlib.sourceforge.net
http://code.enthought.com/traits

Traits 3 User Manual, Release 3.2.1

3.1.1 From objects to dialogs using traitsUI

Creating user interfaces directly through a toolkit is a time-consuming process. It is also a process that does not
integrate well in the scientific-computing work-flow, as, during the elaboration of algorithms and data-flow, the objects
that are represented in the GUI are likely to change often.

Visual computing, where the programmer creates first a graphical interface and then writes the callbacks of the graph-
ical objects, gives rise to a slow development cycle, as the work-flow is centered on the GUI, and not on the code.

TraitsUI provides a beautiful answer to this problem by building graphical representations of an object. Traits and
TraitsUI have their own manuals (http://code.enthought.com/traits/) and the reader is encouraged to refer to these for
more information.

We will use TraitsUI for all our GUIs. This forces us to store all the data and parameters in objects, which is good
programming style. The GUI thus reflects the structure of the code, which makes it easier to understand and extend.

In this section we will focus on creating dialogs that allow the user to input parameters graphically in the program.

Object-oriented programming

Software engineering is a difficult field. As programs, grow they become harder and harder to grasp for the developer.
This problem is not new and has sometimes been know as the “tar pit”. Many attempts have been made to mitigate the
difficulties. Most often they consist in finding useful abstractions that allow the developer to manipulate larger ideas,
rather than their software implementation.

Code re-use is paramount for good software development. It reduces the number of code-lines required to read and
understand and allows to identify large operations in the code. Functions and procedures have been invented to avoid
copy and pasting code, and hide the low-level details of an operation.

Object-oriented programming allows yet more modularity and abstraction.

Objects, attributes and methods

Suppose you want your program to manipulate geometric objects. You can teach the computer that a point is a set of
3 numbers, you can teach it how to rotate that point along a given axis. Now you want to use spheres too. With a bit
more work your program has functions to create points, spheres, etc. It knows how to rotate them, to mirror them, to
scale them. So in pure procedural programming you will have procedures to rotate, scale, mirror, each one of your
objects. If you want to rotate an object you will first have to find its type, then apply the right procedure to rotate it.

Object-oriented programming introduces a new abstraction: the object. It consists of both data (our 3 numbers, in the
case of a point), and procedures that use and modify this data (e.g., rotations). The data entries are called “attributes”
of the object and the procedures “methods”. Thus with object oriented programming an object “knows” how to be
rotated.

A point object could be implemented in python with:

code snippet #0

from numpy import cos, sin

class Point (object) :
" 3D Point objects """

x = 0.
y = 0.
z = 0.

def rotate_z(self, theta):

52 Chapter 3. Traits 3 Tutorials

http://code.enthought.com/traits/

Traits 3 User Manual, Release 3.2.1

mmn

"mrorotate the point around the Z axis
xtemp = cos(theta) » self.x + sin(theta) * self.y
ytemp = -sin(theta) * self.x + cos(theta) * self.y
self.x = xtemp
self.y = ytemp

This code creates a Point class. Points objects can be created as instances of the Point class:

>>> from numpy import pi

>>> p = Point ()
>>> p.x = 1

>>> p.rotate_z (pi)
>>> p.x

-1.0

>>> p.y

1.2246467991473532e-16

When manipulating objects, the developer does not need to know the internal details of their procedures. As long as
the object has a rotate method, the developer knows how to rotate it.

Note: Beginners often use objects as structures: entities with several data fields useful to pass data around
in a program. Objects are much more then that: they have methods. They are ‘active’ data structures that
know how to modify themselves. Part of the point of object-oriented programming is that the object is
responsible for modifying itself through its methods. The object therefore takes care of its internal logic
and the consistency between its attributes.

In python, dictionaries make great structures and are more suited for such a use than objects.

Classes and inheritance

Suppose you have already created a Point class that tells your program what a point is, but that you also want some
points to have a color. Instead of copy-and-pasting the Point class and adding a color attribute, you can define a new
class ColoredPoint that inherits all of the Point class’s methods and attributes:

class ColoredPoint (Point) :
""" Colored 3D point """
color = "white"

You do not have to implement rotation for the ColoredPoint class as it has been inherited from the Point class. This is
one of the huge gains of object-oriented programming: objects are organized in classes and sub-classes, and method
to manipulate objects are derived from the objects parent-ship: a ColoredPoint is only a special case of Point. This
proves very handy on large projects.

Note: To stress the differences between classes and their instances (objects), classes are usually named
with capital letters, and objects only with lower case letters.

An object and its representation

Objects are code entities that can be easily pictured by the developer. The TraitsUI python module allows the user to
edit objects attributes with dialogs that form a graphical representation of the object.

In our example application, each process or experimental device is represented in the code as an object. These objects
all inherit from the HasTraits, class which supports creating graphical representations of attributes. To be able to build
the dialog, the HasTraits class enforces that the types of all the attributes are specified in the class definition.

3.1. Writing a graphical application for scientific programming using TraitsUI 53

Traits 3 User Manual, Release 3.2.1

The HasTraits objects have a configure_traits() method that brings up a dialog to edit the objects’ attributes specified
in its class definition.

Here we define a camera object (which, in our real world example, is a camera interfaced to python through the ctypes
> module), and show how to open a dialog to edit its properties :

code snippet #1

from enthought.traits.api import =
from enthought.traits.ui.api import =

class Camera (HasTraits) :
mmmn Camefa Object mmwumn

gain = Enum(l, 2, 3,
desc="the gain index of the camera",
label="gain",)

exposure = CInt (10,
desc="the exposure time, in ms",
label="Exposure",)

def capture(self):
"rro Captures an image on the camera and returns it """

print "capturing an image at $%i ms exposure, gain: %i" % (
self.exposure, self.gain)

if _ name == "__main_ ":
camera = Camera ()
camera.configure_traits/()
camera.capture ()

The camera.configure_traits() call in the above example opens a dialog that allows the user to modify the camera
object’s attributes:

Exposure: [1[] l

gain; l il

| | | | | | | oK | | Cancel | | Help |

This dialog forms a graphical representation of our camera object. We will see that it can be embedded in GUI panels
to build more complex GUISs that allow us to control many objects.

We will build our application around objects and their graphical representation, as this mapping of the code to the GUI
helps the developer to understand the code.

Displaying several objects in the same panel

We now know how to build a dialog from objects. If we want to build a complex application we are likely to have
several objects, for instance one corresponding to the camera we want to control, and one describing the experiment

5 ctypes: http://starship.python.net/crew/theller/ctypes/

54 Chapter 3. Traits 3 Tutorials

http://starship.python.net/crew/theller/ctypes/

Traits 3 User Manual, Release 3.2.1

that the camera monitors. We do not want to have to open a new dialog per object: this would force us to describe the
GUI in terms of graphical objects, and not structural objects. We want the GUI to be a natural representation of our
objects, and we want the Traits module to take care of that.

The solution is to create a container object, that has as attributes the objects we want to represent. Playing with the
View attribute of the object, we can control how the representation generated by Traits looks like (see the TraitsUI
manual):

code snippet #2

from enthought.traits.api import =
from enthought.traits.ui.api import »

class Camera (HasTraits) :
gain = Enum(l, 2, 3,)
exposure = CInt (10, label="Exposure",)

class TextDisplay (HasTraits) :
string = String()

view= View(Item(’string’, show_label=False, springy=True, style=’custom’))

class Container (HasTraits):
camera = Instance (Camera)
display = Instance (TextDisplay)

view = View (
Item(’camera’, style='custom’, show_label=False,),
Item(’display’, style=’custom’, show_label=False,),

container = Container (camera=Camera (), display=TextDisplay())
container.configure_traits()

The call to configure_traits() creates the following dialog, with the representation of the Camera object created is the
last example on top, and the Display object below it:

Exposure: [1[] l

gain:[1 :]

| | | | | | oK | | Cancel | | Help

The View attribute of the container object has been tweaked to get the representation we are interested in: traitsUI
is told to display the camera item with a ‘custom’ style, which instructs it to display the representation of the object

3.1. Writing a graphical application for scientific programming using TraitsUI 55

Traits 3 User Manual, Release 3.2.1

inside the current panel. The ‘show_label’ argument is set to False as we do not want the name of the displayed object
(‘camera’, for instance) to appear in the dialog. See the traitsUI manual for more details on this powerful feature.

The camera and display objects are created during the call to the creator of the container object, and passed as its
attributes immediately: “container = Container(camera=Camera(), display=TextDisplay())”

Writing a “graphical script”

If you want to create an application that has a very linear flow, popping up dialogs when user input is required, like
a “setup wizard” often used to install programs, you already have all the tools to do it. You can use object oriented
programming to write your program, and call the objects configure_traits method each time you need user input. This
might be an easy way to modify an existing script to make it more user friendly.

The following section will focus on making interactive programs, where the user uses the graphical interface to interact
with it in a continuous way.

3.1.2 From graphical to interactive

In an interactive application, the program responds to user interaction. This requires a slight paradigm shift in our
programming methods.

Object-oriented GUIs and event loops

In a GUI application, the order in which the different parts of the program are executed is imposed by the user, unlike
in a numerical algorithm, for instance, where the developer chooses the order of execution of his program. An event
loop allows the programmer to develop an application in which each user action triggers an event, by stacking the user
created events on a queue, and processing them in the order in which the appeared.

A complex GUI is made of a large numbers of graphical elements, called widgets (e.g., text boxes, check boxes,
buttons, menus). Each of these widgets has specific behaviors associated with user interaction (modifying the content
of a text box, clicking on a button, opening a menu). It is natural to use objects to represent the widgets, with their
behavior being set in the object’s methods.

Dialogs populated with widgets are automatically created by traitsUI in the configure_traits() call. traitsUI allow the
developer to not worry about widgets, but to deal only with objects and their attributes. This is a fabulous gain as the
widgets no longer appear in the code, but only the attributes they are associated to.

A HasTraits object has an edit_traits() method that creates a graphical panel to edit its attributes. This method creates
and returns the panel, but does not start its event loop. The panel is not yet “alive”, unlike with the configure_traits()
method. Traits uses the wxWidget toolkit by default to create its widget. They can be turned live and displayed by
starting a wx application, and its main loop (ie event loop in wx speech).

code snippet #3

from enthought.traits.api import =
import wx

class Counter (HasTraits):
value = Int()

Counter () .edit_traits ()
wx.PySimpleApp () .MainLoop ()

56 Chapter 3. Traits 3 Tutorials

Traits 3 User Manual, Release 3.2.1

The Counter().edit_traits() line creates a counter object and its representation, a dialog with one integer represented.
However it does not display it until a wx application is created, and its main loop is started.

Usually it is not necessary to create the wx application yourself, and to start its main loop, traits will do all this for you
when the .configure_traits() method is called.

Reactive programming
When the event loop is started, the program flow is no longer simply controlled by the code: the control is passed on
to the event loop, and it processes events, until the user closes the GUI, and the event loop returns to the code.

Interactions with objects generate events, and these events can be associated to callbacks, ie functions or methods
processing the event. In a GUI, callbacks created by user-generated events are placed on an “event stack”. The event
loop process each call on the event queue one after the other, thus emptying the event queue. The flow of the program
is still sequential (two code blocks never run at the same time in an event loop), but the execution order is chosen by
the user, and not by the developer.

Defining callbacks for the modification of an attribute foo of a HasTraits object can be done be creating a method
called _foo_changed(). Here is an example of a dialog with two textboxes, input and output. Each time input is
modified, is content is duplicated to output.

code snippet #4
from enthought.traits.api import =
class EchoBox (HasTraits) :

input = Str()

output = Str()

def _input_changed(self):
self.output = self.input

EchoBox () .configure_traits/()

Events that do not correspond to a modification of an attribute can be generated with a Button traits. The callback is
then called _foo_fired(). Here is an example of an interactive traitsUI application using a button:

code snippet #5

from enthought.traits.api import =
from enthought.traits.ui.api import View, Item, ButtonEditor

class Counter (HasTraits):
value = Int()

add_one = Button()

def _add _one_fired(self):
self.value +=1

view = View(’'value’, Item(’add_one’, show_label=False))
Counter () .configure_traits ()

Clicking on the button adds the _add_one_fired() method to the event queue, and this method gets executed as soon as
the GUI is ready to handle it. Most of the time that is almost immediately.

3.1. Writing a graphical application for scientific programming using TraitsUI 57

Traits 3 User Manual, Release 3.2.1

=4 B - =
el (] ()

| 2
Value: [3 l
| Add one |
Rewvert | | oK | | Cancel | | Help |

This programming pattern is called reactive programming: the objects react to the changes made to their attributes. In
complex programs where the order of execution is hard to figure out, and bound to change, like some interactive data
processing application, this pattern is extremely efficient.

Using Button traits and a clever set of objects interacting with each others, complex interactive applications can be
built. These applications are governed by the events generated by the user, in contrast to script-like applications (batch
programming). Executing a long operation in the event loop blocks the reactions of the user-interface, as other events
callbacks are not processed as long as the long operation is not finished. In the next section we will see how we can
execute several operations in the same time.

3.1.3 Breaking the flow in multiple threads

What are threads ?
A standard python program executes in a sequential way. Consider the following code snippet :

do_a ()
do_b ()
do_c ()

do_b() is not called until do_a() is finished. Even in event loops everything is sequential. In some situation this can
be very limiting. Suppose we want to capture an image from a camera and that it is a very lengthy operation. Suppose
also that no other operation in our program requires the capture to be complete. We would like to have a different
“timeline” in which the camera capture instructions can happen in a sequential way, while the rest of the program
continues in parallel.

Threads are the solution to this problem: a thread is a portion of a program that can run concurrently with other
portions of the program.

Programming with threads is difficult as instructions are no longer executed in the order they are specified and the
output of a program can vary from a run to another, depending on subtle timing issues. These problems are known as
“race conditions” and to minimize them you should avoid accessing the same objects in different threads. Indeed if
two different threads are modifying the same object at the same time, unexpected things can happen.

Threads in python

In python a thread can be implemented with a Thread object, from the threading ® module. To create your own
execution thread, subclass the Thread object and put the code that you want to run in a separate thread in its run
method. You can start your thread using its start method:

6 threading: http://docs.python.org/lib/module-threading.html

58 Chapter 3. Traits 3 Tutorials

http://docs.python.org/lib/module-threading.html

Traits 3 User Manual, Release 3.2.1

code snippet #6

from threading import Thread
from time import sleep

class MyThread (Thread) :
def run(self):
sleep(2)
print "MyThread done"

my_thread = MyThread()

my_thread.start ()
print "Main thread done"

The above code yields the following output:

Main thread done
MyThread done

Getting threads and the GUI event loop to play nice

Suppose you have a long-running job in a TraitsUI application. If you implement this job as an event placed on the
event loop stack, it is going to freeze the event loop while running, and thus freeze the UL, as events will accumulate on
the stack, but will not be processed as long as the long-running job is not done (remember, the event loop is sequential).
To keep the Ul responsive, a thread is the natural answer.

Most likely you will want to display the results of your long-running job on the GUI. However, as usual with threads,
one has to be careful not to trigger race-conditions. Naively manipulating the GUI objects in your thread will lead to
race conditions, and unpredictable crash: suppose the GUI was repainting itself (due to a window move, for instance)
when you modify it.

In a wxPython application, if you start a thread, GUI event will still be processed by the GUI event loop. To avoid
collisions between your thread and the event loop, the proper way of modifying a GUI object is to insert the modifica-
tions in the event loop, using the GULinvoke_later() call. That way the GUI will apply your instructions when it has
time.

Recent versions of the TraitsUI module (post October 2006) propagate the changes you make to a HasTraits object
to its representation in a thread-safe way. However it is important to have in mind that modifying an object with a
graphical representation is likely to trigger race-conditions as it might be modified by the graphical toolkit while you
are accessing it. Here is an example of code inserting the modification to traits objects by hand in the event loop:

code snippet #7
from threading import Thread
from time import sleep

from enthought.traits.api import =
from enthought.traits.ui.api import View, Item, ButtonEditor

class TextDisplay (HasTraits) :
string = String()

view= View(Item(’string’,show_label=False, springy=True, style=’custom’))

class CaptureThread (Thread) :
def run(self):

3.1. Writing a graphical application for scientific programming using TraitsUI 59

Traits 3 User Manual, Release 3.2.1

self.display.string = ’Camera started\n’ + self.display.string
n_img = 0
while not self.wants_abort:

sleep(.5)

n_img += 1

self.display.string = ’¢d image captured\n’ % n_img \

+ self.display.string
self.display.string = ’Camera stopped\n’ + self.display.string

class Camera (HasTraits) :
start_stop_capture = Button()
display = Instance (TextDisplay)
capture_thread = Instance (CaptureThread)

view = View(Item(’start_stop_capture’, show_label=False))

def _start_stop_capture_fired(self):
if self.capture_thread and self.capture_thread.isAlive() :

self.capture_thread.wants_abort = True
else:

self.capture_thread = CaptureThread()

self.capture_thread.wants_abort = False

self.capture_thread.display = self.display
self.capture_thread.start ()

class MainWindow (HasTraits) :
display = Instance (TextDisplay, ())

camera = Instance (Camera)

def _camera_default (self):
return Camera (display=self.display)

view = View(’display’, ’'camera’, style="custom", resizable=True)

if _ name_ == '__ _main_ ’:
MainWindow () .configure_traits()

This creates an application with a button that starts or stop a continuous camera acquisition loop.
EdilTproperties

Camera stopped
3 image captured
Display: 2 image captured
1 image captured
Camera startad b’

Camera: Start stop capture

| | | | | | oK | | Cancel | | Help

When the “Start stop capture” button is pressed the _start_stop_capture_fired method is called. It checks to see if a

60 Chapter 3. Traits 3 Tutorials

Traits 3 User Manual, Release 3.2.1

CaptureThread is running or not. If none is running, it starts a new one. If one is running, it sets its wants_abort
attribute to true.

The thread checks every half a second to see if its attribute wants_abort has been set to true. If this is the case, it
aborts. This is a simple way of ending the thread through a GUI event.

Using different threads lets the operations avoid blocking the user interface, while also staying responsive to other
events. In the real-world application that serves as the basis of this tutorial, there are 2 threads and a GUI event loop.

The first thread is an acquisition loop, during which the program loops, waiting for a image to be captured on the
camera (the camera is controlled by external signals). Once the image is captured and transfered to the computer, the
acquisition thread saves it to the disk and spawns a thread to process the data, then returns to waiting for new data
while the processing thread processes the data. Once the processing thread is done, it displays its results (by inserting
the display events in the GUI event loop) and dies. The acquisition thread refuses to spawn a new processing thread if
there still is one running. This makes sure that data is never lost, no matter how long the processing might be.

There are thus up to 3 set of instructions running concurrently: the GUI event loop, responding to user-generated
events, the acquisition loop, responding to hardware-generated events, and the processing jobs, doing the numerical
intensive work.

In the next section we are going to see how to add a home-made element to traits, in order to add new possibilities to
our application.

3.1.4 Extending TraitsUl: Adding a matplotlib figure to our application

This section gives a few guidelines on how to build your own traits editor. A traits editor is the view associated to
each traits that allows that graphically edit its value. We can twist a bit the notion and simply use it to graphically
represent the attribute. This section involves a bit of wxPython code that may be hard to understand if you do not know
wxPython, but it will bring a lot of power and flexibility to you use of traits. The reason it appears in this tutorial is
that I wanted to insert a matplotlib in my traitsUI application. It is not necessary to fully understand the code of this
section to be able to read on.

I should stress that there already exists a plotting module that provides traits editors for plotting, and that is very well

integrated with traits: chaco ’.

Making a traits editor from a MatPlotLib plot

To use traits, the developer does not need to know its internals. However traits does not provide an editor for every
need. If we want to insert a powerful tool for plotting we have to get our hands a bit dirty and create our own traits
editor.

This involves some wxPython coding, as we need to translate a wxPython object in a traits editor by providing the
corresponding API (i.e. the standard way of building a traits editor, so that the traits framework can do it automatically.

Traits editor are created by an editor factory that instanciates an editor class and passes it the object that the editor
represents in its value attribute. It calls the editor inf() method to create the wx widget. Here we create a wx figure
canvas from a matplotlib figure using the matplotlib wx backend. Instead of displaying this widget, we set its control
as the control attribute of the editor. TraitsUI takes care of displaying and positioning the editor.

code snippet #8

7 chaco: http://code.enthought.com/chaco/

3.1. Writing a graphical application for scientific programming using TraitsUI 61

http://code.enthought.com/chaco/

Traits 3 User Manual, Release 3.2.1

import wx

import matplotlib

We want matplotlib to use a wxPython backend

matplotlib.use (' WXAgg”’)

from matplotlib.backends.backend wxagg import FigureCanvasWxAgg as FigureCanvas
from matplotlib.figure import Figure

from matplotlib.backends.backend wx import NavigationToolbar2Wx

from enthought.traits.api import Any, Instance
from enthought.traits.ui.wx.editor import Editor
from enthought.traits.ui.wx.basic_editor_factory import BasicEditorFactory

class _MPLFigureEditor (Editor) :
scrollable = True

def init(self, parent):
self.control = self._create_canvas (parent)
self.set_tooltip()

def update_editor (self):
pass

def _create_canvas(self, parent):
"mm Create the MPL canvas. """
The panel lets us add additional controls.
panel = wx.Panel (parent, -1, style=wx.CLIP_CHILDREN)
sizer = wx.BoxSizer (wx.VERTICAL)
panel.SetSizer (sizer)
matplotlib commands to create a canvas
mpl_control = FigureCanvas (panel, -1, self.value)
sizer.Add (mpl_control, 1, wx.LEFT | wx.TOP | wx.GROW)
toolbar = NavigationToolbar2Wx (mpl_control)
sizer.Add (toolbar, 0, wx.EXPAND)
self.value.canvas.SetMinSize ((10,10))
return panel

class MPLFigureEditor (BasicEditorFactory) :

klass = _MPLFigureEditor

if _ name_ == "_ _main__ ":

Create a window to demo the editor

from enthought.traits.api import HasTraits
from enthought.traits.ui.api import View, Item

from numpy import sin, cos, linspace, pi
class Test (HasTraits):
figure = Instance(Figure, ())

view = View (Item(’ figure’, editor=MPLFigureEditor(),
show_label=False),
width=400,
height=300,
resizable=True)

62 Chapter 3. Traits 3 Tutorials

Traits 3 User Manual, Release 3.2.1

def _ init_ (self):
super (Test, self).__init__ ()
axes = self.figure.add_subplot (111)
t = linspace (0, 2xpi, 200)
axes.plot (sin(t)* (1+0.5+«cos(11xt)), cos(t)*(1+0.5xcos(llxt)))

Test () .configure_traits/()

This code first creates a traitsUI editor for a matplotlib figure, and then a small dialog to illustrate how it works:

-~ I = Fl=
i)] L]

1.5]] T]]

|

i I —,
1.0F L“\““\\ | | ~ fj .
~
o5} ~. T— . ~ VS —

—_— I

0.0F e —— 4

0.5} 7 - i
0.5 7 . ..-ﬂ.l".. t‘f’“‘aa_ —

2o SN —
s AN
L .
-1 5o - b - — 1
1§ 10 0.5 0.0 0.5 10 15
-
| oK | | Cancel | | Help
LS ~

The matplotlib figure traits editor created in the above example can be imported in a traitsUI application and combined
with the power of traits. This editor allows to insert a matplotlib figure in a traitsUI dialog. It can be modified using
reactive programming, as demonstrated in section 3 of this tutorial. However, once the dialog is up and running, you
have to call self.figure.canvas.draw() to update the canvas if you made modifications to the figure. The matplotlib user
guide 3 details how this object can be used for plotting.

3.1.5 Putting it all together: a sample application

The real world problem that motivated the writing of this tutorial is an application that retrieves data from a camera,
processes it and displays results and controls to the user. We now have all the tools to build such an application.
This section gives the code of a skeleton of this application. This application actually controls a camera on a physics
experiment (Bose-Einstein condensation), at the university of Toronto.

The reason I am providing this code is to give an example to study of how a full-blown application can be built. This
code can be found in the tutorial’s zip file (it is the file application.py).

3.1. Writing a graphical application for scientific programming using TraitsUI 63

http://gael-varoquaux.info/computers/traits_tutorial/traits_tutorial.zip

Traits 3 User Manual, Release 3.2.1

* The camera will be built as an object. Its real attributes (exposure time, gain...) will be represented as the
object’s attributes, and exposed through traitsUI.

* The continuous acquisition/processing/user-interaction will be dealt with appropriate threads, as discussed in
section 2.3.

* The plotting of the results will be done through the MPLWidget object.

The imports

The MPLFigureEditor is imported from the last example.

from
from
from
from
from
from
from
from

threading import Thread
time import sleep
enthought .traits.api import =

enthought.traits.ui.api import View, Item, Group, HSplit, Handler

enthought.traits.ui.menu import NoButtons
mpl_figure_editor import MPLFigureEditor
matplotlib.figure import Figure

scipy import * import wx

User interface objects

These objects store information for the program to interact with the user via traitsUI.

class Experiment (HasTraits) :

""" Object that contains the parameters that
modified by the user.

mmmn

width = Float (30, label="Width", desc="width
x = Float (50, label="X", desc="X position of
vy Float (50, label="Y", desc="Y position of

class Results (HasTraits):

"rroObject used to display the results.

width = Float (30, label="width", desc="width
x = Float (50, label="X", desc="X position of
y = Float (50, label="Y", desc="Y position of

view = View(Item(’width’, style=’readonly’),
Item(’'x’, style='readonly’),
Item('y’, style=’'readonly’),

control the experiment,

of the cloud")
the center")
the center")

of the cloud")
the center")
the center")

The camera object also is a real object, and not only a data structure: it has a method to acquire an image (or in our
case simulate acquiring), using its attributes as parameters for the acquisition.

class Camera (HasTraits) :
""" Camera objects. Implements both the camera parameters controls, and

the picture acquisition.

mmn

exposure = Float (1, label="Exposure", desc="exposure, in ms")
gain = Enum(l, 2, 3, label="Gain", desc="gain")

def acquire(self, experiment):

64

Chapter 3. Traits 3 Tutorials

Traits 3 User Manual, Release 3.2.1

, Y = indices ((100, 100))

= exp (— ((X—-experiment.x) «+2+ (Y-experiment.y) »+2) /experiment .widthx*2)
+= 1-2+rand(100,100)

= self.exposure

[Z2>2] = 2

= Zxxself.gain

return (72)

N NN NN X

Threads and flow control

There are three threads in this application:
* The GUI event loop, the only thread running at the start of the program.

* The acquisition thread, started through the GUI. This thread is an infinite loop that waits for the camera to be
triggered, retrieves the images, displays them, and spawns the processing thread for each image recieved.

* The processing thread, started by the acquisition thread. This thread is responsible for the numerical intensive
work of the application. it processes the data and displays the results. It dies when it is done. One processing
thread runs per shot acquired on the camera, but to avoid accumulation of threads in the case that the processing
takes longer than the time lapse between two images, the acquisition thread checks that the processing thread is
done before spawning a new one.

def process (image, results_obj):
""" Function called to do the processing """
X, Y = indices (image.shape)
x = sum(X*image) /sum (image)
y = sum(Y+image) /sum (image)
width = sqgrt (abs (sum(((X-x)**2+(Y-y) **2) ximage) /sum(image)))
results_obj.x = x
results_obj.y vy
results_obj.width = width

class AcquisitionThread (Thread) :
"mr Acquisition loop. This is the worker thread that retrieves images
from the camera, displays them, and spawns the processing job.

mmn

wants_abort = False

def process(self, image):
"rr Spawns the processing job. """
try:
if self.processing_Jjob.isAlive():
self.display ("Processing to slow")
return
except AttributeError:
pass
self.processing_job = Thread(target=process, args=(image,
self.results))
self.processing_job.start ()

def run(self):
""" Runs the acquisition loop. """
self.display ('’ Camera started’)
n_img = 0
while not self.wants_abort:
n_img += 1

3.1. Writing a graphical application for scientific programming using TraitsUI 65

Traits 3 User Manual, Release 3.2.1

img =self.acquire(self.experiment
self.display(’ ¢d image captured’
self.image_show (img)
self.process (img)
sleep (1)

self.display ('’ Camera stopped’)

)

n_img)

The GUI elements

The GUI of this application is separated in two (and thus created by a sub-class of SplitApplicationWindow).
On the left a plotting area, made of an MPL figure, and its editor, displays the images acquired by the camera.

On the right a panel hosts the TraitsUI representation of a ControlPanel object. This object is mainly a container
for our other objects, but it also has an Button for starting or stopping the acquisition, and a string (represented by a
textbox) to display informations on the acquisition process. The view attribute is tweaked to produce a pleasant and
usable dialog. Tabs are used as it help the display to be light and clear.

class ControlPanel (HasTraits) :
"m"r This object is the core of the traitsUI interface. Its view 1is
the right panel of the application, and it hosts the method for
interaction between the objects and the GUI.

mmon

experiment = Instance (Experiment, ())

camera = Instance (Camera, ())

figure = Instance (Figure)

results = Instance (Results, ())

start_stop_acquisition = Button("Start/Stop acquisition™)

results_string = String/()
acquisition_thread = Instance (AcquisitionThread)
view = View (Group (
Group (
Item(’start_stop_acguisition’, show_label=False),
Item(’'results_string’,show_label=False,
springy=True, style=’custom’),
label="Control", dock=’"tab’,),
Group (
Group (
Item(’experiment’, style=’custom’, show_label=False),
label="Input",),
Group (
Item(’results’, style='custom’, show_label=False),
label="Results",),
label='Experiment’, dock="tab"),
Item(’camera’, style=’custom’, show_label=False, dock="tab"),
layout='"tabbed’),
)

def _start_stop_acquisition_fired(self):

"o Ccallback of the "start stop acquisition" button. This starts

the acquisition thread, or kills it.

mmmn

if self.acquisition_thread and self.acquisition_thread.isAlive():
self.acquisition_thread.wants_abort = True

else:
self.acquisition_thread = AcquisitionThread()
self.acquisition_thread.display = self.add_line

66 Chapter 3. Traits 3 Tutorials

Traits 3 User Manual, Release 3.2.1

self.acquisition_thread.acquire = self.camera.acquire
self.acquisition_thread.experiment = self.experiment
self.acquisition_thread.image_show = self.image_show
self.acquisition_thread.results = self.results
self.acquisition_thread.start ()

def add_line(self, string):
"mmoAdds a line to the textbox display.

moon

self.results_string = (string + "\n" + self.results_string) [0:1000]

def image_show(self, image):
"rr plots an image on the canvas in a thread safe way.
mmmn
self.figure.axes[0].images=][]
self.figure.axes[0].imshow (image, aspect=’auto’)
wx.CallAfter (self.figure.canvas.draw)

class MainWindowHandler (Handler) :
def close(self, info, is_OK):
if (info.object.panel.acquisition_thread

and info.object.panel.acquisition_thread.isAlive ()):

info.object.panel.acquisition_thread.wants_abort = True

while info.object.panel.acquisition_thread.isAlive() :
sleep(0.1)

wx.Yield ()

return True

class MainWindow (HasTraits) :
""" The main window, here go the instructions to create and destroy the application.

mmn

figure = Instance (Figure)
panel = Instance (ControlPanel)

def _figure_default (self):
figure = Figure()
figure.add_axes ([0.05, 0.04, 0.9, 0.92])
return figure

def _panel_default (self):
return ControlPanel (figure=self.figure)

view = View (HSplit (Item(’ figure’, editor=MPLFigureEditor(),
dock="vertical’),
Item(’'panel’, style="custom"),
show_labels=False,
)I
resizable=True,
height=0.75, width=0.75,
handler=MainWindowHandler (),
buttons=NoButtons)
if _ name_ == '_ main_
MainWindow () .configure_traits()

’ .

When the acquisition loop is created and running, the mock camera object produces noisy gaussian images, and the
processing code estimates the parameters of the gaussian.

3.1. Writing a graphical application for scientific programming using TraitsUI 67

Traits 3 User Manual, Release 3.2.1

Control | Experiment | Camera

| Start/Stop acquisition

Camera stopped
3 image captured
2 image captured
1 image captured
Camera started

Experiment | Carmera

| Input |

width: [30.0 |
x:[50.0 |
v [50.0]

| Results |

width: 27.5520129427
X: 48.7585462131
¥: 51.1108380861

L4 :
. | Control | Experiment | Camera

Exposure; [1.0

e

Gain: [1 |

68

Chapter 3. Traits 3 Tutorials

Traits 3 User Manual, Release 3.2.1

Conclusion

I have summarized here all what most scientists need to learn in order to be able to start building applications with
traitsUI. Using the traitsUI module to its full power requires you to move away from the procedural type of program-
ming most scientists are used to, and think more in terms of objects and flow of information and control between
them. I have found that this paradigm shift, although a bit hard, has been incredibly rewarding in terms of my own
productivity and my ability to write compact and readable code.

Good luck!

Acknowledgments

I would like to thank the people on the enthought-dev mailing-list, especially Prabhu Ramachandran and David Morrill,
for all the help they gave me, and Janet Swisher for reviewing this document. Big thanks go to enthought for developing
the traits and traitsUI modules, and making them open-source. Finally the python, the numpy, and the matplotlib
community deserve many thanks for both writing such great software, and being so helpful on the mailing lists.

References

3.1. Writing a graphical application for scientific programming using TraitsUI 69

Traits 3 User Manual, Release 3.2.1

70 Chapter 3. Traits 3 Tutorials

CHAPTER
FOUR

INDICES AND TABLES

o Index
e Search Page

71

Traits 3 User Manual, Release 3.2.1

72 Chapter 4. Indices and tables

CHAPTER
FIVE

TRAITS Ul USER GUIDE

5.1 Traits Ul User Guide

Authors Lyn Pierce, Janet Swisher
Version Document Version 4
Copyright 2005, 2008 Enthought, Inc. All Rights Reserved.

Redistribution and use of this document in source and derived forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source or derived format (for example, Portable Document Format or Hypertext Markup
Language) must retain the above copyright notice, this list of conditions and the following disclaimer.

* Neither the name of Enthought, Inc., nor the names of contributors may be used to endorse or promote products
derived from this document without specific prior written permission.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

All trademarks and registered trademarks are the property of their respective owners. Enthought, Inc.
515 Congress Avenue

Suite 2100

Austin TX 78701

1.512.536.1057 (voice)

1.512.536.1059 (fax)

http://www.enthought.com

info@enthought.com

5.2 Introduction

This guide is designed to act as a conceptual guide to 7raits Ul, an open-source package built and maintained by
Enthought, Inc. The Traits UI package is a set of GUI (Graphical User Interface) tools designed to complement 7raits,

73

http://www.enthought.com
mailto:info@enthought.com

Traits 3 User Manual, Release 3.2.1

another Enthought open-source package that provides explicit typing, validation, and change notification for Python.
This guide is intended for readers who are already moderately familiar with Traits; those who are not may wish to
refer to the Traits User Manual for an introduction. This guide discusses many but not all features of Traits Ul. For
complete details of the Traits UI API, refer to the Traits API Reference.

5.2.1 The Model-View-Controller (MVC) Design Pattern

A common and well-tested approach to building end-user applications is the MVC (“Model-View-Controller”) design
pattern. In essence, the MVC pattern the idea that an application should consist of three separate entities: a model,
which manages the data, state, and internal (‘“business”) logic of the application; one or more views, which format the
model data into a graphical display with which the end user can interact; and a controller, which manages the transfer
of information between model and view so that neither needs to be directly linked to the other. In practice, particularly
in simple applications, the view and controller are often so closely linked as to be almost indistinguishable, but it
remains useful to think of them as distinct entities.

The three parts of the MVC pattern correspond roughly to three classes in the Traits and Traits UI packages.
* Model: HasTraits class (Traits package)
* View: View class (Traits UI package)
 Controller: Handler class (Traits UI package)

The remainder of this section gives an overview of these relationships.

The Model: HasTraits Subclasses and Objects

In the context of Traits, a model consists primarily of one or more subclasses or instances of the HasTraits class, whose
trait attributes (typed attributes as defined in Traits) represent the model data. The specifics of building such a model
are outside the scope of this manual; please see the Traits User Manual for further information.

The View: View Objects

A view for a Traits-based application is an instance of a class called, conveniently enough, View. A View object is
essentially a display specification for a GUI window or panel. Its contents are defined in terms of instances of two
other classes: Item and Group. ' These three classes are described in detail in The View and Its Building Blocks; for
the moment, it is important to note that they are all defined independently of the model they are used to display.

Note that the terms view and View are distinct for the purposes of this document. The former refers to the component
of the MVC design pattern; the latter is a Traits Ul construct.

The Controller: Handler Subclasses and Objects

The controller for a Traits-based application is defined in terms of the Handler class. > Specifically, the relationship
between any given View instance and the underlying model is managed by an instance of the Handler class. For
simple interfaces, the Handler can be implicit. For example, none of the examples in the first four chapters includes
or requires any specific Handler code; they are managed by a default Handler that performs the basic operations
of window initialization, transfer of data between GUI and model, and window closing. Thus, a programmer new to
Traits Ul need not be concerned with Handlers at all. Nonetheless, custom handlers can be a powerful tool for building
sophisticated application interfaces, as discussed in Controlling the Interface: the Handler.

I A third type of content object, Include, is discussed briefly in Include Objects, but presently is not commonly used.
2 Not to be confused with the TraitHandler class of the Traits package, which enforces type validation.

74 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

5.2.2 Toolkit Selection

The Traits UI package is designed to be toolkit-independent. Programs that use Traits UI do not need to explicitly
import or call any particular GUI toolkit code unless they need some capability of the toolkit that is not provided by
Traits UL. However, some particular toolkit must be installed on the system in order to actually display GUI windows.

Traits Ul uses a separate package, enthought.etsconfig, to determine which GUI toolkit to use. This package is also
used by other Enthought packages that need GUI capabilities, so that all such packages “agree” on a single GUI toolkit
per application. The enthought.etsconfig package contains a singleton object, ETSConfig, which has a string attribute,
toolkit, that signifies the GUI toolkit. The values of ETSConfig.toolkit that are supported by Traits Ul version 3 are:

* ‘wx’: wxPython, which provides Python bindings for the wxWidgets toolkit.
e ‘qt4’: PyQt, which provides Python bindings for the Qt framework version 4.

e ‘null’: A do-nothing toolkit, for situations where neither of the other toolkits is installed, but Traits is needed
for non-UI purposes.

The default behavior of Traits Ul is to search for available toolkit-specific packages in the order listed, and uses the
first one it finds. The programmer or the user can override this behavior in any of several ways, in the following order
of precedence:

1. The program can explicitly set ETSConfig.toolkit. It must do this before importing from any other Enthought
Tool Suite component, including enthought.traits.

2. The user can specify a -toolkit flag on the command line of the program.

3. The user can define a value for the ETS_TOOLKIT environment variable.

5.2.3 Structure of this Guide

The intent of this guide is to present the capabilities of the Traits UI package in usable increments, so that you can
create and display gradually more sophisticated interfaces from one chapter to the next.

* The View and Its Building Blocks, Customizing a View, and Advanced View Concepts show how to construct and
display views from the simple to the elaborate, while leaving such details as GUI logic and widget selection to
system defaults.

e Controlling the Interface: the Handler explains how to use the Handler class to implement custom GUI behav-
iors, as well as menus and toolbars.

e Traits UI Themes described how to customize the appearance of GUIs through themes.

e Introduction to Trait Editor Factories and The Predefined Trait Editor Factories show how to control GUI widget
selection by means of trait edifors.

* Tips, Tricks and Gotchas covers miscellaneous additional topics.

* Further reference materials, including a Appendix I: Glossary of Terms and an API summary for the Traits UI
classes covered in this Guide, are located in the Appendices.

5.3 The View and Its Building Blocks

A simple way to edit (or simply observe) the attribute values of a HasTraits object in a GUI window is to call the
object’s configure_traits() > method. This method constructs and displays a window containing editable fields for each

3 If the code is being run from a program that already has a GUI defined, then use edit_traits() instead of configure_traits(). These methods are
discussed in more detail in Section 4.3.

5.3. The View and Its Building Blocks 75

http://www.wxpython.org
http://wxwidgets.org
http://riverbankcomputing.co.uk/pyqt/
http://trolltech.com/products/qt

Traits 3 User Manual, Release 3.2.1

of the object’s trait attributes. For example, the following sample code * defines the SimpleEmployee class, creates
an object of that class, and constructs and displays a GUI for the object:

Example 1: Using configure_traits()

configure_traits.py —-- Sample code to demonstrate
configure_traits/()

from enthought.traits.api import HasTraits, Str, Int
import enthought.traits.ui

class SimpleEmployee (HasTraits) :
first_name = Str
last_name = Str
department = Str
employee_number = Str
salary = Int

sam = SimpleEmployee ()
sam.configure_traits ()

Unfortunately, the resulting form simply displays the attributes of the object sam in alphabetical order with little
formatting, which is seldom what is wanted:

B Edit properties g@@

Department: I

Employee number; I

Firsk narme: |

Last name: |

Salary: JD

(04 | Cancel

Figure 5.1: Figure 1: User interface for Example 1

5.3.1 The View Object

In order to control the layout of the interface, it is necessary to define a View object. A View object is a template for
a GUI window or panel. In other words, a View specifies the content and appearance of a Traits Ul window or panel
display.

For example, suppose you want to construct a GUI window that shows only the first three attributes of a SimpleEm-
ployee (e.g., because salary is confidential and the employee number should not be edited). Furthermore, you would
like to specify the order in which those fields appear. You can do this by defining a View object and passing it to the
configure_traits() method:

4 All code examples in this guide that include a file name are also available as examples in the tutorials/doc_examples/examples
subdirectory of the Traits docs directory. You can run them individually, or view them in a tutorial program by running: python
Traits_dir/tutorials/tutor.py Traits_dir/docs/tutorials/doc_examples

76 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Example 2: Using configure_traits() with a View object

configure_traits_view.py —- Sample code to demonstrate
configure_ traits/()

from enthought.traits.api import HasTraits, Str, Int
from enthought.traits.ui.api import View, Item
import enthought.traits.ui

class SimpleEmployee (HasTraits) :
first_name = Str
last_name = Str
department = Str
employee_number = Str
salary = Int

viewl = View(Item(name = ’first_name’),
Item(name = ’last_name’),
Item(name = ’department’))

sam = SimpleEmployee ()
sam.configure_traits (view=viewl)

The resulting window has the desired appearance:

E Edit prop... E’@[’)__q

First niarne: ||

Last name: |

Deparkment: |

Figure 5.2: Figure 2: User interface for Example 2

A View object can have a variety of attribute, which are set in the View definition, following any Group or Item objects.

The sections on Contents of a View through Advanced View Concepts explore the contents and capabilities of Views.
Refer to the Traits API Reference for details of the View class.

Except as noted, all example code uses the configure_traits() method; a detailed description of this and other techniques
for creating GUI displays from Views can be found in Displaying a View.

5.3.2 Contents of a View

The contents of a View are specified primarily in terms of two basic building blocks: Item objects (which, as suggested
by Example 2, correspond roughly to individual trait attributes), and Group objects. A given View definition can
contain one or more objects of either of these types, which are specified as arguments to the View constructor, as in
the case of the three Items in Example 2.

The remainder of this chapter describes the Item and Group classes.

5.3. The View and Its Building Blocks 77

Traits 3 User Manual, Release 3.2.1

The Item Object

The simplest building block of a View is the /tem object. An Item specifies a single interface widget, usually the display
for a single trait attribute of a HasTraits object. The content, appearance, and behavior of the widget are controlled by
means of the Item object’s attributes, which are usually specified as keyword arguments to the Item constructor, as in
the case of name in Example 2.

The remainder of this section describes the attributes of the Item object, grouped by categories of functionality. It
is not necessary to understand all of these attributes in order to create useful Items; many of them can usually be
left unspecified, as their default values are adequate for most purposes. Indeed, as demonstrated by earlier examples,
simply specifying the name of the trait attribute to be displayed is often enough to produce a usable result.

The following table lists the attributes of the Item class, organized by functional categories. Refer to the Traits API
Reference for details on the Item class.

78 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Attributes of Item, by category

Cate- | Attributes Description
gory
Con- e name These attributes specify the actual data to be displayed by
tent an item. Because an Item is essentially a template for
displaying a single trait, its name attribute is nearly
always specified.
Dis- In addition to specifying which trait attributes are to be
play * dock . displayed, you might need to adjust the format of one or
format * emphasized more of the resulting widgets.
* eXP"rt If an Item’s label attribute is specified but not its name,
* !1e1ght the value of label is displayed as a simple, non-editable
* Image string. (This feature can be useful for displaying
: ;:;)I:l_theme comments or instructions in a Traits UI window.)
¢ label theme
¢ padding
* resizable
¢ show_label
* springy
* width
Con- In some cases it can be desirable to apply special
tent * format_str formatting to a widget’s contents rather than to the
format * format_func widget itself. Examples of such formatting might include
rounding a floating-point value to two decimal places, or
capitalizing all letter characters in a license plate number.
Wid-) These attributes override the widget that is automatically
get * editor selected by Traits Ul These options are discussed in
over- ° style Introduction to Trait Editor Factories and The Predefined
ride Trait Editor Factories.
Visi- Use these attributes to create a simple form of a dynamic
bility i eflz}bled_when GUI, which alters the display in response to changes in
and * visible_when the data it contains. More sophisticated dynamic
status * defined_when behavior can be implemented using a custom Handler
* has_focus see Controlling the Interface: the Handler).
User) These attributes provide guidance to the user in using the
help * tooltip user interface. If the help attribute is not defined for an
* help . Item, a system-generated message is used instead. The
* help_id help_id attribute is ignored by the default help handler,
but can be used by a custom help handler.
Unique . The id attribute is used as a key for saving user
identi- * id preferences about the widget. If id is not specified, the
fier value of the name attribute is used.

Subclasses of Iltem

The Traits UI package defines the following subclasses of Item:

e Label

* Heading

5.3. The View and Its Building Blocks

79

Traits 3 User Manual, Release 3.2.1

* Spring

These classes are intended to help with the layout of a Traits UI View, and need not have a trait attribute associated
with them. See the Traits API Reference for details.

The Group Object

The preceding sections have shown how to construct windows that display a simple vertical sequence of widgets using
instances of the View and Item classes. For more sophisticated interfaces, though, it is often desirable to treat a group
of data elements as a unit for reasons that might be visual (e.g., placing the widgets within a labeled border) or logical
(activating or deactivating the widgets in response to a single condition, defining group-level help text). In Traits UI,
such grouping is accomplished by means of the Group object.

Consider the following enhancement to Example 2:

pair: configure_traits(); examples triple: View; Group; examples
Example 3: Using configure_traits() with a View and a Group object

configure traits_view _group.py —-- Sample code to demonstrate
configure traits()

from enthought.traits.api import HasTraits, Str, Int

from enthought.traits.ui.api import View, Item, Group

import enthought.traits.ui

class SimpleEmployee (HasTraits) :
first_name = Str
last_name = Str
department = Str

employee_number = Str
salary = Int

viewl = View (Group(Item(name = 'first_name’),
Item (name "last_name’),
Item(name = ’'department’),
label = ’"Personnel profile’,
show_border = True))

sam = SimpleEmployee ()
sam.configure_traits (view=viewl)

The resulting window shows the same widgets as before, but they are now enclosed in a visible border with a text
label:

Content of a Group

The content of a Group object is specified exactly like that of a View object. In other words, one or more Item or
Group objects are given as arguments to the Group constructor, e.g., the three Items in Example 3. 5 The objects
contained in a Group are called the elements of that Group. Groups can be nested to any level.

5 As with Views, it is possible for a Group to contain objects of more than one type, but it is not recommended.

80 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

B Edit pProper... E][EJE|

Personnel profile -

First narne: I

Last name: |

Deparkment: J

Figure 5.3: Figure 3: User interface for Example 3

Group Attributes

The following table lists the attributes of the Group class, organized by functional categories. As with Item attributes,
many of these attributes can be left unspecified for any given Group, as the default values usually lead to acceptable
displays and behavior.

See the Traits API Reference for details of the Group class.

5.3. The View and Its Building Blocks 81

Traits 3 User Manual, Release 3.2.1

82 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Attributes of Group, by category

Category Attributes Description
Content . The object attribute references the
* object object whose traits are being edited
* content by members of the group; by default
this is ‘object’, but could be another
object in the current context. The
content attribute is a list of elements
in the group.
Display format These attributes define display op-
* columns tions for the group as a whole.
* dock
¢ dock_theme
* export
* group_theme
¢ image
¢ item_theme
* label
¢ label_theme
* layout
e orientation
¢ padding
* selected

Visibility and status

User help

Unique identifier

show_border
show_labels
show_left
springy

style

enabled_when
visible_when
defined_when

help
help_id

id

These attributes work similarly to the
attributes of the same names on the
Item class.

The help text is used by the default
help handler only if the group is the
only top-level group for the current
View. For example, suppose help text
is defined for a Group called groupl.
The following View shows this text in
its help window:

View (groupl)

The following two do not:

View (groupl, group2)

View (Group (groupl))

The help_id attribute is ignored by
the default help handler, but can be
used by a custom help handler.

The id attribute is used as a key
for saving user preferences about the
widget. If id is not specified, the id
values of the elements of the group
are concatenated and used as the
group identifier.

5.3. The View and Its Building Blocks

83

Traits 3 User Manual, Release 3.2.1

Subclasses of Group

The Traits UI package defines the following subclasses of Group, which are helpful shorthands for defining certain
types of groups. Refer to the Traits API Reference for details.

Subclasses of Group

Sub-
class

Description

Equivalent To

HGroup A group whose items are laid out horizontally.

VGroup A group whose items are laid out vertically.

‘Group (orientation= 'horizontal’)’

HFlow| A horizontal group whose items “wrap” when ‘Group (orientation= ’horizontal,
they exceed the available horizontal space. layout='flow’, show_labels=False)’

HSplit| A horizontal group with splitter bars to separate | ‘Group (orientation= ’horizontal’,
it from other groups. layout='split’)’

Tabbed A group that is shown as a tab in a notebook. ‘Group (orientation= ’horizontal’,

layout='tabbed)’
‘Group (orientation= ’vertical’)’

VFlow| A vertical group whose items “wrap” when they | ‘Group (orientation= ’vertical’,
exceed the available vertical space. layout='flow’, show_labels=False)’

VFold | A vertical group in which items can be ‘Group (orientation= ’vertical’,
collapsed (i.e., folded) by clicking their titles. layout='fold’, show_labels=False)’

VGrid | A vertical group whose items are laid out in two | ‘Group (orientation= ’vertical’,
columns. columns=2)’

VS- A vertical group with splitter bars to separate it ‘Group (orientation= ’'vertical’,

plit from other groups. layout='split’)’

5.4 Customizing a View

As shown in the preceding two chapters, it is possible to specify a window in Traits Ul simply by creating a View object
with the appropriate contents. In designing real-life applications, however, you usually need to be able to control the
appearance and behavior of the windows themselves, not merely their content. This chapter covers a variety of options
for tailoring the appearance of a window that is created using a View, including the type of window that a View appears
in, the command buttons that appear in the window, and the physical properties of the window.

5.4.1 Specifying Window Type: the kind Attribute

Many types of windows can be used to display the same data content. A form can appear in a window, a wizard, or an
embedded panel; windows can be modal (i.e., stop all other program processing until the box is dismissed) or not, and
can interact with live data or with a buffered copy. In Traits UI, a single View can be used to implement any of these
options simply by modifying its kind attribute. There are seven possible values of kind:

e ‘modal’

e ‘live’

¢ ‘livemodal’
¢ ‘nonmodal’
e ‘wizard’

* ‘panel’

e ‘subpanel’

84 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

These alternatives are described below. If the kind attribute of a View object is not specified, the default value is
‘modal’.

Stand-alone Windows

The behavior of a stand-alone Traits Ul window can vary over two significant degrees of freedom. First, it can be
modal, meaning that when the window appears, all other GUI interaction is suspended until the window is closed;
if it is not modal, then both the window and the rest of the GUI remain active and responsive. Second, it can be
live, meaning that any changes that the user makes to data in the window is applied directly and immediately to the
underlying model object or objects; otherwise the changes are made to a copy of the model data, and are only copied
to the model when the user commits them (usually by clicking an OK or Apply button; see Command Buttons: the
buttons Attribute). The four possible combinations of these behaviors correspond to four of the possible values of the
‘kind ° attribute of the View object, as shown in the following table.

Matrix of Traits Ul windows

not modal modal
not live | nonmodal modal
live live livemodal

All of these window types are identical in appearance. Also, all types support the buttons attribute, which is described
in Command Buttons: the buttons Attribute. Usually, a window with command buttons is called a dialog box.

Wizards

Unlike a window, whose contents generally appear as a single page or a tabbed display, a wizard is presented as a
series of pages that a user must navigate sequentially.

Traits Ul Wizards are always modal and live. They always display a standard wizard button set; i.e., they ignore the
buttons View attribute. In short, wizards are considerably less flexible than windows, and are primarily suitable for
highly controlled user interactions such as software installation.

Panels and Subpanels

Both dialog boxes and wizards are secondary windows that appear separately from the main program display, if any.
Often, however, you might need to create a window element that is embedded in a larger display. For such cases, the
kind of the corresponding View object should be ‘panel’ or ‘subpanel ‘.

A panel is very similar to a window, except that it is embedded in a larger window, which need not be a Traits
UI window. Like windows, panels support the buttons View attribute, as well as any menus and toolbars that are
specified for the View (see Menus and Menu Bars). Panels are always live and nonmodal.

A subpanel is almost identical to a panel. The only difference is that subpanels do not display command buttons even
if the View specifies them.

5.4.2 Command Buttons: the buttons Attribute

A common feature of many windows is a row of command buttons along the bottom of the frame. These buttons have
a fixed position outside any scrolled panels in the window, and are thus always visible while the window is displayed.
They are usually used for window-level commands such as committing or cancelling the changes made to the form
data, or displaying a help window.

5.4. Customizing a View 85

Traits 3 User Manual, Release 3.2.1

In Traits UI, these command buttons are specified by means of the View object’s buttons attribute, whose value is a
list of buttons to display. © Consider the following variation on Example 3:

Example 4: Using a View object with buttons

configure_traits_view_buttons.py —-—- Sample code to demonstrate

#

configure_traits()

from enthought.traits.api import HasTraits, Str, Int
from enthought.traits.ui.api import View, Item

from enthought.traits.ui.menu import OKButton,

class SimpleEmployee (HasTraits) :

first_name = Str
last_name = Str
department = Str

employee_number =
salary = Int

viewl = View (Item(name
Item (name
Item (name
buttons =

sam = SimpleEmployee ()

Str

"first_name’),
"last_name’),
"department’),

[OKButton, CancelButton])

sam.configure_traits (view=viewl)

CancelButton

The resulting window has the same content as before, but now two buttons are displayed at the bottom: OK and

Cancel:

B Edit prop... E“E

First name: |

Last name: |

Department: |

K ‘ Zancel

Figure 5.4: Figure 4: User interface for Example 4

There are six standard buttons defined by Traits UL Each of the standard buttons has matching a string alias. You can
either import and use the button names, or simply use their aliases:

6 Actually, the value of the buttons attribute is really a list of Action objects, from which GUI buttons are generated by Traits UL The Action

class is described in Actions.

86

Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Command button aliases

Button Name Button Alias
UndoButton ‘Undo’

ApplyButton ‘Apply’

RevertButton ‘Revert’

OKButton ‘OK’ (case sensitive!)
CancelButton ‘Cancel’

Alternatively, there are several pre-defined button lists that can be imported from enthought.traits.ui.menu and assigned
to the buttons attribute:

¢ OKCancelButtons = [OKButton, CancelButton]

* ModalButtons= [ApplyButton, RevertButton, OKButton, CancelButton, HelpButton
]

e LiveButtons = [UndoButton, RevertButton, OKButton, CancelButton, HelpButton]

Thus, one could rewrite the lines in Example 4 as follows, and the effect would be exactly the same:
from enthought.traits.ui.menu import OKCancelButtons

buttons = OKCancelButtons

The special constant NoButtons can be used to create a window or panel without command buttons. While this is the
default behavior, NoButtons can be useful for overriding an explicit value for buttons. You can also specify buttons
= [] to achieve the same effect. Setting the buttons attribute to an empty list has the same effect as not defining it at
all.

It is also possible to define custom buttons and add them to the buttons list; see Custom Command Buttons for details.

5.4. Customizing a View 87

Traits 3 User Manual, Release 3.2.1

5.4.3 Other View Attributes

Attributes of View, by category

Cat- Attributes Description
egory
Win- These attributes control the visual properties of the window
¢ dock . .
dow X itself, regardless of its content.
& * height
is- .
play * icon
* image
* item_theme
¢ label_theme
* resizable
* scrollable
* statusbar
* style
* title
* width
* X
Yy
Com- Traits Ul menus and toolbars are generally implemented in
¢ close_result . . .) '
mand « handl conjunction with custom Handlers; see Menus and Menu
andier Bars for details. The key_bindings attribute references the
* key_bindings . .
set of global key bindings for the view.
* menubar
¢ model_view
* on_apply
* toolbar
* updated
Con- . tent The content attribute is the top-level Group object for the
tent conten view. The object attribute is the object being edited. The
¢ drop_class . . .
imports and drop_class attributes control what objects can
¢ export .
. be dragged and dropped on the view.
* imports
¢ object
User hel The help attribute is a deprecated way to specify that the
help help d View has a Help button. Use the buttons attribute instead
ept (see Command Buttons: the buttons Attribute for details).
The help_id attribute is not used by Traits, but can be used
by a custom help handler.
Unique d The id attribute is used as a key to save user preferences
iden- ! about a view, such as customized size and position, so that
tifier they are restored the next time the view is opened. The value
of id must be unique across all Traits-based applications on a
system. If no value is specified, no user preferences are
saved for the view.
88 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

5.5 Advanced View Concepts

The preceding chapters of this Guide give an overview of how to use the View class to quickly construct a simple
window for a single HasTraits object. This chapter explores a number of more complex techniques that significantly
increase the power and versatility of the View object.

e Internal Views: Views can be defined as attributes of a HasTraits class; one class can have multiple views. View
attributes can be inherited by subclasses.

» External Views: A view can be defined as a module variable, inline as a function or method argument, or as an
attribute of a Handler.

* Ways of displaying Views: You can display a View by calling configure_traits() or edit_traits() on a HasTraits
object, or by calling the ui() method on the View object.

 View context: You can pass a context to any of the methods for displaying views, which is a dictionary of labels
and objects. In the default case, this dictionary contains only one object, referenced as ‘object’, but you can
define contexts that contain multiple objects.

e Include objects: You can use an Include object as a placeholder for view items defined elsewhere.

5.5.1 Internal Views

In the examples thus far, the View objects have been external. That is to say, they have been defined outside the model
(HasTraits object or objects) that they are used to display. This approach is in keeping with the separation of the two
concepts prescribed by the MVC design pattern.

There are cases in which it is useful to define a View within a HasTraits class. In particular, it can be useful to associate
one or more Views with a particular type of object so that they can be incorporated into other parts of the application
with little or no additional programming. Further, a View that is defined within a model class is inherited by any
subclasses of that class, a phenomenon called visual inheritance.

Defining a Default View

index:: default view, View; default

It is easy to define a default view for a HasTraits class: simply create a View attribute called traits_view for that class.
Consider the following variation on Example 3:

Example 5: Using configure_traits() with a default View object

default_traits_view.py —— Sample code to demonstrate the use of
‘traits_view’

from enthought.traits.api import HasTraits, Str, Int

from enthought.traits.ui.api import View, Item, Group

import enthought.traits.ui

class SimpleEmployee2 (HasTraits):
first_name = Str
last_name = Str
department = Str

employee_number = Str
salary = Int

5.5. Advanced View Concepts 89

Traits 3 User Manual, Release 3.2.1

traits_view =

(
Item(name = ’last_name’),
Item(name = ’'department’),
label = ’'Personnel profile’,

show_border =

sam = SimpleEmployee?2 ()

sam.configure_traits ()

View (Group (Item (name =

"first_name’),

True))

In this example, configure_traits() no longer requires a view keyword argument; the traits_view attribute is used by
default, resulting in the same display as in Figure 3:

E Edit proper... E][EJE|

Personnel profile -

sttname:]

Lastname:|

Department: J

Figure 5.5: Figure 5: User interface for Example 5

It is not strictly necessary to call this View attribute traits_view. If exactly one View attribute is defined for a HasTraits
class, that View is always treated as the default display template for the class. However, if there are multiple View
attributes for the class (as discussed in the next section), if one is named ‘traits_view’, it is always used as the default.

Defining Multiple Views Within the Model

Sometimes it is useful to have more than one pre-defined view for a model class. In the case of the SimpleEmployee
class, one might want to have both a “public information” view like the one above and an “all information” view. One
can do this by simply adding a second View attribute:

Example 6: Defining multiple View objects in a HasTraits class

multiple_views.py —-- Sample code to demonstrate the use of
multiple views

from enthought.traits.api import HasTraits,
from enthought.traits.ui.api import View,

import enthought.traits.ui

Int
Group

Str,
Item,

class SimpleEmployee3 (HasTraits):

first_name = Str
last_name = Str
department = Str

employee_number = Str

salary = Int

traits_view =

View (Group (Item (name =
Item (name =
Item (name =

"first_name’),
’last_name’),
"department’),

90

Chapter 5

. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

label = ’'Personnel profile’,
show_border = True))
all view = View (Group (Item(name = 'first_name’),

"last_name’),
"department’),

Item (name
Item (name

Item(name = ’'employee_number’),

Item(name = ’'salary’),

label = ’'Personnel database ' +
"entry’,

show_border = True))

sam = SimpleEmployee3 ()
sam.configure_traits/()
sam.configure_traits (view='all_view’)

As before, a simple call to configure_traits() for an object of this class produces a window based on the default View
(traits_view). In order to use the alternate View, use the same syntax as for an external view, except that the View
name is specified in single quotes to indicate that it is associated with the object rather than being a module-level
variable:

configure_traits (view='all_view’).

Note that if more than one View is defined for a model class, you must indicate which one is to be used as the default
by naming it traits_view. Otherwise, Traits Ul gives preference to none of them, and instead tries to construct
a default View, resulting in a simple alphabetized display as described in The View and Its Building Blocks. For this
reason, it is usually preferable to name a model’s default View traits_view even if there are no other Views; otherwise,
simply defining additional Views, even if they are never used, can unexpectedly change the behavior of the GUIL

5.5.2 Separating Model and View: External Views

In all the preceding examples in this guide, the concepts of model and view have remained closely coupled. In some
cases the view has been defined in the model class, as in Internal Views; in other cases the configure_traits() method
that produces a window from a View has been called from a HasTraits object. However, these strategies are simply
conveniences; they are not an intrinsic part of the relationship between model and view in Traits UI. This section
begins to explore how the Traits UI package truly supports the separation of model and view prescribed by the MVC
design pattern.

An external view is one that is defined outside the model classes. In Traits Ul, you can define a named View wherever
you can define a variable or class attribute. / A View can even be defined in-line as a function or method argument,
for example:

object.configure_traits(view=View (Group (Item (name="a’),
Item (name="Db’"),
Item (name="c’)))

However, this approach is apt to obfuscate the code unless the View is very simple.

Example 2 through Example 4 demonstrate external Views defined as variables. One advantage of this convention is
that the variable name provides an easily accessible “handle” for re-using the View. This technique does not, however,
support visual inheritance.

7 Note that although the definition of a View within a HasTraits class has the syntax of a trait attribute definition, the resulting View is not stored
as an attribute of the class.

5.5. Advanced View Concepts 91

Traits 3 User Manual, Release 3.2.1

A powerful alternative is to define a View within the controller (Handler) class that controls the window for that View.
8 This technique is described in Controlling the Interface: the Handler.

5.5.3 Displaying a View

Traits Ul provides three methods for creating a window or panel from a View object. The first two, configure_traits()
and edit_traits(), are defined on the HasTraits class, which is a superclass of all Traits-based model classes, as well as
of Handler and its subclasses. The third method, ui(), is defined on the View class itself.

configure_traits()

The configure_traits() method creates a standalone window for a given View object, i.e., it does not require an existing
GUI to run in. It is therefore suitable for building command-line functions, as well as providing an accessible tool for
the beginning Traits UI programmer.

The configure_traits() method also provides options for saving trait attribute values to and restoring them from a file.
Refer to the Traits API Reference for details.

edit_traits()

The edit_traits() method is very similar to configure_traits(), with two major exceptions. First, it is designed to run
from within a larger application whose GUI is already defined. Second, it does not provide options for saving data to
and restoring data from a file, as it is assumed that these operations are handled elsewhere in the application.

ui()

The View object includes a method called ui(), which performs the actual generation of the window or panel from the
View for both edit_traits() and configure_traits(). The ui() method is also available directly through the Traits UI API;
however, using one of the other two methods is usually preferable. °

The ui() method has five keyword parameters:
* kind
* context
* handler
* parent
* view_elements

The first four are identical in form and function to the corresponding arguments of edit_traits(), except that context is
not optional; the following section explains why.

The fifth argument, view_elements, is used only in the context of a call to ui() from a model object method, i.e.,
from configure_traits() or edit_traits(), Therefore it is irrelevant in the rare cases when ui() is used directly by client
code. It contains a dictionary of the named ViewElement objects defined for the object whose configure_traits() (or
edit_traits()) method was called..

8 Assuming there is one; not all GUIs require an explicitly defined Handler.
9 One possible exception is the case where a View object is defined as a variable (i.e., outside any class) or within a custom Handler, and is
associated more or less equally with multiple model objects; see Multi-Object Views.

92 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

5.5.4 The View Context

All three of the methods described in Displaying a View have a context parameter. This parameter can be a single
object or a dictionary of string/object pairs; the object or objects are the model objects whose traits attributes are to
be edited. In general a “context” is a Python dictionary whose keys are strings; the key strings are used to look up the
values. In the case of the context parameter to the ui() method, the dictionary values are objects. In the special case
where only one object is relevant, it can be passed directly instead of wrapping it in a dictionary.

When the ui() method is called from configure_traits() or edit_traits() on a HasTraits object, the relevant object is the
HasTraits object whose method was called. For this reason, you do not need to specify the context argument in most
calls to configure_traits() or edit_traits(). However, when you call the ui() method on a View object, you must specify
the context parameter, so that the ui() method receives references to the objects whose trait attributes you want to
modify.

So, if configure_traits() figures out the relevant context for you, why call ui() at all? One answer lies in multi-object
Views.

Multi-Object Views

A multi-object view is any view whose contents depend on multiple “independent” model objects, i.e., objects that
are not attributes of one another. For example, suppose you are building a real estate listing application, and want to
display a window that shows two properties side by side for a comparison of price and features. This is straightforward
in Traits UI, as the following example shows:

Example 7: Using a multi-object view with a context

multi_object_view.py —-—- Sample code to show multi-object view
with context

from enthought.traits.api import HasTraits, Str, Int, Bool
from enthought.traits.ui.api import View, Group, Item

Sample class
class House (HasTraits) :
address = Str

bedrooms = Int
pool = Bool
price = Int

View object designed to display two objects of class ’House’

comp_view = View (
Group (
Group (
Item(’hl.address’, resizable=True),
Item(’hl.bedrooms’),
Item("hl.pool”),
Item(’hl.price’),

show_border=True

) 4

Group (
Item(’h2.address’, resizable=True),
Item(’h2.bedrooms’),
Item(’h2.pool”),
Item(’h2.price’),

show_border=True

5.5. Advanced View Concepts 93

Traits 3 User Manual, Release 3.2.1

) 4

orientation

= "horizontal’
) 14
title = ’"House Comparison’
)
A pair of houses to demonstrate the View
housel = House (address="4743 Dudley Lane’,
bedrooms=3,
pool=False,
price=150000)
house2 = House (address=’"11604 Autumn Ridge’,
bedrooms=3,
pool=True,
price=200000)

...And the actual display command
housel.configure_traits (view=comp_view, context={’"hl’:housel,
"h2’ thouse2})

10

The resulting window has the desired appearance:

E House Comparison

Fi¥a s =C Al (743 Dudley Lane Address:]11504 Autumn Ridg
Bedrooms: 13 Bedrooms;]3
Poal: [Poal: v
Price: [150000 Price: (200000

Figure 5.6: Figure 6: User interface for Example 7

For the purposes of this particular example, it makes sense to create a separate Group for each model object, and to
use two model objects of the same class. Note, however, that neither is a requirement. Notice that the Item definitions
in Example 7 use the same type of extended trait attribute syntax as is supported for the on_trait_change() dynamic
trait change notification method. In fact, Item name attributes can reference any trait attribute that is reachable from
an object in the context. This is true regardless of whether the context contains a single object or multiple objects. For
example:

Item(’object.axle.chassis.serial_number’)

Because an Item can refer only to a single trait, do not use extended trait references that refer to multiple traits, since
the behavior of such references is not defined. Also, avoid extended trait references where one of the intermediate
objects could be None, because there is no way to obtain a valid reference from None.

Refer to the Traits User Manual, in the chapter on trait notification, for details of the extended trait name syntax.

10 1f the script were designed to run within an existing GUI, it would make sense to replace the last line with
comp_view.ui (context={"hl’: housel, 'h2’: house2}), since neither object particularly dominates the view. How-
ever, the examples in this Guide are designed to be fully executable from the Python command line, which is why configure_traits() was used
instead.

94 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

5.5.5 Include Objects

In addition to the Item and Group class, a third building block class for Views exists in Traits UI: the Include class.
For the sake of completeness, this section gives a brief description of Include objects and their purpose and usage.
However, they are not commonly used as of this writing, and should be considered unsupported pending redesign.

In essence, an Include object is a placeholder for a named Group or Item object that is specified outside the Group or
View in which it appears. For example, the following two definitions, taken together, are equivalent to the third:

Example 8: Using an Include object

This fragment...
my_view = View (Group (Item('a’),
Item('b’)),
Include (‘my_group’))

...plus this fragment...
my_group = Group (Item(’c’),
Item(’d"),
Item("e’))

#...are equivalent to this:
my_view = View (Group (Item(’a’),

Item('b")),
Group (Item('c’),
(rda")
("e”)

o
AN

rAr

Item ,
Item('e’))

This opens an interesting possibility when a View is part of a model class: any Include objects belonging to that
View can be defined differently for different instances or subclasses of that class. This technique is called view
parameterization.

5.6 Controlling the Interface: the Handler

Most of the material in the preceding chapters is concerned with the relationship between the model and view aspects of
the MVC design pattern as supported by Traits UL This chapter examines the third aspect: the controller, implemented
in Traits Ul as an instance of the Handler class. '!

A controller for an MVC-based application is essentially an event handler for GUI events, i.e., for events that are
generated through or by the program interface. Such events can require changes to one or more model objects (e.g.,
because a data value has been updated) or manipulation of the interface itself (e.g., window closure, dynamic interface
behavior). In Traits UI, such actions are performed by a Handler object.

In the preceding examples in this guide, the Handler object has been implicit: Traits Ul provides a default Handler that
takes care of a common set of GUI events including window initialization and closure, data value updates, and button
press events for the standard Traits UI window buttons (see Command Buttons: the buttons Attribute).

This chapter explains the features of the Traits UI Handler, and shows how to implement custom GUI behaviors by
building and instantiating custom subclasses of the Handler class. The final section of the chapter describes several
techniques for linking a custom Handler to the window or windows it is designed to control.

3 Except those implemented via the enabled_when, visible_when, and defined_when attributes of Items and Groups.

5.6. Controlling the Interface: the Handler 95

Traits 3 User Manual, Release 3.2.1

5.6.1 Backstage: Introducing the Ulinfo Object

Traits UI supports the MVC design pattern by maintaining the model, view, and controller as separate entities. A single
View object can be used to construct windows for multiple model objects; likewise a single Handler can handle GUI
events for windows created using different Views. Thus there is no static link between a Handler and any particular
window or model object. However, in order to be useful, a Handler must be able to observe and manipulate both its
corresponding window and model objects. In Traits Ul, this is accomplished by means of the Ullnfo object.

Whenever Traits Ul creates a window or panel from a View, a Ullnfo object is created to act as the Handler’s reference
to that window and to the objects whose trait attributes are displayed in it. Each entry in the View’s context (see 7he
View Context) becomes an attribute of the UlInfo object. !> For example, the Ullnfo object created in Example 7 has
attributes h1 and h2 whose values are the objects housel and house2 respectively. In Example I through Example 6,
the created UlInfo object has an attribute object whose value is the object sam.

Whenever a window event causes a Handler method to be called, Traits UI passes the corresponding Ullnfo object as
one of the method arguments. This gives the Handler the information necessary to perform its tasks.

5.6.2 Assigning Handlers to Views

In accordance with the MVC design pattern, Handlers and Views are separate entities belonging to distinct classes. In
order for a custom Handler to provide the control logic for a window, it must be explicitly associated with the View
for that window. The Traits Ul package provides three ways to accomplish this:

* Make the Handler an attribute of the View.
* Provide the Handler as an argument to a display method such as edit_traits().

* Define the View as part of the Handler.

Binding a Singleton Handler to a View

To associate a given custom Handler with all windows produced from a given View, assign an instance of the custom
Handler class to the View’s handler attribute. The result of this technique, as shown in Example 9 , is that the window
created by the View object is automatically controlled by the specified handler instance.

Linking Handler and View at Edit Time

It is also possible to associate a custom Handler with a specific window without assigning it permanently to the View.
Each of the three Traits UI window-building methods (the configure_traits() and edit_traits() methods of the HasTraits
class and the ui() method of the View class) has a handler keyword argument. Assigning an instance of Handler to
this argument gives that handler instance control only of the specific window being created by the method call. This
assignment overrides the View’s handler attribute.

Creating a Default View Within a Handler

You seldom need to associate a single custom Handler with several different Views or vice versa, although you can in
theory and there are cases where it is useful to be able to do so. In most real-life scenarios, a custom Handler is tailored
to a particular View with which it is always used. One way to reflect this usage in the program design is to define the
View as part of the Handler. The same rules apply as for defining Views within HasTraits objects; for example, a view
named ‘trait_view’ is used as the default view.

12 Other attributes of the Ullnfo object include a UI object and any trait editors contained in the window (see Introduction to Trait Editor
Factories and The Predefined Trait Editor Factories).

96 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

The Handler class, which is a subclass of HasTraits, overrides the standard configure_traits() and edit_traits() methods;
the subclass versions are identical to the originals except that the Handler object on which they are called becomes the
default Handler for the resulting windows. Note that for these versions of the display methods, the context keyword
parameter is not optional.

5.6.3 Handler Subclasses
Traits version 3.0 provides two Handler subclasses: ModelView and Controller. Both of these classes are designed to
simplify the process of creating an MVC-based application.
Both ModelView and Controller extend the Hander class by adding the following trait attributes:
* model: The model object for which this handler defines a view and controller.
* info: The Ullnfo object associated with the actual user interface window or panel for the model object.

The model attribute provides convenient access to the model object associated with either subclass. Normally, the
model attribute is set in the constructor when an instance of ModelView or Controller is created.

The info attribute provides convenient access to the Ullnfo object associated with the active user interface view for the
handler object. The info attribute is automatically set when the handler object’s view is created.

Both classes’ constructors accept an optional model parameter, which is the model object. They also can accept
metadata as keyword parameters.

class ModelView ([model = None, **metadata])
class Controller ([/model = None, **metadata])

The difference between the Model View and Controller classes lies in the context dictionary that each one passes to its
associated user interface, as described in the following sections.

Controller Class

The Controller class is normally used when implementing a standard MVC-based design, and plays the “controller”
role in the MVC design pattern. The “model” role is played by the object referenced by the Controller’s model
attribute; and the “view” role is played by the View object associated with the model object.

The context dictionary that a Controller object passes to the View’s ui() method contains the following entries:
* object: The Controller’s model object.
* controller: The Controller object itself.

Using a Controller as the handler class assumes that the model object contains most, if not all, of the data to be
viewed. Therefore, the model object is used for the object key in the context dictionary, so that its attributes can be
easily referenced with unqualified names (such as Item(‘name’)).

ModelView Class

The ModelView class is useful when creating a variant of the standard MVC design pattern. In this variant, the
ModelView subclass reformulates a number of trait attributes on it model object as properties on the ModelView,
usually to convert the model’s data into a format that is more suited to a user interface.

The context dictionary that a ModelView object passes to the View’s ui() method contains the following entries:
* object: The ModelView object itself.

* model: The ModelView’s model object.

5.6. Controlling the Interface: the Handler 97

Traits 3 User Manual, Release 3.2.1

In effect, the ModelView object substitutes itself for the model object in relation to the View object, serving both
the “controller” role and the “model” role (as a set of properties wrapped around the original model). Because the
ModelView object is passed as the context’s object, its attributes can be referenced by unqualified names in the View
definition.

5.6.4 Writing Handler Methods

If you create a custom Handler subclass, depending on the behavior you want to implement, you might override the
standard methods of Handler, or you might create methods that respond to changes to specific trait attributes.

Overriding Standard Methods

The Handler class provides methods that are automatically executed at certain points in the lifespan of the window
controlled by a given Handler. By overriding these methods, you can implement a variety of custom window behaviors.
The following sequence shows the points at which the Handler methods are called.

1. A Ullnfo object is created

2. The Handler’s init_info() method is called. Override this method if the handler needs access to viewable traits
on the Ullnfo object whose values are properties that depend on items in the context being edited.

3. The Ul object is created, and generates the actual window.
4. The init() method is called. Override this method if you need to initialize or customize the window.

1. The position() method is called. Override this method to modify the position of the window (if setting the x and
y attributes of the View is insufficient).

2. The window is displayed.

When Handler methods are called, and when to override them

Method Called When Override When?
apply(info) The user clicks the Apply button, and To perform additional processing at this point.
after the changes have been applied to the
context objects.
close(info, The user requests to close the window, To perform additional checks before destroying the
is_ok) clicking OK, Cancel, or the window window.
close button, menu, or icon.
closed(info, The window has been destroyed. To perform additional clean-up tasks.
is_ok)
revert(info) The user clicks the Revert button, or To perform additional processing.
clicks Cancel in a live window.
setattr(info, The user changes a trait attribute value To perform additional processing, such as keeping a
object, through the user interface. change history. Make sure that the overriding
name, value) method actually sets the attribute.
show_help(infp,The user clicks the Help button. To call a custom help handler in addition to or
con- instead of the global help handler, for this window.
trol=None)

98 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Reacting to Trait Changes

The setattr() method described above is called whenever any trait value is changed in the UI. However, Traits UI also
provides a mechanism for calling methods that are automatically executed whenever the user edits a particular trait.
While you can use static notification handler methods on the HasTraits object, you might want to implement behavior
that concerns only the user interface. In that case, following the MVC pattern dictates that such behavior should
not be implemented in the “model” part of the code. In keeping with this pattern, Traits UI supports “user interface
notification” methods, which must have a signature with the following format:

extended_traitname_changed (info)

This method is called whenever a change is made to the attribute specified by extended_traitname in the context of
the View used to create the window (see Multi-Object Views), where the dots in the extended trait reference have been
replaced by underscores. For example, for a method to handle changes on the salary attribute of the object whose
context key is ‘object’ (the default object), the method name should be object_salary_changed().

By contrast, a subclass of Handler for Example 7 might include a method called h2_price_changed() to be called
whenever the price of the second house is edited.

Note: These methods are called on window creation.
User interface notification methods are called when the window is first created.
To differentiate between code that should be executed when the window is first initialized and code that should be

executed when the trait actually changes, use the initialized attribute of the Ullnfo object (i.e., of the info argument):

def object_foo_changed(self, info):

if not info.initialized:
#code to be executed only when the window is
#created

else:
#code to be executed only when ’foo’ changes after
#window initialization}

#code to be executed in either case

The following script, which annotates its window’s title with an asterisk (‘*”) the first time a data element is updated,
demonstrates a simple use of both an overridden setattr() method and user interface notification method.

Example 9: Using a Handler that reacts to trait changes

handler_override.py -- Example of a Handler that overrides
setattr (), and that has a user interface
notification method

from enthought.traits.api import HasTraits, Bool
from enthought.traits.ui.api import View, Handler

class TC_ Handler (Handler) :
def setattr(self, info, object, name, value):
Handler.setattr(self, info, object, name, value)

info.object._updated = True

def object___updated_changed(self, info):
if info.initialized:

5.6. Controlling the Interface: the Handler 99

Traits 3 User Manual, Release 3.2.1

info.ui.title += "x"

class TestClass (HasTraits):

bl = Bool
b2 = Bool
b3 = Bool

_updated = Bool (False)

viewl = View('bl’, ’'b2’, "b3",
title="Alter Title",
handler=TC_Handler (),
buttons = ["OK’, ’'Cancel’])

tc = TestClass()
tc.configure_traits (view=viewl)

Figure 5.7: Figure 7: Before and after views of Example 9

Implementing Custom Window Commands

Another use of a Handler is to define custom window actions, which can be presented as buttons, menu items, or
toolbar buttons.

Actions

In Traits UI, window commands are implemented as instances of the Action class. Actions can be used in command
buttons, menus, and toolbars.

Suppose you want to build a window with a custom Recalculate action. Suppose further that you have defined a
subclass of Handler called MyHandler to provide the logic for the window. To create the action:

1. Add a method to MyHandler that implements the command logic. This method can have any name (e.g.,
do_recalc()), but must accept exactly one argument: a UlInfo object.

2. Create an Action instance using the name of the new method, e.g.:

recalc = Action(name = "Recalculate",
action = "do_recalc")

Custom Command Buttons

The simplest way to turn an Action into a window command is to add it to the buttons attribute for the View. It appears
in the button area of the window, along with any standard buttons you specify.

1. Define the handler method and action, as described in Actions.

2. Include the new Action in the buttons attribute for the View:

View (#view contents,
...,
buttons = [OKButton, CancelButton, recalc])

100 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Menus and Menu Bars

Another way to install an Action such as recalc as a window command is to make it into a menu option.
1. Define the handler method and action, as described in Actions.
2. If the View does not already include a MenuBar, create one and assign it to the View’s menubar attribute.
3. If the appropriate Menu does not yet exist, create it and add it to the MenuBar.
4. Add the Action to the Menu.

These steps can be executed all at once when the View is created, as in the following code:

View (#view contents,
oo,
menubar = MenuBar (
Menu (my_action,
name = ’'My Special Menu’)))
Toolbars

A third way to add an action to a Traits View is to make it a button on a toolbar. Adding a toolbar to a Traits View is
similar to adding a menu bar, except that toolbars do not contain menus; they directly contain actions.

1. Define the handler method and the action, as in Actions, including a tooltip and an image to display on the
toolbar. The image must be a Pyface ImageResource instance; if a path to the image file is not specified, it is
assumed to be in an images subdirectory of the directory where ImageResource is used:

From enthought.pyface.api import ImageResource

recalc = Action(name = "Recalculate",
action = "do_recalc",
toolip = "Recalculate the results",
image = ImageResource ("recalc.png"))

2. If the View does not already include a ToolBar, create one and assign it to the View’s toolbar attribute.
3. Add the Action to the ToolBar.

As with a MenuBar, these steps can be executed all at once when the View is created, as in the following code:

View (#view contents,
...,
toolbar = ToolBar(my_action))

5.7 Traits Ul Themes

Beginning in Traits 3.0, Traits UI supports using themes to customize the appearance of user interfaces, by applying
graphical elements extracted from simple images. For example, Figure 8 shows an unthemed Traits user interface.

Figure 9 shows the same user interface with a theme applied to it.

Figure 10 shows the same user interface with a different theme applied.

5.7. Traits Ul Themes 101

Traits 3 User Manual, Release 3.2.1

B unthemed Traits Ul |:| |E||g|

An Unthemed Label
Mame: | |
age: 1 U a0[: |
Weight: |184.5 |
Gender: | Male v

Figure 5.8: Figure 8: Unthemed Traits user interface

Figure 5.9: Figure 9: Themed Traits user interface

B Themed Traits Ul M=

‘ Bill Johnson

Figure 5.10: Figure 10: Theme Traits user interface with alternate theme

102 Chapter 5. Traits Ul User Guide

oW ow =

Traits 3 User Manual, Release 3.2.1

5.7.1 Theme Data

All of the data used by Traits UI for themes is in the form of simple images, a few examples of which are shown in
Figure 11:

Figure 5.11: Figure 11: Theme images

Any type of JPEG or Portable Network Graphics (PNG) file is supported. In particular, PNG files with alpha infor-
mation allow smooth compositing of multiple theme images. The first image in Figure 11 is an example of a PNG
file containing alpha information. That is, the interior of the rectangle is not gray, but transparent, with a thin alpha
gradient shadow around its edges.

5.7.2 Themeable Traits Ul Elements

Theme information can be applied to the following classes of Traits Ul objects:
* Group
e [tem
e View

All of these classes have item_theme and label_theme attributes, which specify the themes for an editor and its label,
respectively; the Group class also has a group_theme attribute, which specifies the theme for the group itself. These
attributes are defined to be Theme traits, which accept values which are either PyFace ImageResource objects, or
strings that specify an image file to use. In the case of string values, no path information need be included. The path
to the image file is assumed to be the images subdirectory or images . zip file located in the same directory as the
source file containing the string. '* However, if the string begins with an ‘@’ (at-sign), the string is assumed to be a
reference to an image in the default image library provided with PyFace. '*

The item_theme and label_theme attributes are transferred via containment. That is, if an Item object has an
item_theme defined, that value is used for the Item object’s editor. If item_theme is not defined on the Item ob-
ject, the item_theme value from the containing Group is used, and so on up to the item_theme value on containing
View, if necessary. Therefore, it is possible to set the item and label themes for a whole user interface at the view level.

The group_theme attribute value is not transferred through containment, but nested groups automatically visually
inherit the theme of the containing group. You can, of course, explicitly specify theme information at each level of a
nested group hierarchy.

5.7.3 Adding Themes to a Ul

To add themes to a Traits user interface, you add the theme-related attributes to the View, Group, and Item definitions.
Example 10 shows the code for the unthemed user interface shown in Figure 8.

Example 10: Traits Ul without themes

unthemed.py —-- Example of a Traits UI without themes

from enthought.traits.api import HasTraits, Str, Range, Float, Enum
from enthought.traits.ui.api import View, Group, Item, Label

class Test (HasTraits):

13 This is very similar to the way that PyFace ImageResource objects work when no search path is specified.
14 PyFace is provided by the enthought.pyface package in the Traits GUI project (not to be confused with the Traits UI package, en-
thought.traits.ui, the subject of this document.)

5.7. Traits Ul Themes 103

20

21

22

23

24

25

26

27

28

29

30

31

Traits 3 User Manual, Release 3.2.1

name = Str
age = Range(1, 100)
weight = Float
gender = Enum("Male’, ’'Female’)
view = View (
Group (
Label ("An Unthemed Label’
Item('"name’”),
Item("age’),
Item("weight’),
Item("gender’)
) 14
title = ’'Unthemed Traits UI’,
)
Test () .configure_traits ()

),

Example 11 shows the code for the user interface shown in Figure 9, which is essentially the same as in Example 10,

but with theme data added.

Example 11: Traits Ul with themes

themed.py —-—- Example of a Traits UI with themes

from enthought.traits.api import HasTraits,
from enthought.traits.ui.api import View,

Str, Enum

Group,

Range,
Item,

Float,
Label

from enthought.traits.ui.wx.themed_text_editor import \

ThemedTextEditor

class Test (HasTraits):
Str

age = Range(1,
weight = Float
gender = Enum(

name =
100)
"Male’, ’'Female’)
view = View (
Group (
Group (
Label (
Item(
Item (
Item(
Item(),
group_theme = ’"(@GDO’

"name’),
"age’),
"weight’,
"gender’

)y

group_theme
item_theme
label_theme =

I@GI’
"@BOB’,
" QBEA’

)

title = "Themed Traits UI’,

Test () .configure_traits ()

"A Themed Label’,

"QGF6’

)y

editor=ThemedTextEditor()),

104

Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

This example uses the following theme-related items:
e The group_theme, item_theme, and label_theme attributes are explicitly specified (lines 24 to 26).

» The Label constructor (line 17)takes an optional second argument (in this case ‘@GF6°), which specifies the
item_theme information for the Label object. (Label is a subclass of Item.)

* The item for weight (line 20) uses a ThemedTextEditor factory; this isn’t strictly necessary, but illustrates the
use of a themed editor factory. For more information on themed editor factories, refer to “Extra” Trait Editor
Factories, and to the Traits API Reference.

* The example contains an extra Group level (line 16), and shows the results of two nested group_theme values
(‘@G’ and ‘@GDO0*). The outermost group_theme value (‘@G’) specifies the gray background, while the
innermost group_theme value (‘@GDO°) specifies the light gray rectangle drawn over it. This combination
demonstrates the automatic compositing of themes, since the rounded rectangle is transparent except where the
light gray band appears.

¢ The theme data strings use the ‘@’ prefix to reference images from the default image library.

5.8 Introduction to Trait Editor Factories

The preceding code samples in this User Guide have been surprisingly simple considering the sophistication of the
interfaces that they produce. In particular, no code at all has been required to produce appropriate widgets for the
Traits to be viewed or edited in a given window. This is one of the strengths of Traits Ul: usable interfaces can be
produced simply and with a relatively low level of UI programming expertise.

An even greater strength lies in the fact that this simplicity does not have to be paid for in lack of flexibility. Where
a novice Traits Ul programmer can ignore the question of widgets altogether, a more advanced one can select from
a variety of predefined interface components for displaying any given Trait. Furthermore, a programmer who is
comfortable both with Traits UI and with UI programming in general can harness the full power and flexibility of the
underlying GUI toolkit from within Traits Ul

The secret behind this combination of simplicity and flexibility is a Traits Ul construct called a trait editor factory.
A trait editor factory encapsulates a set of display instructions for a given traif type, hiding GUI-toolkit-specific code
inside an abstraction with a relatively straightforward interface. Furthermore, every predefined trait type in the Traits
package has a predefined trait editor factory that is automatically used whenever the trait is displayed, unless you
specify otherwise.

Consider the following script and the window it creates:
Example 12: Using default trait editors

default_trait_editors.py —-— Example of using default
trait editors

from enthought.traits.api import HasTraits, Str, Range, Bool
from enthought.traits.ui.api import View, Item

class Adult (HasTraits):
first_name = Str
last_name = Str
age = Range(21,99)
registered_voter = Bool

5.8. Introduction to Trait Editor Factories 105

mailto:'@GF6
mailto:'@GD0
mailto:'@GD0

Traits 3 User Manual, Release 3.2.1

name='first_name’),
name='last_name’),
name='"age’),

traits_view = View(Item
Item
Item
Item

name=’'registered_voter’))

alice = Adult (first_name=’'Alice’,
last_name=’Smith’,
age=42,
registered_voter=True)

alice.configure_traits/()

B Edit properties
Firsk name:

Last name: |Smith

fge: 21 — F——— 93 |4z

Registered voter: v

Figure 5.12: Figure 12: User interface for Example 12

Notice that each trait is displayed in an appropriate widget, even though the code does not explicitly specify any
widgets at all. The two Str traits appear in text boxes, the Range is displayed using a combination of a text box and a
slider, and the Bool is represented by a checkbox. Each implementation is generated by the default trait editor factory
(TextEditor, RangeEditor and BooleanEditor respectively) associated with the trait type.

Traits Ul is by no means limited to these defaults. There are two ways to override the default representation of a trait
attribute in a Traits Ul window:

» Explicitly specifying an alternate trait editor factory
» Specifying an alternate style for the editor generated by the factory

The remainder of this chapter examines these alternatives more closely.

5.8.1 Specifying an Alternate Trait Editor Factory

As of this writing the Traits UI package includes a wide variety of predefined trait editor factories, which are de-
scribed in Basic Trait Editor Factories and Advanced Trait Editors. Some additional editor factories are specific to the
wxWidgets toolkit and are defined in one of the following packages:

* enthought.traits.ui.wx

* enthought.traits.ui.wx.extra

* enthought.traits.ui.wx.extra.windows (specific to Microsoft Windows)
These editor factories are described in “Extra” Trait Editor Factories.
For a current complete list of editor factories, refer to the Traits API Reference.

Other packages can define their own editor factories for their own traits. For example, enthought.kiva.api.KivaFont
uses a KivaFontEditor() and enthought.enable2.traits.api. RGBAColor uses an RGBAColorEditor().

106 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

For most predefined trait types (see Traits User Manual), there is exactly one predefined trait editor factory suitable for
displaying it: the editor factory that is assigned as its default. '> There are exceptions, however; for example, a Str trait
defaults to using a TextEditor, but can also use a CodeEditor or an HTMLEditor. A List trait can be edited by means
of ListEditor, TableEditor (if the List elements are HasTraits objects), CheckListEditor or SetEditor. Furthermore, the
Traits Ul package includes tools for building additional trait editors and factories for them as needed.

To use an alternate editor factory for a trait in a Traits UI window, you must specify it in the View for that window.
This is done at the Item level, using the editor keyword parameter. The syntax of the specification is ‘editor =
editor_factory ()’. (Use the same syntax for specifying that the default editor should be used, but with certain
keyword parameters explicitly specified; see Initializing Editors).

For example, to display a Str trait called my_string using the default editor factory (TextEditor()), the View might
contain the following Item:

Item (name="my_string’)

The resulting widget would have the following appearance:
Figure 5.13: Figure 13: Default editor for a Str trait

To use the HTMLEditor factory instead, add the appropriate specification to the Item:

Item(name="my_string’, editor=HTMLEditor ())

The resulting widget appears as in Figure 14:
Figure 5.14: Figure 14: Editor generated by HTMLEditor()

Note: Traits UI does not check editors for appropriateness.

Traits UI does not police the edifor argument to ensure that the specified editor is appropriate for the trait being
displayed. Thus there is nothing to prevent you from trying to, say, display a Float trait using ColorEditor(). The
results of such a mismatch are unlikely to be helpful, and can even crash the application; it is up to the programmer
to choose an editor sensibly. The Predefined Trait Editor Factories is a useful reference for selecting an appropriate
editor for a given task.

It is possible to specify the trait editor for a trait in other ways:

* You can specify a trait editor when you define a trait, by passing the result of a trait editor factory as the editor
keyword parameter of the callable that creates the trait. However, this approach commingles the view of a trait
with its model.

* You can specify the editor attribute of a TraitHandler object. This approach commingles the view of a trait with
its controller.

Use these approaches very carefully, if at all, as they muddle the MV C design pattern.

Initializing Editors

Many of the Traits Ul trait editors can be used “straight from the box™ as in the example above. There are some editors,
however, that must be initialized in order to be useful. For example, a checklist editor (from CheckListEditor()) and a
set editor (from SetEditor()) both enable the user to edit a List attribute by selecting elements from a specified set; the
contents of this set must, of course, be known to the editor. This sort of initialization is usually performed by means
of one or more keyword arguments to the editor factory, for example:

15 Appendix II contains a table of the predefined trait types in the Traits package and their default trait editor types.

5.8. Introduction to Trait Editor Factories 107

Traits 3 User Manual, Release 3.2.1

Item(name="my_list’,editor=CheckListEditor (values=["optl","opt2", "opt3"]))

The descriptions of trait editor factories in The Predefined Trait Editor Factories include a list of required and optional
initialization keywords for each editor.

5.8.2 Specifying an Editor Style

In Traits Ul any given trait editor can be generated in one or more of four different styles: simple, custom, text or
readonly. These styles, which are described in general terms below, represent different “flavors” of data display, so
that a given trait editor can look completely different in one style than in another. However, different trait editors
displayed in the same style (usually) have noticeable characteristics in common. This is useful because editor style,
unlike individual editors, can be set at the Group or View level, not just at the Item level. This point is discussed
further in Using Editor Styles.

The ‘simple’ Style

The simple editor style is designed to be as functional as possible while requiring minimal space within the window.
In simple style, most of the Traits Ul editors take up only a single line of space in the window in which they are
embedded.

In some cases, such as the text editor and Boolean editor (see Basic Trait Editor Factories), the single line is fully
sufficient. In others, such as the (plain) color editor and the enumeration editor, a more detailed interface is required;
pop-up panels, drop-down lists, or dialog boxes are often used in such cases. For example, the simple version of the
enumeration editor for the wxWidgets toolkit looks like this:

Part number: ¥

Figure 5.15: Figure 15: Simple style of enumeration editor

However, when the user clicks on the widget, a drop-down list appears:

Part number: | A-495 W

Figure 5.16: Figure 16: Simple enumeration editor with expanded list

The simple editor style is most suitable for windows that must be kept small and concise.

The ‘custom’ Style

The custom editor style generally generates the most detailed version of any given editor. It is intended to provide
maximal functionality and information without regard to the amount of window space used. For example, in the
wxWindows toolkit, the custom style the enumeration editor appears as a set of radio buttons rather than a drop-down
list:

108 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

®a45 Or1228 O71518
Oads O1517

Part number:

Figure 5.17: Figure 17: Custom style of enumeration editor

In general, the custom editor style can be very useful when there is no need to conserve window space, as it enables
the user to see as much information as possible without having to interact with the widget. It also usually provides the
most intuitive interface of the four.

Note that this style is not defined explicitly for all trait editor implementations. If the custom style is requested for an
editor for which it is not defined, the simple style is generated instead.

The ‘text’ Style

The text editor style is the simplest of the editor styles. When applied to a given trait attribute, it generates a text
representation of the trait value in an editable box. Thus the enumeration editor in text style looks like the following:

Part numbet
Figure 5.18: Figure 18: Text style of enumeration editor

For this type of editor, the end user must type in a valid value for the attribute. If the user types an invalid value, the
validation method for the attribute (see Traits User Manual) notifies the user of the error (for example, by shading the
background of the text box red).

The text representation of an attribute to be edited in a text style editor is created in one of the following ways, listed
in order of priority:

1. The function specified in the format_func attribute of the Item (see 7he Item Object), if any, is called on the
attribute value.

2. Otherwise, the function specified in the format_func parameter of the trait editor factory, if any, is called on the
attribute value.

3. Otherwise, the Python-style formatting string specified in the format_str attribute of the Item (see The Item
Object), if any, is used to format the attribute value.

4. The Python-style formatting string specified in the format_str parameter of the trait editor factory, if any, is used
to format the attribute value.

5. Otherwise, the Python str() function is called on the attribute value.

The ‘readonly’ style

The readonly editor style is usually identical in appearance to the text style, except that the value appears as static text
rather than in an editable box:

This editor style is used to display data values without allowing the user to change them.

5.8. Introduction to Trait Editor Factories 109

20

21

22

23

24

25

26

Traits 3 User Manual, Release 3.2.1

Part nurnbser: A-495

Figure 5.19: Figure 19: Read-only style of enumeration editor

Using Editor Styles
As discussed in Contents of a View and Customizing a View, the Item, Group and View objects of Traits UI all have a
style attribute. The style of editor used to display the Items in a View is determined as follows:

1. The editor style used to display a given Item is the value of its style attribute if specifically assigned. Otherwise
the editor style of the Group or View that contains the Item is used.

2. The editor style of a Group is the value of its style attribute if assigned. Otherwise, it is the editor style of the
Group or View that contains the Group.

3. The editor style of a View is the value of its style attribute if specified, and ‘simple’ otherwise.

In other words, editor style can be specified at the Item, Group or View level, and in case of conflicts the style of the
smaller scope takes precedence. For example, consider the following script:

Example 13: Using editor styles at various levels
mixed styles.py —— Example of using editor styles at

various levels

from enthought.traits.api import HasTraits, Str, Enum
from enthought.traits.ui.api import View, Group, Item

class MixedStyles (HasTraits):

first_name = Str
last_name = Str
department = Enum("Business", "Research", "Admin")

position_type = Enum("Full-Time",
"Part-Time",
"Contract")

traits_view = View (Group (Item (name=’'first_name’),
Item (name=’'last_name’),
Group (Item(name='department’),
Item(name='position_type’,
style='custom’),
style="simple’)),
title='Mixed Styles’,
style='readonly’)

ms = MixedStyles (first_name=’Sam’, last_name=’Smith’)
ms.configure_traits()

Notice how the editor styles are set for each attribute:
* position_type at the Item level (lines 19-20)

* department at the Group level (lines 18 and 21)

110 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

e first_name and last_name at the View level (lines 16, 17, and 23)

The resulting window demonstrates these precedence rules:

E Mixed Styles E|@[z|

First narme: Sam
Last name: Smith

Department:

Position bype! & Full-Time ¢ Part-Time ¢ Conbract

Figure 5.20: Figure 20: User interface for Example 13

5.9 The Predefined Trait Editor Factories

This chapter contains individual descriptions of the predefined trait editor factories provided by Traits UI. Most of these
editor factories are straightforward and can be used easily with little or no expertise on the part of the programmer or
end user; these are described in Section 10.1. Section 10.2 (on page 91) covers a smaller set of specialized editors that
have more complex interfaces or that are designed to be used along with complex editors.

Note: Examples are toolkit-specific.

The exact appearance of the editors depends on the underlying GUI toolkit. The screenshots and descriptions in this
chapter are based on wxWindows. Another supported GUI toolkit is Qt, from TrollTech.

Rather than trying to memorize all the information in this chapter, you might skim it to get a general idea of the
available trait editors and their capabilities, and to use it as a reference thereafter.

5.9.1 Basic Trait Editor Factories

The editor factories described in the following sections are straightforward to use. You can pass the editor object
returned by the editor factory as the value of the editor keyword parameter when defining a trait.

ArrayEditor()

Suitable for 2-D Array, 2-D CArray
Default for Array, CArray (if 2-D)
Optional parameter width

The editors generated by ArrayEditor() provide text fields (or static text for the read-only style) for each cell of a two-
dimensional Numeric array. Only the simple and read-only styles are supported by the wxWidgets implementation.
You can specify the width of the text fields with the width parameter.

Figure 5.21: Figure 21: Array editors

The following code generates the editors shown in Figure 21.

5.9. The Predefined Trait Editor Factories 111

Traits 3 User Manual, Release 3.2.1

Example 14: Demonstration of array editors

array_editor.py —-- Example of using array editors

import numpy as np
from enthought.traits.api import HasPrivateTraits, Array
from enthought.traits.ui.api \
import View, ArrayEditor, Item
from enthought.traits.ui.menu import NoButtons

class ArrayEditorTest (HasPrivateTraits):

three = Array(np.int, (3,3))
four = Array(np.float,
(4,4),
editor = ArrayEditor (width = -50))

view = View(Item(’three’, label=’'3x3 Integer’),

ror
J—

Item(’three’,
label="Integer Read-only’,
style='"readonly’),

ror
— 7

Item(’ four’, label=’'4x4 Float’),

ror
4

Item(’ four’,
label="Float Read-only’,
style='"readonly’),

buttons = NoButtons,
resizable = True)
if _ name_ == '_ _main_ ’:
ArrayEditorTest () .configure_traits ()

BooleanEditor()

Suitable for Bool, CBool
Default for Bool, CBool
Optional parameters mapping

BooleanEditor is one of the simplest of the built-in editor factories in the Traits UI package. It is used exclusively to
edit and display Boolean (i.e, True/False) traits. In the simple and custom styles, it generates a checkbox. In the text
style, the editor displays the trait value (as one would expect) as the strings True or False. However, several variations
are accepted as input:

e ‘"True’’
e T

* Yes

e "False’”’

112 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

* No
°n

The set of acceptable text inputs can be changed by setting the BooleanEditor() parameter mapping to a dictionary
whose entries are of the form str: val, where val is either True or False and str is a string that is acceptable as text
input in place of that value. For example, to create a Boolean editor that accepts only yes and no as appropriate text
values, you might use the following expression:

editor=BooleanEditor (mapping={"yes":True, "no":False})

Note that in this case, the strings True and False would not be acceptable as text input.

Figure 22 shows the four styles generated by BooleanEditor().

Sirnple: v

Cuskarn: v

Texk: |True

ReadCnly: |True

Figure 5.22: Figure 22: Boolean editor styles

ButtonEditor()

Suitable for Button, Event, ToolbarButton
Default for Button, ToolbarButton
Optional parameters image, label, orientation, style, value, view, width_padding

The ButtonEditor() factory is designed to be used with an Event or Button '® trait. When a user clicks a button editor,
the associated event is fired. Because events are not printable objects, the text and read-only styles are not implemented
for this editor. The simple and custom styles of this editor are identical.

Figure 5.23: Figure 23: Button editor styles

By default, the label of the button is the name of the Button or Event trait to which it is linked. I7 However, this label
can be set to any string by specifying the label parameter of ButtonEditor() as that string.

You can specify a value for the trait to be set to, using the value parameter. If the trait is an Event, then the value is not
stored, but might be useful to an event listener.

CheckListEditor()

Suitable for List

Default for (none)

16 Tn Traits, a Button and an Event are essentially the same thing, except that Buttons are automatically associated with button editors.
17 Traits UI makes minor modifications to the name, capitalizing the first letter and replacing underscores with spaces, as in the case of a default
Item label (see The View Object).

5.9. The Predefined Trait Editor Factories 113

Traits 3 User Manual, Release 3.2.1

Optional parameters cols, name, values

The editors generated by the CheckListEditor() factory are designed to enable the user to edit a List trait by selecting
elements from a “master list”, i.e., a list of possible values. The list of values can be supplied by the trait being edited,
or by the values parameter.

The values parameter can take either of two forms:

e A list of strings

* A list of tuples of the form (element, label), where element can be of any type and label is a string.
In the latter case, the user selects from the labels, but the underlying trait is a List of the corresponding element values.
Alternatively, you can use the name parameter to specify a trait attribute containing the label strings for the values.

The custom style of editor from this factory is displayed as a set of checkboxes. By default, these checkboxes are
displayed in a single column; however, you can initialize the cols parameter of the editor factory to any value between
1 and 20, in which case the corresponding number of columns is used.

The simple style generated by CheckListEditor() appears as a drop-down list; in this style, only one list element can
be selected, so it returns a list with a single item. The text and read-only styles represent the current contents of
the attribute in Python-style text format; in these cases the user cannot see the master list values that have not been
selected.

The four styles generated by CheckListEditor() are shown in Figure 24. Note that in this case the cols parameter has
been set to 4.

Figure 5.24: Figure 24: Checklist editor styles

CodeEditor()

Suitable for Code, Str, String
Default for Code
Optional parameters auto_set

The purpose of a code editor is to display and edit Code traits, though it can be used with the Str and String trait
types as well. In the simple and custom styles (which are identical for this editor), the text is displayed in numbered,
non-wrapping lines with a horizontal scrollbar. The text style displays the trait value using a single scrolling line with
special characters to represent line breaks. The read-only style is similar to the simple and custom styles except that
the text is not editable.

The auto_set keyword parameter is a Boolean value indicating whether the trait being edited should be updated with
every keystroke (True) or only when the editor loses focus, i.e., when the user tabs away from it or closes the window
(False). The default value of this parameter is True.

ColorEditor()

Suitable for Color
Default for Color
Optional parameters mapped

The editors generated by ColorEditor() are designed to enable the user to display a Color trait or edit it by selecting a
color from the palette available in the underlying GUI toolkit. The four styles of color editor are shown in Figure 26.

114 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Simple:

%impurt SY¥S
%sys.print{ hello worldd!™)

8 |

¥

Cuskom:

}ﬁﬁmurt =R ti=]
-

é@éﬁsys print{ "hello world!™

¥

Texk:

|in'||:u:|rt sws O Osys, print("hela warld!™)

Readonly:

;’?f%j.lmurt sVYS

%sys print{ "hkello worldd! ™)

==

[)

Figure 5.25: Figure 25: Code editor styles

Simple;

Texk:

- - %ﬂl‘

ReadCnly;

Figure 5.26: Figure 26: Color editor styles

5.9. The Predefined Trait Editor Factories

115

Traits 3 User Manual, Release 3.2.1

In the simple style, the editor appears as a text box whose background is a sample of the currently selected color. The
text in the box is either a color name or a tuple of the form (r, g, b) where r, g, and b are the numeric values of the red,
green and blue color components respectively. (Which representation is used depends on how the value was entered.)
The text value is not directly editable in this style of editor; instead, clicking on the text box displays a pop-up panel
similar in appearance and function to the custom style.

The custom style includes a labeled color swatch on the left, representing the current value of the Color trait, and a
palette of common color choices on the right. Clicking on any tile of the palette changes the color selection, causing
the swatch to update accordingly. Clicking on the swatch itself causes a more detailed, platform-specific interface to
appear in a dialog box, such as is shown in Figure 27.

B asic colors:

W Tl NN
HMTEEEN
ERNNEEEEE
HENEEEEEN
AN EEEEEN
HEEEENTE

Custarn colors:

| 0§ 5 NN N

Hue:lﬂl Hed:El
]_“T_HI_T'—T—T—]HTﬂ Sat: Green:

Define Cuztom Colors > ColorlSolid |\ @ Elue: @
| k. Cancel Add to Cugtom Colors
[J | | [|

Figure 5.27: Figure 27: Custom color selection dialog box for Microsoft Windows XP

The text style of editor looks exactly like the simple style, but the text box is editable (and clicking on it does not open
a pop-up panel). The user must enter a recognized color name or a properly formatted (r, g, b) tuple.

The read-only style displays the text representation of the currently selected Color value (name or tuple) on a
minimally-sized background of the corresponding color.

For advanced users: The mapped keyword parameter of ColorEditor() is a Boolean value indicating whether the trait
being edited has a built-in mapping of user-oriented representations (e.g., strings) to internal representations. Since
ColorEditor() is generally used only for Color traits, which are mapped (e.g., ‘cyan’ to wx.Colour(0,255,255)), this
parameter defaults to True and is not of interest to most programmers. However, it is possible to define a custom
color trait that uses ColorEditor() but is not mapped (i.e., uses only one representation), which is why the attribute is
available.

CompoundEditor()

Suitable for special
Default for “compound” traits

Optional parameters auto_set

116 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

An editor generated by CompoundEditor() consists of a combination of the editors for trait types that compose the
compound trait. The widgets for the compound editor are of the style specified for the compound editor (simple,
custom, etc.). The editors shown in Figure 28 are for the following trait, whose value can be an integer between 1 and
6, or any of the letters ‘a’ through ‘f’:

compound_trait = Trait(1, Range(1, 6), 'a’, 'b’", 'c’, 7d", 'e", "£f")

Figure 5.28: Figure 28: Example compound editor styles

The auto_set keyword parameter is a Boolean value indicating whether the trait being edited should be updated with
every keystroke (True) or only when the editor loses focus, i.e., when the user tabs away from it or closes the window
(False). The default value of this parameter is True.

DefaultOverride()

Suitable for (any)
Default for (none)

The DefaultOverride() is a factory that takes the trait’s default editor and customizes it with the specified parameters.
This is useful when a trait defines a default editor using some of its data, e.g. Range or Enum, and you want to tweak
some of the other parameters without having recreate that data.

For example, the default editor for Range(low=0, high=1500) has ‘1500" as the upper label. To change it to ‘Max’

instead, use:

View (Item(’'my_range’, editor=DefaultOverride (high_label="Max’))

DirectoryEditor()

Suitable for Directory
Default for Directory

A directory editor enables the user to display a Directory trait or set it to some directory in the local system hierarchy.
The four styles of this editor are shown in Figure 29.

Figure 5.29: Figure 29: Directory editor styles

In the simple style, the current value of the trait is displayed in a combo box to the left of a button labeled ‘... The
user can type a new path directly into the text box, select a previous value from the droplist of the combo box, or use
the button to bring up a directory browser panel similar to the custom style of editor.

When the user selects a directory in this browser, the panel collapses, and control is returned to the original editor
widget, which is automatically populated with the new path string.

The user can also drag and drop a directory object onto the simple style editor.

The custom style displays a directory browser panel, in which the user can expand or collapse directory structures, and
click a folder icon to select a directory.

The text style of editor is simply a text box into which the user can type a directory path. The ‘readonly’ style is
identical to the text style, except that the text box is not editable.

No validation is performed on Directory traits; the user must ensure that a typed-in value is in fact an actual directory
on the system.

5.9. The Predefined Trait Editor Factories 117

Traits 3 User Manual, Release 3.2.1

EnumEditor()

Suitable for Enum, Any

Default for Enum

Required parameters for non-Enum traits: values or name
Optional parameters cols, evaluate, mode

The editors generated by EnumEditor() enable the user to pick a single value from a closed set of values.
Figure 5.30: Figure 30: Enumeration editor styles

The simple style of editor is a drop-down list box.
The custom style is a set of radio buttons. Use the cols parameter to specify the number of columns of radio buttons.

The text style is an editable text field; if the user enters a value that is not in enumerated set, the background of the
field turns red, to indicate an error. You can specify a function to evaluate text input, using the evaluate parameter.

The read-only style is the value of the trait as static text.

If the trait attribute that is being edited is not an enumeration, you must specify either the trait attribute (with the name
parameter), or the set of values to display (with the values parameter). The name parameter can be an extended trait
name. The values parameter can be a list, tuple, or dictionary, or a “mapped” trait.

By default, an enumeration editor sorts its values alphabetically. To specify a different order for the items, give it a
mapping from the normal values to ones with a numeric tag. The enumeration editor sorts the values based on the
numeric tags, and then strips out the tags.

Example 15: Enumeration editor with mapped values

enum_editor.py —- Example of using an enumeration editor
from enthought.traits.api import HasTraits, Enum
from enthought.traits.ui.api import EnumEditor

Class EnumExample (HasTraits) :
priority = Enum(’Medium’, ’'Highest’,
"High’,
"Medium’,
"Low’,
"Lowest’)

view = View(Item(name=’'priority’,
editor=EnumEditor (values={
"Highest’ : ’'1:Highest’,

"High’ : "2:High’,
"Medium’ : "3:Medium’,
"Low’ : "4:Low’,
"Lowest’ : ’'5:Lowest’, })))

The enumeration editor strips the characters up to and including the colon. It assumes that all the items have the colon
in the same position; therefore, if some of your tags have multiple digits, you should use zeros to pad the items that
have fewer digits.

118 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

FileEditor()

Suitable for File
Default for File
Optional parameters entries, filter, filter_name, reload_name, truncate_ext

A file editor enables the user to display a File trait or set it to some file in the local system hierarchy. The styles of this
editor are shown in Figure 31.

Figure 5.31: Figure 31: File editor styles

The default version of the simply style displays a text box and a Browse button. Clicking Browse opens a platform-
specific file selection dialog box. If you specify the entries keyword parameter with an integer value to the factory
function, the simple style is a combo box and a button labeled The user can type a file path in the combo box,
or select one of entries previous values. Clicking the ... button opens a browser panel similar to the custom style of
editor. When the user selects a file in this browser, the panel collapses, and control is returned to the original editor
widget, which is automatically populated with the new path string.

For either version of the simple style, the user can drag and drop a file object onto the control.

The custom style displays a file system browser panel, in which the user can expand or collapse directory structures,
and click an icon to select a file.

You can specify a list of filters to apply to the file names displayed, using the filter keyword parameter of the factory
function. In Figure 31, the “Custom with Filter” editor uses a filter value of [’ = .py’] to display only Python source
files. You can also specify this parameter for the simple style, and it will be used in the file selection dialog box or
pop-up file system browser panel. Alternatively, you can specify filter_name, whose value is an extended trait name
of a trait attribute that contains the list of filters.

The reload_name parameter is an extended trait name of a trait attribute that is used to notify the editor when the view
of the file system needs to be reloaded.

The truncate_ext parameter is a Boolean that indicates whether the file extension is removed from the returned file-
name. It is False by default, meaning that the filename is not modified before it is returned.

FontEditor()

Suitable for Font
Default for Font

A font editor enables the user to display a Font trait or edit it by selecting one of the fonts provided by the underlying
GUI toolkit. The four styles of this editor are shown in Figure 32.

Figure 5.32: Figure 32: Font editor styles

In the simple style, the currently selected font appears in a display similar to a text box, except that when the user
clicks on it, a platform-specific dialog box appears with a detailed interface, such as is shown in Figure 33. When the
user clicks OK, control returns to the editor, which then displays the newly selected font.

In the custom style, an abbreviated version of the font dialog box is displayed in-line. The user can either type the
name of the font in the text box or use the two drop-down lists to select a typeface and size.

In the text style, the user must type the name of a font in the text box provided. No validation is performed; the user
must enter the correct name of an available font. The read-only style is identical except that the text is not editable.

5.9. The Predefined Trait Editor Factories 119

Traits 3 User Manual, Release 3.2.1

E_u:unt ahyle: Size:

- I"' |
FIE_ - gullar | |~ |
Arial Black | talic !11

O Arial Narrow ' Bald P

()} Arial Founded MT Bal [Bald Italic i14 =

(} Arial Unicods M3 15 |

B aby Kuffy 18

(} Baskervile 0ld Face Bl | [20 ™)

Effects Sample

[] Strikeout

[] Underline AaBbYyZz

Caolor:

[- Black w i 5 criEt: o
wiestern v |

Figure 5.33: Figure 33: Example font dialog box for Microsoft Windows

HTMLEditor()

Suitable for HTML, string traits
Default for HTML
Optional parameters format_text

The “editor” generated by HTMLEditor() interprets and displays text as HTML. It does not support the user editing
the text that it displays. It generates the same type of editor, regardless of the style specified. Figure 34 shows an
HTML editor in the upper pane, with a code editor in the lower pane, displaying the uninterpreted text.

Figure 5.34: Figure 34: Example HTML editor, with code editor showing original text

Note: HTML support is limited in the wxWidgets toolkit.

The set of tags supported by the wxWidgets implementation of the HTML editor is a subset of the HTML 3.2 standard.
It does not support style sheets or complex formatting. Refer to the wxWidgets documentation for details.

If the format_text argument is True, then the HTML editor supports basic implicit formatting, which it converts to
HTML before passing the text to the HTML interpreter. The implicit formatting follows these rules:

¢ Indented lines that start with a dash (‘-°) are converted to unordered lists.

¢ Indented lines that start with an asterisk (‘*’) are converted to ordered lists.

* Indented lines that start with any other character are converted to code blocks.
* Blank lines are converted to paragraph separators.

The following text produces the same displayed HTML as in Figure 34, when format_text is True:

120 Chapter 5. Traits Ul User Guide

http://www.lpthe.jussieu.fr/~zeitlin/wxWindows/docs/wxwin_wxhtml.html

Traits 3 User Manual, Release 3.2.1

This is a code block:

def foo (bar):
print ’bar:’, bar

This is an unordered list:
— An

— unordered

- list

This is an ordered list:
* One
* Two
* Three

ImageEnumEditor()

Suitable for Enum, Any

Default for (none)

Required parameters for non-Enum traits: values or name
Optional parameters path, klass or module, cols, evaluate, suffix

The editors generated by ImageEnumEditor() enable the user to select an item in an enumeration by selecting an image
that represents the item.

Simple: 1
Custom; r _t L .-l

Texk: [Eop right

ReadOnly: 2

Figure 5.35: Figure 35: Editor styles for image enumeration

The custom style of editor displays a set of images; the user selects one by clicking it, and it becomes highlighted to
indicate that it is selected.

The simple style displays a button with an image for the currently selected item. When the user clicks the button, a
pop-up panel displays a set of images, similar to the custom style. The user clicks an image, which becomes the new
image on the button.

The text style does not display images; it displays the text representation of the currently selected item. The user must
type the text representation of another item to select it.

The read-only style displays the image for the currently selected item, which the user cannot change.

The ImageEnumEditor() function accepts the same parameters as the EnumEditor() function (see EnumkEditor()), as
well as some additional parameters.

5.9. The Predefined Trait Editor Factories 121

Traits 3 User Manual, Release 3.2.1

Note: Image enumeration editors do not use ImageResource.

Unlike most other images in the Traits and Traits UI packages, images in the wxWindows implementation of image
enumeration editors do not use the PyFace ImageResource class.

In the wxWidgets implementation, image enumeration editors use the following rules to locate images to use:
1. Only GIF (.gif) images are currently supported.

2. The base file name of the image is the string representation of the value, with spaces replaced by underscores
and the suffix argument, if any, appended. Note that suffix is not a file extension, but rather a string appended
to the base file name. For example, if suffix is _origin and the value is ‘top left’, the image file name is
top_left_origin.gif.

3. If the path parameter is defined, it is used to locate the file. It can be absolute or relative to the file where the
image enumeration editor is defined.

4. If path is not defined and the klass parameter is defined, it is used to locate the file. The klass parameter must
be a reference to a class. The editor searches for an images subdirectory in the following locations:

(a) The directory that contains the module that defines the class.
(b) If the class was executed directly, the current working directory.

(c) If path and klass are not defined, and the module parameter is defined, it is used to locate the file. The
module parameter must be a reference to a module. The editor searches for an images subdirectory of the
directory that contains the module.

(d) If path, klass, and module are not defined, the editor searches for an images subdirectory of the en-
thought.traits.ui.wx package.

(e) If none of the above paths are defined, the editor searches for an images directory that is a sibling of the
directory from which the application was run.

InstanceEditor()

Suitable for Instance, Property, self, ThisClass, This
Default for Instance, self, ThisClass, This
Optional parameters cachable, editable, id, kind, label, name, object, orientation, values, view

The editors generated by InstanceEditor() enable the user to select an instance, or edit an instance, or both.

Editing a Single Instance

In the simplest case, the user can modify the trait attributes of an instance assigned to a trait attribute, but cannot
modify which instance is assigned.

The custom style displays a user interface panel for editing the trait attributes of the instance. The simple style displays
a button, which when clicked, opens a window containing a user interface for the instance. The kind parameter specifies
the kind of window to open (see Stand-alone Windows). The label parameter specifies a label for the button in the
simple interface. The view parameter specifies a view to use for the referenced instance’s user interface; if this is not
specified, the default view for the instance is used (see Defining a Default View).

The text and read-only styles display the string representation of the instance. They therefore cannot be used to modify
the attributes of the instance. A user could modify the assigned instance if they happened to know the memory address
of another instance of the same type, which is unlikely. These styles can useful for prototyping and debugging, but not
for real applications.

122 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Registered voter: [

Age: 21 =

Simple: Sample instance
Mame: |JDE Smith
Occupation: (Plumber
Custorm: e |

F— 55|34

Text:

ReadOnly:

«__main__.SampleClass object at 0x00D9F3A0;

<__main__.5ampleClass object at 0x00D3F3A0 =

Figure 5.36: Figure 36: Editor styles for instances

Selecting Instances

You can add an option to select a different instance to edit. Use the name parameter to specify the extended name of
a trait attribute in the context that contains a list of instances that can be selected or edited. (See The View Context
for an explanation of contexts.) Using these parameters results in a drop-drown list box containing a list of text
representations of the available instances. If the instances have a name trait attribute, it is used for the string in the

list; otherwise, a user-friendly version of the class name is used.

For example, the following code defines a Team class and a Person class. A Team has a roster of Persons, and a
captain. In the view for a team, the user can pick a captain and edit that person’s information. Example 16: Instance

editor with instance selection

instance_editor_selection.py —-- Example of an instance editor
with instance selection
from enthought.traits.api \

import HasStrictTraits, Int, Instance, List, Regex, Str

from enthought.traits.ui.api \
import View, Item, InstanceEditor

class Person (HasStrictTraits):

name = Str

age = Int

phone = Regex(value = "000-0000",

regex = "\d\d\d[-1\d\d\d\d’)
traits_view = View(’"name’, ’age’, ’'phone’)
people = [

Person(name = ’'Dave’, age = 39, phone = ’555-1212"
Person(name = ’'Mike’, age = 28, phone = ’"555-3526"
Person(name = ’Joe’, age = 34, phone = ’"555-6943’
Person(name = ’'Tom’, age = 22, phone = ’"555-7586"
Person(name = ’'Dick’, age = 63, phone = ’7555-3895"
Person(name = ’'Harry’, age = 46, phone = '555-3285’
Person(name = ’Sally’, age = 43, phone = '555-8797’
Person(name = ’'Fields’, age = 31, phone = '555-3547’

~ 0~

~

~ 0~

~

~

5.9. The Predefined Trait Editor Factories

123

Traits 3 User Manual, Release 3.2.1

class Team (HasStrictTraits):

name = Str
captain = Instance(Person)
roster = List(Person)

traits_view = View(Item(’name’),
Item('_"),
Item(’captain’,
label='Team Captain’,

editor =
InstanceEditor (name = ’roster’,
editable = True),
style = ’custom’,
) 14
buttons = [/OK’])
if _ name_ == '_ main_ ':
Team (name = ’'Vultures’,
captain = people[0],
roster = people).configure_traits()

Figure 5.37: Figure 37: User interface for Example 16

If you want the user to be able to select instances, but not modify their contents, set the edifable parameter to False. In
that case, only the selection list for the instances appears, without the user interface for modifying instances.

Allowing Instances

You can specify what types of instances can be edited in an instance editor, using the values parameter. This parameter
is a list of items describing the type of selectable or editable instances. These items must be instances of subclasses
of enthought.traits.ui.api.InstanceChoiceltem. If you want to generate new instances, put an InstanceFactoryChoice
instance in the values list that describes the instance to create. If you want certain types of instances to be dropped on
the editor, use an InstanceDropChoice instance in the values list.

ListEditor()

Suitable for List
Default for List '8
Optional parameters editor, rows, style, trait_handler, use_notebook

The following parameters are used only if use_notebook is True: deletable, dock_style, export,
page_name, select, view

The editors generated by ListEditor() enable the user to modify the contents of a list, both by editing the individual
items and by adding, deleting, and reordering items within the list.

The simple style displays a single item at a time, with small arrows on the right side to scroll the display. The custom
style shows multiple items. The number of items displayed is controlled by the rows parameter; if the number of items
in the list exceeds this value, then the list display scrolls. The editor used for each item in the list is determined by the

I8 If a List is made up of HasTraits objects, a table editor is used instead; see TableEditor().

124 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Siople:) | The Meschant of Venice

£ [The Merchant of Verae
£ |Hamiet

Custom; -
£ MacBeth

£ |The Merchant of Yersos
£ |Hamist
£ MacBeth

Tent:

The Merchack of Yenice
Hamiet
MacEath

ReadOnky:

Figure 5.38: Figure 38: List editor styles

editor and style parameters. The text style of list editor is identical to the custom style, except that the editors for the
items are text editors. The read-only style displays the contents of the list as static text.

By default, the items use the trait handler appropriate to the type of items in the list. You can specify a different handler
to use for the items using the trait_handler parameter.

For the simple, custom, and text list editors, a button appears to the left of each item editor; clicking this button opens
a context menu for modifying the list, as shown in Figure 39.

Figure 5.39: Figure 39: List editor showing context menu

In addition to the four standard styles for list editors, a fifth list editor user interface option is available. If use_notebook
is True, then the list editor displays the list as a “notebook’ of tabbed pages, one for each item in the list, as shown in
Figure 40. This style can be useful in cases where the list items are instances with their own views. If the deletable
parameter is True, a close box appears on each tab, allowing the user to delete the item; the user cannot add items
interactively through this style of editor.

Dave 1 | Mike [J || Joe 3 Tom O || Dick O | Harry £ || Sally £ || Fields

Mame: ;rOMt

Age: |39
Phone: |555-1212

Figure 5.40: Figure 40: Notebook list editor

ListStrEditor()

Suitable for ListStr or List of values mapped to strings

5.9. The Predefined Trait Editor Factories 125

Traits 3 User Manual, Release 3.2.1

Default for (none)

Optional parameters activated, activated_index, adapter, adapter_name, auto_add, drag_move, ed-
itable, horizontal_lines, images, multi_select, operations, right_clicked, right_clicked_index, se-
lected, selected_index, title, title_name

ListStrEditor() generates a list of selectable items corresponding to items in the underlying trait attribute. All styles of
the editor are the same. The parameters to ListStrEditor() control aspects of the behavior of the editor, such as what
operations it allows on list items, whether items are editable, and whether more than one can be selected at a time.
You can also specify extended references for trait attributes to synchronize with user actions, such as the item that is
currently selected, activated for editing, or right-clicked.

Shopping List Title

Carroks

Patatoes (5 |k, bag)
Cocoa Puffs

Ice Cream (French Vanilla)
Peanut Bukker

Whale wheat bread
Ground beef (2 |bs,)
Paper towels

Soup (3 cans)

Laundry detergent

Figure 5.41: Figure 41: List string editor

NullEditor ()

Suitable for controlling layout
Default for (none)

The NullEditor() factory generates a completely empty panel. It is used by the Spring subclass of Item, to generate a
blank space that uses all available extra space along its layout orientation. You can also use it to create a blank area of
a fixed height and width.

RangeEditor()

Suitable for Range
Default for Range

Optional parameters auto_set, cols, enter_set, format, high_label, high_name, label_width, low_label,
low_name, mode

The editors generated by RangeEditor() enable the user to specify numeric values within a range. The widgets used
to display the range vary depending on both the numeric type and the size of the range, as described in Table 8 and
shown in Figure 42. If one limit of the range is unspecified, then a text editor is used.

126 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Table 8: Range editor widgets

Data type/range size Simple Custom Text Read-only
Integer: Small Range (Size 0-16) Slider with text box | Radio buttons Text field | Static text
Integer: Medium Range (Size 17-101) Slider with text box | Slider with text box | Text field | Static text
Integer: Large Range (Size > 101) Spin box Spin box Text field | Static text
Floating Point: Small Range (Size <= 100.0) | Slider with text box | Slider with text box | Text field | Static text
Floating Point: Large Range (Size > 100.0) Large-range slider | Large-range slider | Text field | Static text

slider with text field: 1 } 0|8
{03 "5 8
& (= &
Radio buttons: 2 S -
" 3 {'=F 10
4
Text: |I5
Static text: &
Spin box: | 5 j
Large-range slider: 10,000 <o — F——————— »100.000| 19.000

Figure 5.42: Figure 42: Range editor widgets

In the large-range slider, the arrows on either side of the slider move the editable range, so that the user can move the

slider more precisely to the desired value.

You can override the default widget for each type of editor using the mode parameter, which can have the following

values:

* ‘auto’: The default widget, as described in Table 8

‘slider’: Simple slider with text field

‘xslider’: Large-range slider with text field

‘enum’: Radio buttons

‘text’: Text field

‘spinner’: Spin box with increment/decrement buttons

You can set the limits of the range dynamically, using the low_name and high_name parameters to specify trait at-
tributes that contain the low and high limit values; use low_label, high_label and label_width to specify labels for the

limits.

RGBColorEditor()

Suitable for RGBColor
Default for RGBColor

Optional parameters mapped

5.9. The Predefined Trait Editor Factories

127

Traits 3 User Manual, Release 3.2.1

Editors generated by RGBColorEditor() are identical in appearance to those generated by ColorEditor(), but they are
used for RGBColor traits. See ColorEditor() for details.

SetEditor()

Suitable for List

Default for (none)

Required parameters Either values or name

Optional parameters can_move_all, left_column_title, object, ordered, right_column_title

In the editors generated by SetEditor(), the user can select a subset of items from a larger set. The two lists are
displayed in list boxes, with the candidate set on the left and the selected set on the right. The user moves an item from
one set to the other by selecting the item and clicking a direction button (> for left-to-right and < for right-to-left).

Additional buttons can be displayed, depending on two Boolean parameters:

e If can_move_all is True, additional buttons appear, whose function is to move all items from one side to the
other (>> for left-to-right and << for right-to-left).

* If ordered is True, additional buttons appear, labeled Move up and Move down, which affect the position of the
selected item within the set in the right list box.

Available Fruit

<<

T

Maove Daown

Figure 5.43: Figure 43: Set editor showing all possible buttons

You can specify the set of candidate items in either of two ways:
* Set the values parameter to a list, tuple, dictionary, or mapped trait.

* Set the name parameter to the extended name of a trait attribute that contains the list.

ShellEditor()

Suitable for special
Default for PythonValue
The editor generated by ShellEditor() displays an interactive Python shell.

128 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

i Python 2.4.3 - Enthought Edition 1.1.0 ($69, Oct 5 -~
2006, 14:56:53) [MSC w.1l31 32 bit (Intel)] on winiz
EIype "help™, "copyright™, "credits™ or "licen=e™ for
more information.
3 >>>
W

Figure 5.44: Figure 44: Python shell editor

TextEditor()

Suitable for all

Default for Str, String, Password, Unicode, Int, Float, Dict, CStr, CUnicode, and any trait that does not
have a specialized TraitHandler

Optional parameters auto_set, enter_set, evaluate, evaluate_name, mapping, multi_line, password

The editor generated by TextEditor() displays a text box. For the custom style, it is a multi-line field; for the read-only
style, it is static text. If password is True, the text that the user types in the text box is obscured.

Figure 5.45: Figure 45: Text editor styles for integers

Figure 5.46: Figure 46: Text editor styles for strings

You can specify whether the trait being edited is updated on every keystroke (auto_set=True) or when the user
presses the Enter key (enter_set=True). If auto_set and enter_set are False, the trait is updated when the user
shifts the input focus to another widget.

You can specify a mapping from user input values to other values with the mapping parameter. You can specify a
function to evaluate user input, either by passing a reference to it in the evaluate parameter, or by passing the extended
name of a trait that references it in the evaluate_name parameter.

TitleEditor()

Suitable for string traits
Default for (none)

TitleEditor() generates a read-only display of a string value, formatted as a heading. All styles of the editor are
identical. Visually, it is similar to a Heading item, but because it is an editor, you can change the text of the heading
by modifying the underlying attribute.

TupleEditor()

Suitable for Tuple

5.9. The Predefined Trait Editor Factories 129

Traits 3 User Manual, Release 3.2.1

Figure 5.47: Figure 47: Text editor styles for passwords

Default for Tuple
Optional parameters cols, editors, labels, traits

The simple and custom editors generated by TupleEditor() provide a widget for each slot of the tuple being edited,
based on the type of data in the slot. The text and read-only editors edit or display the text representation of the tuple.

Figure 5.48: Figure 48: Tuple editor styles

You can specify the number of columns to use to lay out the widgets with the cols parameter. You can specify labels
for the widgets with the labels parameter. You can also specify trait definitions for the slots of the tuple; however, this
is usually implicit in the tuple being edited.

You can supply a list of editors to be used for each corresponding tuple slot. If the editors list is missing, or is shorter
than the length of the tuple, default editors are used for any tuple slots not defined in the list. This feature allows you
to substitute editors, or to supply non-default parameters for editors.

ValueEditor()

Suitable for (any)
Default for (none)
Optional parameters auto_open

ValueEditor() generates a tree editor that displays Python values and objects, including all the objects’ members. For
example, Figure 49 shows a value editor that is displayed by the “pickle viewer” utility in enthought.debug.

Figure 5.49: Figure 49: Value editor from Pickle Viewer

5.10 Advanced Trait Editors

The editor factories described in the following sections are more advanced than those in the previous section. In some
cases, they require writing additional code; in others, the editors they generate are intended for use in complex user
interfaces, in conjunction with other editors.

5.10.1 CustomEditor()

Suitable for Special cases
Default for (none)

Required parameters factory
Optional parameters args

Use CustomEditor() to create an “editor” that is a non-Traits-based custom control. The factory parameter must be a
function that generates the custom control. The function must have the following signature:

factory_function(window_parent, editor*[, **args, **kwargs])

130 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

* window_parent: The parent window for the control
* editor: The editor object created by CustomEditor()
Additional arguments, if any, can be passed as a tuple in the args parameter of CustomEditor().

For an example of using CustomEditor(),examine the implementation of the NumericModelExplorer class in the en-
thought.model.numeric_model_explorer module; CustomEditor() is used to generate the plots in the user interface.

5.10.2 DropEditor()

Suitable for Instance traits
Default for (none)
Optional parameters binding, klass, readonly

DropEditor() generates an editor that is a text field containing a string representation of the trait attribute’s value. The
user can change the value assigned to the attribute by dragging and dropping an object on the text field, for example, a
node from a tree editor (See TreeEditor()). If the readonly parameter is True (the default), the user cannot modify the
value by typing in the text field.

You can restrict the class of objects that can be dropped on the editor by specifying the klass parameter.

You can specify that the dropped object must be a binding (enthought.naming.api.Binding) by setting the binding
parameter to True. If so, the bound object is retrieved and checked to see if it can be assigned to the trait attribute.

If the dropped object (or the bound object associated with it) has a method named drop_editor_value(), it is called to
obtain the value to assign to the trait attribute. Similarly, if the object has a method named drop_editor_update(), it is
called to update the value displayed in the text editor. This method requires one parameter, which is the GUI control
for the text editor.

5.10.3 DNDEditor()

Suitable for Instance traits
Default for (none)
Optional parameters drag_target, drop_target, image

DNDEditor() generates an editor that represents a file or a HasTraits instance as an image that supports dragging and
dropping. Depending on the editor style, the editor can be a drag source (the user can set the value of the trait attribute
by dragging a file or object onto the editor, for example, from a tree editor), or drop target (the user can drag from the
editor onto another target).

Table 9: Drag-and-drop editor style variations

Editor Style | Drag Source? Drop Target?
Simple Yes Yes
Custom No Yes
Read-only Yes No

5.10.4 KeyBindingEditor()

The KeyBindingEditor() factory differs from other trait editor factories because it generates an editor, not for a single
attribute, but for an object of a particular class, enthought.traits.ui.key_bindings.KeyBindings. A KeyBindings object

5.10. Advanced Trait Editors 131

Traits 3 User Manual, Release 3.2.1

is a list of bindings between key codes and handler methods. You can specify a KeyBindings object as an attribute
of a View. When the user presses a key while a View has input focus, the user interface searches the View for a
KeyBindings that contains a binding that corresponds to the key press; if such a binding does not exist on the View,
it searches enclosing Views in order, and uses the first matching binding, if any. If it does not find any matching

bindings, it ignores the key press.

A key binding editor is a separate dialog box that displays the string representation of each key code and a description
of the corresponding method. The user can click a text box, and then press a key or key combination to associate that

key press with a method.

%z Update Key Bindings

[Gd.mmmryfdd. thien press the key to assign. Double-cick a field to chear &,

[crls | | | Save boa fie
Eh | Rum s
[t | | | Edk ey bindings

Figure 5.50: Figure 50: Key binding editor dialog box

The following code example creates a user interface containing a code editor with associated key bindings, and a

button that invokes the key binding editor.
Example 17: Code editor with key binding editor

key_bindings.py —-- Example of a code editor with a
key bindings editor

from enthought.traits.api \

import Button, Code, HasPrivateTraits, Str
from enthought.traits.ui.api \

import View, Item, Group, Handler, CodeEditor
from enthought.traits.ui.key_bindings \

import KeyBinding, KeyBindings

key_bindings = KeyBindings (
KeyBinding (bindingl = 'Ctrl-s’,

132 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

description = ’"Save to a file’,
method_name = ’'save_file’),
KeyBinding (bindingl = 'Ctrl-r’,
description = 'Run script’,
method_name = 'run_script’),
KeyBinding (bindingl = "Ctrl-k’,
description = "Edit key bindings’,
method_name = ’edit_bindings’)

Traits UI Handler class for bound methods
class CodeHandler (Handler):

def save_file (self, info):

info.object.status = "save file"
def run_script (self, info):
info.object.status = "run script"

def edit_bindings (self, info):
info.object.status = "edit bindings"
key_bindings.edit_traits()

class KBCodeExample (HasPrivateTraits):

code = Code
status = Str
kb = Button(label=’Edit Key Bindings’)
view = View(Group (
Item(’code’,
style = ’custom’,
resizable = True),
Item(’status’, style=’readonly’),
"kb’,
orientation = ’vertical’,
show_labels = False,
) 14
id = "KBCodeExample’,

key_bindings = key_bindings,
title = ’"Code Editor With Key Bindings’
resizable = True,
handler = CodeHandler ())
def _kb_fired(self, event):

key_bindings.edit_traits()

if _ _name_ == '__main__ ':
KBCodeExample () .configure_traits()

5.10.5 TableEditor()

Suitable for List(InstanceType)

Default for (none)

5.10. Advanced Trait Editors

133

Traits 3 User Manual, Release 3.2.1

Required parameters columns or columns_name

Optional parameters See Traits API Reference, enthought.traits.ui.wx.table_editor. ToolkitEditorFactory
attributes.

TableEditor() generates an editor that displays instances in a list as rows in a table, with attributes of the instances as
values in columns. You must specify the columns in the table. Optionally, you can provide filters for filtering the set
of displayed items, and you can specify a wide variety of options for interacting with and formatting the table.

Wiew: |N-:| fiker ﬂ Results: All 5 tams m EE

Mike 34 555.2222
Dave 42 555.3333
Lyn 40 5E55.4444
Greg 45 555-5555

-

Mame: {Jason

Age: 532

Phone: [555-1111

Figure 5.51: Figure 51: Table editor

To see the code that results in Figure 51, refer to TableEditor_demo.py in the demos/Traits UI
Demo/Standard Editors subdirectory of the Traits UI package. This example demonstrates object columns,
expression columns, filters, searching, and adding and deleting rows.

The parameters for TableEditor() can be grouped in several broad categories, described in the following sections.
* Specifying Columns
* Managing Items
» Editing the Table
* Defining the Layout
* Defining the Format

e Other User Interactions

Specifying Columns

You must provide the TableEditor() factory with a list of columns for the table. You can specify this list directly, as
the value of the columns parameter, or indirectly, in an extended context attribute referenced by the columns_name
parameter.

The items in the list must be instances of enthought.traits.ui.api.TableColumn, or of a subclass of TableColumn.
Some subclasses of TableColumn that are provided by the Traits UI package include ObjectColumn, ListColumn,
NumericColumn, and ExpressionColumn. (See the Traits API Reference for details about these classes.) In practice,
most columns are derived from one of these subclasses, rather than from TableColumn. For the usual case of editing

134 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

trait attributes on objects in the list, use ObjectColumn. You must specify the name parameter to the ObjectColumn()
constructor, referencing the name of the trait attribute to be edited.

You can specify additional columns that are not initially displayed using the other_columns parameter. If the config-
urable parameter is True (the default), a Set user preferences for table icon () appears on the table’s toolbar. When
the user clicks this icon, a dialog box opens that enables the user to select and order the columns displayed in the
table, as shown in Figure 52. (The dialog box is implemented using a set editor; see SerEditor().) Any columns that
were specified in the other_columns parameter are listed in the left list box of this dialog box, and can be displayed by
moving them into the right list box.

*= Select and Order Columns E]|E| [g|

Age
Phone

Mowe Down

i

K Zancel

Figure 5.52: Figure 52: Column selection dialog box for a table editor

Managing ltems

Table editors support several mechanisms to help users locate items of interest.

Organizing ltems

Table editors provide two mechanisms for the user to organize the contents of a table: sorting and reordering. The
user can sort the items based on the values in a column, or the user can manually order the items. Usually, only one of
these mechanisms is used in any particular table, although the Traits UI package does not enforce a separation. If the
user has manually ordered the items, sorting them would throw away that effort.

If the reorderable parameter is True, Move up () and Move down () icons appear in the table toolbar. Clicking one of
these icons changes the position of the selected item.

If the sortable parameter is True (the default), then the user can sort the items in the table based on the values in a
column by Control-clicking the header of that column.

5.10. Advanced Trait Editors 135

Traits 3 User Manual, Release 3.2.1

* On the first click, the items are sorted in ascending order. The characters >> appear in the column header to
indicate that the table is sorted ascending on this column’s values.

* On the second click, the items are sorted descending order. The characters << appear in the column header to
indicate that the table is sorted descending on this column’s values.

* On the third click, the items are restored to their original order, and the column header is undecorated.

If the sort_model parameter is true, the items in the list being edited are sorted when the table is sorted. The default
value is False, in which case, the list order is not affected by sorting the table.

If sortable is True and sort_model is False, then a Do not sort columns icon () appears in the table toolbar. Clicking
this icon restores the original sort order.

If the reverse parameter is True, then the items in the underlying list are maintained in the reverse order of the items
in the table (regardless of whether the table is sortable or reorderable).

Filtering and Searching

You can provide an option for the user to apply a filter to a table, so that only items that pass the filter are displayed.
This feature can be very useful when dealing with lengthy lists. You can specify a filter to apply to the table either
directly, or via another trait. Table filters must be instances of enthought.traits.ui.api.TableFilter, or of a subclass
of TableFilter. Some subclasses of TableFilter that are provided by the Traits Ul package include EvalTableFilter,
RuleTableFilter, and MenuTableFilter. (See the Traits API Reference for details about these classes.) The Traits Ul
package also provides instances of these filter classes as “templates”, which cannot be edited or deleted, but which can
be used as models for creating new filters.

The filter parameter specifies a filter that is applied to the table when it is first displayed. The filter_name parameter
specifies an extended trait name for a trait that is either a table filter object or a callable that accepts an object and
returns True if the object passes the filter criteria, or false if it does not. You can use filter_name to embed a view of a
table filter in the same view as its table.

You can specify use the filters parameter to specify a list of table filters that are available to apply to a table. When
filters is specified, a drop-down list box appears in the table toolbar, containing the filters that are available for the user
to apply. When the user selects a filter, it is automatically applied to the table. A status message to the right of the
filters list indicates what subset of the items in the table is currently displayed. A special item in the filter list, named
Customize, is always provided; clicking this item opens a dialog box that enables the user to create new filters, or to
edit or delete existing filters (except templates).

You can also provide an option for the user to use filters to search the table. If you set the search parameter to an
instance of TableFilter (or of a subclass), a Search table icon () appears on the table toolbar. Clicking this icon opens
a Search for dialog box, which enables the user to specify filter criteria, to browse through matching items, or select
all matching items.

Interacting with Items

As the user clicks in the table, you may wish to enable certain program behavior.
The value of the selection_mode parameter specifies how the user can make selections in the grid:
e cell: Asingle cell at a time
e cells: Multiple cells
e column: A single column at a time
* columns: Multiple columns

* row: A single row at a time

136 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

e rows: Multiple rows

You can use the selected parameter to specify the name of a trait attribute in the current context to synchronize with
the user’s current selection. For example, you can enable or disable menu items or toolbar icons depending on which
item is selected. The synchronization is two-way; you can set the attribute referenced by selected to force the table to
select a particular item.

You can use the selected_indices parameter to specify the name of a trait attribute in the current context to synchronize
with the indices of the table editor selection. The content of the selection depends on the selection_mode value:

¢ cell: The selection is a tuple of the form (object, column_name), where object is the object contains the
selected cell, and column_name is the name of the column the cell is in. If there is no selection, the
tuple is (None,).

e cells: The selection is a list of tuples of the form (object, column_name), with one tuple for each selected
cell, in order from top to bottom and left to right. If there is no selection, the list is empty.

e column: The selection is the name of the selected column, or the empty string if there is no selection.

e columns: The selection is a list containing the names of the selected columns, in order from left to right. If
there is no selection, the list is empty.

» row: The selection is either the selected object or None if nothing is selected in the table.

* rows: The selection is a list of the selected objects, in ascending row order. If there is no selection, the list is
empty.

The on_select and on_dclick parameters are callables to invoke when the user selects or double-clicks an item, respec-
tively.

You can define a shortcut menu that opens when the user right-clicks an item. Use the menu parameter to specify a
Traits UI or PyFace Menu, containing Action objects for the menu commands.

Editing the Table

The Boolean editable parameter controls whether the table or its items can be modified in any way. This parameter
defaults to True, except when the style is ‘readonly’. Even when the table as a whole is editable, you can control
whether individual columns are editable through the editable attribute of TableColumn.

Adding Items

To enable users to add items to the table, specify as the row_factory parameter a callable that generates an object that
can be added to the list in the table; for example, the class of the objects in the table. When row_factory is specified,
an Insert new item icon () appears in the table toolbar, which generates a new row in the table. Optionally, you can
use row_factory_args and row_factory_kw to specify positional and keyword arguments to the row factory callable.

To save users the trouble of mousing to the toolbar, you can enable them to add an item by selecting the last row in
the table. To do this, set auto_add to True. In this case, the last row is blank until the user sets values. Pressing Enter
creates the new item and generates a new, blank last row.

Deleting Items

The deletable parameter controls whether items can be deleted from the table. This parameter can be a Boolean
(defaulting to False) or a callable; the callable must take an item as an argument and handle deleting it. If deletable is
not False, a Delete current item icon () appears on the table toolbar; clicking it deletes the item corresponding to the
row that is selected in the table.

5.10. Advanced Trait Editors 137

Traits 3 User Manual, Release 3.2.1

Modifying Items

The user can modify items in two ways.

* For columns that are editable, the user can change an item’s value directly in the table. The editor used for each
attribute in the table is the simple style of editor for the corresponding trait.

 Alternatively, you can specify a View for editing instances, using the edit_view parameter. The resulting user
interface appears in a subpanel to the right or below the table (depending on the orientation parameter). You
can specify a handler to use with the view, using edit_view_handler. You can also specify the subpanel’s height
and width, with edit_view_height and edit_view_width.

Defining the Layout

Some of the parameters for the TableEditor() factory affect global aspects of the display of the table.
* auto_size: If True, the cells of the table automatically adjust to the optimal size based on their contents.
* orientation: The layout of the table relative to its associated editor pane. Can be ‘horizontal’ or ‘vertical’.
* rows: The number of visible rows in the table.

o show_column_labels: If True (the default), displays labels for the columns. You can specify the labels to use in
the column definitions; otherwise, a “user friendly” version of the trait attribute name is used.

» show_toolbar: If False, the table toolbar is not displayed, regardless of whether other settings would normally
create a toolbar. The default is True.

Defining the Format

The TableEditor() factory supports a variety of parameters to control the visual formatting of the table, such
as colors, fonts, and sizes for lines, cells, and labels. For details, refer to the Traits API Reference, en-
thought.traits.ui.wx.table_editor.ToolkitEditorFactory attributes.

You can also specify formatting options for individual table columns when you define them.

Other User Interactions

The table editor supports additional types of user interaction besides those controlled by the factory parameters.

e Column dragging: The user can reorganize the column layout of a table editor by clicking and dragging a column
label to its new location. If you have enabled user preferences for the view and table editor (by specifying view
and item IDs), the new column layout is persisted across user sessions.

* Column resizing: The user can resize a column by dragging the column separator (in one of the data rows) to a
new position. Because of the column-dragging support, clicking the column separator in the column label row
does not work.

» Data dragging: The user can drag the contents of any cell by clicking and dragging.

5.10.6 TabularEditor()

Suitable for lists, arrays, and other large sequences of objects
Default for (none)

Required parameters adapter

138 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Optional parameters activated, clicked, column_clicked, dclicked, drag_move, editable, horizon-
tal_lines, images, multi_select, operations, right_clicked, right_dclicked, selected, selected_row,
show_titles, vertical_lines

The TabularEditor() factory can be used for many of the same purposes as the TableEditor() factory, that is, for
displaying a table of attributes of lists or arrays of objects. While similar in function, the tabular editor has advantages
and disadvantages relative to the table editor.

Advantages

e Very fast: The tabular editor uses a virtual model, which accesses data from the underlying model only as
needed. For example, if you have a million-element array, but can display only 50 rows at a time, the editor
requests only 50 elements of data at a time.

 Very flexible data model: The editor uses an adapter model to interface with the underlying data. This strategy
allows it to easily deal with many types of data representation, from list of objects, to arrays of numbers, to
tuples of tuples, and many other formats.

* Supports useful data operations, including:
— Moving the selection up and down using the keyboard arrow keys.

— Moving rows up and down using the keyboard.

Inserting and deleting items using the keyboard.

Initiating editing of items using the keyboard.

Dragging and dropping of table items to and from the editor, including support for both copy and move
operations for single and multiple items.

* Visually appealing: The tabular editor, in general, uses the underlying operating system’s native table or grid
control, and as a result often looks better than the control used by the table editor.

¢ Supports displaying text and images in any cell. However, the images displayed must be all the same size for
optimal results.

Disadvantages

* Not as full-featured: The table editor includes support for arbitrary data filters, searches, and different types of
sorting. These differences may narrow as features are added to the tabular editor.

¢ Limited data editing capabilities: The tabular editor supports editing only textual values, whereas the table
editor supports a wide variety of column editors, and can be extended with more as needed. This is due to
limitations of the underlying native control used by the tabular editor.

TabularAdapter

The tabular editor works in conjunction with an adapter class, derived from TabularAdapter. The tabular adapter
interfaces between the tabular editor and the data being displayed. The tabular adapter is the reason for the flexibility
and power of the tabular editor to display a wide variety of data.

The most important attribute of TabularAdapter is columns, which is list of columns to be displayed. Each entry in
the columns list can be either a string, or a tuple consisting of a string and another value, which can be of any type.
The string is used as the label for the column. The second value in the tuple, called the* column ID*, identifies the
column to the adapter. It is typically a trait attribute name or an integer index, but it can be any value appropriate to
the adapter. If only a string is specified for an entry, then the index of the entry within the columns list is used as that
entry’s column ID.

5.10. Advanced Trait Editors 139

Traits 3 User Manual, Release 3.2.1

Attributes on TabularAdapter control the appearance of items, and aspects of interaction with items, such as whether
they can be edited, and how they respond to dragging and dropping. Setting any of these attributes on the adapter
subclass sets the global behavior for the editor. Refer to the Traits API Reference for details of the available attributes.

You can also specify these attributes for a specific class or column ID, or combination of class and column ID. When
the TabularAdapter needs to look up the value of one of its attributes for a specific item in the table, it looks for
attributes with the following naming conventions in the following order:

1. classname_columnid_attribute
2. classname_attribute

3. columnid_attribute

4. attribute

For example, to find the text_color value for an item whose class is Person and whose column ID is ‘age’, the
get_text_color() method looks for the following attributes in sequence, and returns the first value it finds:

1. Person_age_text_color
2. Person_text_color

3. age_text_color

4. text_color

Note that the classname can be the name of a base class, searched in the method resolution order (MRO) for the
item’s class. So for example, if the item were a direct instance of Employee, which is a subclass of Person, then
the Person_age_text_color attribute would apply to that item (as long as there were no Employee_age_text_color
attribute).

The Tabular Editor User Interface

Figure 53 shows an example of a tabular editor on Microsoft Windows, displaying information about source files in
the Traits package. This example includes a column that contains an image for files that meet certain conditions.

Fi Name | sue| | _Time | Date |
adapter. py 7830 04:08:06 PM 08-13-2007
api.py 5794 05:37:52 TH 11-16-2007
category . py 4757 04:08:06 PHM o8~13-2007
core_traits. py 3758 04:08:06 FH 08-13.-2007
has dynanic_views. py 15556 04:08:06 FH 08-13-2007
has traits. py 146863 @ 03:29:33 PM 11282007
standard . py 13715 04:08:056 PH ge~s13-2007
traits. py 55643 @ 05:37:52 PN 11162007
traits_listener py 39379 @ 03:29:33 PHM 11~-28~-2007
trait_base py 15628 12-10:01 FM 11-09-2007
trait_db.py 22879 @ 04:08:00 PM 0B-13-2007
tralt errors. py 4058 12:11:35 PH 09-11-2007
trait_handlers. py 112372 @ 12:10:01 FH 11-0%-2007
trait_notifiers.py 27635 & 01:28:49 PM 10-03-2007
trait huneric.py 14070 12:10:01 FPM 11-09-2007

Figure 5.53: Figure 53: Tabular editor on MS Windows

Depending on how the tabular editor is configured, certain keyboard interactions may be available. For some interac-
tions, you must specify that the corresponding operation is allowed by including the operation name in the operations
list parameter of TabularEditor().

* Up arrow: Selects the row above the currently selected row.

140 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

* Down arrow: Selects the row below the currently selected row.

* Page down: Appends a new item to the end of the list (‘append’ operation).

* Left arrow: Moves the currently selected row up one line (‘move’ operation).

* Right arrow: Moves the currently selected row down one line (‘move’ operation).

* Backspace, Delete: Deletes from the list all items in the current selection (‘delete’ operation).
* Enter, Escape: Initiates editing on the current selection (‘edit’ operation).

e Insert:: Inserts a new item before the current selection (‘insert’ operation).

The ‘append’, ‘move’, ‘edit’, and ‘insert’ operations can occur only when a single item is selected. The ‘delete’
operation works for one or more items selected.

Depending on how the editor and adapter are specified, drag and drop operations may be available. If the user selects
multiple items and drags one of them, all selected items are included in the drag operation. If the user drags a non-
selected item, only that item is dragged.

The editor supports both “drag-move” and “drag-copy” semantics. A drag-move operation means that the dragged
items are sent to the target and are removed from the list displayed in the editor. A drag-copy operation means that the
dragged items are sent to the target, but are not deleted from the list data.

5.10.7 TreeEditor()

Suitable for Instance
Default for (none)
Required parameters nodes (required except for shared editors; see Editing Objects)

Optional parameters auto_open, editable, editor, hide_root, icon_size, lines_mode, on_dclick,
on_select, orientation, selected, shared_editor, show_icons

TreeEditor() generates a hierarchical tree control, consisting of nodes. It is useful for cases where objects contain lists
of other objects.

The tree control is displayed in one pane of the editor, and a user interface for the selected object is displayed in
the other pane. The layout orientation of the tree and the object editor is determined by the orientation parameter of
TreeEditor(), which can be ‘horizontal’ or ‘vertical’.

You must specify the types of nodes that can appear in the tree using the nodes parameter, which must be a list of
instances of TreeNode (or of subclasses of TreeNode).

Figure 5.54: Figure 54: Tree editor

The following example shows the code that produces the editor shown in Figure 54.
Example 18: Code for example tree editor

tree_editor.py —-- Example of a tree editor

from enthought.traits.api \
import HasTraits, Str, Regex, List, Instance
from enthought.traits.ui.api \
import TreeEditor, TreeNode, View, Item, VSplit, \

5.10. Advanced Trait Editors 141

Traits 3 User Manual, Release 3.2.1

HGroup, Handler, Group
from enthought.traits.ui.menu \
import Menu, Action, Separator
from enthought.traits.ui.wx.tree_editor \
import NewAction, CopyAction, CutAction, \
PasteAction, DeleteAction, RenameAction

DATA CLASSES
class Employee (HasTraits):
name = Str(’<unknown>’)
title = Str
phone = Regex(regex = r’\d\d\d-\d\d\d\d’)

def default_title (self):

self.title = ’Senior Engineer’
class Department (HasTraits):
name = Str(’<unknown>’)

employees = List (Employee)

class Company (HasTraits):

name = Str(’"<unknown>’")
departments = List (Department)
employees = List (Employee)

class Owner (HasTraits):
name = Str(’'<unknown>’)
company = Instance(Company)

INSTANCES

jason = Employee (

name = ’Jason’,
title = ’Engineer’,
phone = ’536-1057")

mike = Employee (
name = ’'Mike’,
title = ’Sr. Marketing Analyst’,
phone = "536-1057")

dave = Employee (
name = ’'Dave’,
title = ’Sr. Engineer’,
phone = ’536-1057")

susan = Employee (
name = ’Susan’,
title = ’'Engineer’,

phone = ’536-1057")
betty = Employee (
name = ’'Betty’,

title = 'Marketing Analyst’)

owner = Owner (

142

Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

name = 'wile’,
company = Company (
name = ’'Acme Labs, Inc.’,
departments = [
Department (
name = ’'Marketing’,
employees = [mike, betty]
)I
Department (
name = ’'Engineering’,
employees = [dave, susan, jason]
)
1,
employees = [dave, susan, mike, betty, jason]

View for objects that aren’t edited
no_view = View ()

Actions used by tree editor context menu

def_title_action = Action (name=’Default title’,
action = ’'object.default’)

dept_action = Action(
name=’'Department’,

action=’"handler.employee_department (editor,object)’)

View used by tree editor

employee_view = View (
VSplit (
HGroup('3’, ’"name’),
HGroup("9’, ’"title’),
HGroup ('phone’),
id = 'vsplit’),
id = "enthought.traits.doc.example.treeeditor’,
dock = ’'vertical’)

class TreeHandler (Handler):
def employee_department (self, editor,
dept = editor.get_parent (object)
print ’%s works in the %s department.’ %\
(object.name, dept.name)

object):

Tree editor
tree_editor = TreeEditor(

nodes = [
TreeNode (node_for = [Company],
auto_open = True,
children = "'
label = "name’,
view = View (Group (' name’,
orientation=’vertical’,
show_left=True))),
TreeNode (node_for = [Company],
auto_open = True,

5.10. Advanced Trait Editors

143

Traits 3 User Manual, Release 3.2.1

children = ’departments’,

label = ’"=Departments’,

view = no_view,

add = [Department]),

TreeNode (node_for = [Company],

auto_open = True,

children = ’employees’,

label = "=Employees’,

view = no_view,

add = [Employee 1),

TreeNode (node_for = [Department],

auto_open = True,

children = ’employees’,

label = "name’,

menu = Menu (NewAction,
Separator (),
DeleteAction,
Separator (),
RenameAction,
Separator (),
CopyAction,
CutAction,
PasteAction),

view = View(Group (’name’,

orientation='vertical’,
show_left=True)),

add = [Employee]),
TreeNode (node_for = [Employee],
auto_open = True,
label = "name’,
menu=Menu (NewAction,
Separator (),
def_title_action,
dept_action,
Separator (),
CopyAction,
CutAction,
PasteAction,
Separator (),
DeleteAction,
Separator (),
RenameAction),
view = employee_view)
]
)
The main view
view = View (
Group (
Item (
name = ’company’,
id = ’company’,
editor = tree_editor,
resizable = True),
orientation = ’vertical’,
show_labels = True,
show_left = True,),
title = ’Company Structure’,

144 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

id = \
"enthought.traits.ui.tests.tree_editor_test’,
dock = ’"horizontal’,
drop_class = HasTraits,
handler = TreeHandler (),
buttons = ['Undo’, 'OK’, ’Cancel’ 1],
resizable = True,
width = .3,
height = .3)
if _ name_ == '_ _main__':
owner.configure_traits(view = view)

Defining Nodes

For details on the attributes of the TreeNode class, refer to the Traits API Reference.

You must specify the classes whose instances the node type applies to. Use the node_for attribute of TreeNode to
specify a list of classes; often, this list contains only one class. You can have more than one node type that applies to
a particular class; in this case, each object of that class is represented by multiple nodes, one for each applicable node
type. In Figure 54, one Company object is represented by the nodes labeled “Acme Labs, Inc.”, “Departments”, and
“Employees”.

A Node Type without Children

To define a node type without children, set the children attribute of TreeNode to the empty string. In Example 16, the
following lines define the node type for the node that displays the company name, with no children:

TreeNode (node_for = [Company 1],
auto_open = True,
children = "7,
label = ’'name’,

view View (Group (' name’,
orientation=’'vertical’,

show_left=True))),

A Node Type with Children

To define a node type that has children, set the children attribute of TreeNode to the (extended) name of a trait on
the object that it is a node for; the named trait contains a list of the node’s children. In Example 16, the following
lines define the node type for the node that contains the departments of a company. The node type is for instances of
Company, and ‘departments’ is a trait attribute of Company.

TreeNode (node_for = [Company 1],
auto_open = True,
children = ’'departments’,
label = ’=Departments’,
view = no_view,
add = [Department]),

5.10. Advanced Trait Editors 145

Traits 3 User Manual, Release 3.2.1

Setting the Label of a Tree Node

The label attribute of Tree Node can work in either of two ways: as a trait attribute name, or as a literal string.

If the value is a simple string, it is interpreted as the extended trait name of an attribute on the object that the node is
for, whose value is used as the label. This approach is used in the code snippet in A Node Type without Children.

If the value is a string that begins with an equals sign (‘="), the rest of the string is used as the literal label. This
approach is used in the code snippet in A Node Type with Children.

You can also specify a callable to format the label of the node, using the formatter attribute of TreeNode.

Defining Operations on Nodes

You can use various attributes of TreeNode to define operations or behavior of nodes.

Shortcut Menus on Nodes

Use the menu attribute of TreeNode to define a shortcut menu that opens when the user right-clicks on a node. The
value is a Traits UI or PyFace menu containing Action objects for the menu commands. In Example 16, the following
lines define the node type for employees, including a shortcut menu for employee nodes:

TreeNode (node_for = [Department],

auto_open = True,

children = ’'employees’,

label = ’'name’,

menu = Menu (NewAction,
Separator (),
DeleteAction,
Separator (),
RenameAction,
Separator (),
CopyAction,
CutAction,

PasteAction),

view = View(Group (’name’,
orientation=’'vertical’,
show_left=True)),

add = [Employee 1),

Allowing the Hierarchy to Be Modified

If a node contains children, you can allow objects to be added to its set of children, through operations such as dragging
and dropping, copying and pasting, or creating new objects. Two attributes control these operations: add and move.
Both are lists of classes. The add attribute contains classes that can be added by any means, including creation. The
code snippet in the preceding section (8.2.7.2.1) includes an example of the add attribute. The move attribute contains
classes that can be dragged and dropped, but not created. The move attribute need not be specified if all classes that
can be moved can also be created (and therefore are specified in the add value).

Note: The add attribute alone is not enough to create objects.

Specifying the add attribute makes it possible for objects of the specified classes to be created, but by itself, it does
not provide a way for the user to do so. In the code snippet in the preceding section (Shortcut Menus on Nodes),
‘NewAction’ in the Menu constructor call defines a New > Employee menu item that creates Employee objects.

146 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

In the example tree editor, users can create new employees using the New > Employee shortcut menu item, and they
can drag an employee node and drop it on a department node. The corresponding object becomes a member of the
appropriate list.

You can specify the label that appears on the New submenu when adding a particular type of object, using the name
attribute of TreeNode. Note that you set this attribute on the tree node type that will be added by the menu item, not
the node type that contains the menu item. For example, to change New > Employee to New > Worker, set name =
"Worker’ on the tree node whose node_for value contains Employee. If this attribute is not set, the class name is
used.

You can determine whether a node or its children can be copied, renamed, or deleted, by setting the following attributes
on TreeNode:

Attribute If True, the ... can be...
copy object’s children | copied.
delete object’s children | deleted.
delete_me object deleted.
rename object’s children | renamed.
rename_me | object renamed.

All of these attributes default to True. As with add, you must also define actions to perform these operations.

Behavior on Nodes

As the user clicks in the tree, you may wish to enable certain program behavior.

You can use the selected parameter to specify the name of a trait attribute on the current context object to synchronize
with the user’s current selection. For example, you can enable or disable menu items or toolbar icons depending on
which node is selected. The synchronization is two-way; you can set the attribute referenced by selected to force the
tree to select a particular node.

The on_select and on_dclick parameters are callables to invoke when the user selects or double-clicks a node, respec-
tively.

Expanding and Collapsing Nodes

You can control some aspects of expanding and collapsing of nodes in the tree.

The integer auto_open parameter of TreeEditor() determines how many levels are expanded below the root node, when
the tree is first displayed. For example, if auto_open is 2, then two levels below the root node are displayed (whether
or not the root node itself is displayed, which is determined by hide_root).

The Boolean auto_open attribute of TreeNode determines whether nodes of that type are expanded when they are
displayed (at any time, not just on initial display of the tree). For example, suppose that a tree editor has auto_open
setting of 2, and contains a tree node at level 3 whose auto_open attribute is True. The nodes at level 3 are not
displayed initially, but when the user expands a level 2 node, displaying the level 3 node, that’s nodes children are
automatically displayed also. Similarly, the number of levels of nodes initially displayed can be greater than specified
by the tree editor’s auto_open setting, if some of the nodes have auto_open set to True.

If the auto_close attribute of TreeNode is set to True, then when a node is expanded, any siblings of that node are
automatically closed. In other words, only one node of this type can be expanded at a time.

5.10. Advanced Trait Editors 147

Traits 3 User Manual, Release 3.2.1

Editing Objects

One pane of the tree editor displays a user interface for editing the object that is selected in the tree. You can specify
a View to use for each node type using the view attribute of TreeNode. If you do not specify a view, then the default
view for the object is displayed. To suppress the editor pane, set the editable parameter of TreeEditor() to False; in this
case, the objects represented by the nodes can still be modified by other means, such as shortcut menu commands.

You can define multiple tree editors that share a single editor pane. Each tree editor has its own tree pane. Each time
the user selects a different node in any of the sharing tree controls, the editor pane updates to display the user interface

for the selected object. To establish this relationship, do the following:

1. Call TreeEditor() with the shared_editor parameter set to True, without defining any tree nodes. The object this

call returns defines the shared editor pane. For example:

my_shared_editor_pane = TreeEditor (shared_editor=True)

2. For each editor that uses the shared editor pane:

¢ Set the shared_editor parameter of TreeEditor() to True.

* Set the editor parameter of TreeEditor() to the object returned in Step 1.

For example:

shared_tree_1 = TreeEditor (shared_editor
my_shared_editor_pane,
TreeNode (# ...

editor =

nodes = [

)

shared_tree_2 = TreeEditor (shared_editor
my_shared_editor_pane,
TreeNode (# ...

1

2

3

4

5]
6

7

8

editor =

9 nodes = [

11 J

Defining the Format

Several parameters to TreeEditor() affect the formatting of the tree control:

 show_icons: If True (the default), icons are displayed for the nodes in the tree.

* icon_size: A two-integer tuple indicating the size of the icons for the nodes.

* lines_mode: Determines whether lines are displayed between related nodes. The valid values are ‘on’, ‘off’, and
‘appearance’ (the default). When set to ‘appearance’, lines are displayed except on Posix-based platforms.

¢ hide_root: If True, the root node in the hierarchy is not displayed. If this parameter were specified as True in
Example 16, the node in Figure 54 that is labeled “Acme Labs, Inc.” would not appear.

Additionally, several attributes of TreeNode also affect the display of the tree:

* icon_path: A directory path to search for icon files. This path can be relative to the module it is used in.

¢ jcon_item: The icon for a leaf node.

* icon_open: The icon for a node with children whose children are displayed.

* icon_group: The icon for a node with children whose children are not displayed.

148

Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

The wxWidgets implementation automatically detects the bitmap format of the icon.

5.11 “Extra” Trait Editor Factories

The enthought.traits.ui.wx package defines a few editor factories that are specific to the wxWidgets toolkit, some of
which are also specific to the Microsoft Windows platform. These editor factories are not necessarily implemented for
other GUI toolkits or other operating system platforms.

5.11.1 AnimatedGIFEditor()

Suitable for File
Default for (none)
Optional parameters playing

AnimatedGIFEditor() generates a display of the contents of an animated GIF image file. The Boolean playing param-
eter determines whether the image is animated or static.

5.11.2 ArrayViewEditor()

Suitable for 2-D Array, 2-D CArray
Default for (none)
Optional parameters format, show_index, titles, transpose

ArrayViewEditor() generates a tabular display for an array. It is suitable for use with large arrays, which do not work
well with the editors generated by ArrayEditor(). All styles of the editor have the same appearance.

Inde:x | i | W | z |/§
1] 0.6415 0.1716 0.3135
1 0.9506 0.9574 0.3325
2 0.9696 0.4p12 0.9167
3 0.0874 0.8570 0.4527
4 0.92083 0.3019 0.4016
5 0.4965 0.0a899 0.0584
B 0.3133 0.7694 n.7709
7 0.35249 n.4122 0.4434
g 0.2343 0.0653 0.4604
9 0.3321 0.3810 0.7016
10 0.6647 0.1653 0.0380
T 0.5732 0.4490 0.4782
1z 0.2916 0.7a09 0.5600
13 0.38063 0.7893 n.15248
14 0.7553 n.723z2 0.3891
15 0.73549 0.9720 0.6558 o

Figure 5.55: Figure 55: Array view editor

5.11.3 FlashEditor()

Suitable for string traits, Enum(string values)

5.11. “Extra” Trait Editor Factories 149

Traits 3 User Manual, Release 3.2.1

Default for (none)

FlashEditor() generates a display of an Adobe Flash Video file, using an ActiveX control (if one is installed on the
system). This factory is available only on Microsoft Windows platforms. The attribute being edited must have a value
whose text representation is the name or URL of a Flash video file. If the value is a Unicode string, it must contain
only characters that are valid for filenames or URLs.

5.11.4 HistoryEditor()

Suitable for string traits
Default for (none)
Optional parameters entries

HistoryEditor() generates a combo box, which allows the user to either enter a text string or select a value from a list
of previously-entered values. The same control is used for all editor styles. The entries parameter determines how
many entries are preserved in the history list. This type of control is used as part of the simple style of file editor; see
FileEditor().

5.11.5 IEHTMLEditor()

Suitable for string traits, Enum(string values)
Default for (none)
Optional parameters back, forward, home, html, page_loaded, refresh, search, status, stop, title

IEHTMLEditor() generates a display of a web page, using Microsoft Internet Explorer (IE) via ActiveX to render the
page. This factory is available only on Microsoft Windows platforms. The attribute being edited must have value
whose text representation is a URL. If the value is a Unicode string, it must contain only characters that are valid for
URLs.

The back, forward, home, refresh, search and stop parameters are extended names of event attributes that represent the
user clicking on the corresponding buttons in the standard IE interface. The IE buttons are not displayed by the editor;
you must create buttons separately in the View, if you want the user to be able to actually click buttons.

The html, page_loaded, status, and title parameters are the extended names of string attributes, which the editor
updates with values based on its own state. You can display these attributes elsewhere in the View.

 html: The current page content as HTML (as would be displayed by the View > Source command in IE).

* page_loaded: The URL of the currently displayed page; this may be different from the URL represented by the
attribute being edited.

* status: The text that would appear in the IE status bar.

* title: The title of the currently displayed page.

5.11.6 ImageEditor()

Suitable for (any)
Default for (none)

Optional parameters image

150 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

ImageEditor() generates a read-only display of an image. The image to be displayed is determined by the image
parameter, or by the value of the trait attribute being edited, if image is not specified. In either case, the value must be
a PyFace ImageResource (enthought.pyface.api.ImageResource), or a string that can be converted to one. If image is
specified, then the type and value of the trait attribute being edited are irrelevant and are ignored.

5.11.7 LEDEditor()

Suitable for numeric traits
Default for (none)
Optional parameters alignment, format_str

LEDEditor() generates a display that resembles a “digital” display using light-emitting diodes. All styles of this editor
are the same, and are read-only.

The alignment parameter can be ‘left’, ‘center’, or ‘right’ to indicate how the value should be aligned within the
display. The default is right-alignment.

Figure 5.56: Figure 56: LED Editor with right alignment

5.11.8 ThemedButtonEditor()

Suitable for Event
Default for (none)

Optional parameters label, theme, down_theme, hover_theme, disabled_theme, image, position, spac-
ing, view

The ThemedButtonEditor() factory generates a button that is formatted according to specified or default themes. All
editor styles have the same appearance.

Figure 5.57: Figure 57: Themed buttons in various states

The theme-related parameters determine the appearance of the button in various states. Figure 57 shows the default
theme.

5.11.9 ThemedCheckboxEditor()

Suitable for Boolean
Default for (none)

Optional parameters label, theme, hover_off_image, hover_off _theme, hover_on_image,
hover_on_theme, image, on_image, on_theme, position, spacing

The ThemedCheckboxEditor() factory generates a checkbox that is formatted according to specified or default themes.
All editor styles have the same appearance.

Figure 5.58: Figure 58: Themed checkbox in various states

5.11. “Extra” Trait Editor Factories 151

Traits 3 User Manual, Release 3.2.1

The theme-related parameters determine the appearance of the checkbox in the various states. shows the default theme.
If label is not specified for the editor factory, the value is inherited from the label value of the enclosing Item. Both
labels may be displayed, if the Item’s label is not hidden.

5.11.10 ThemedSliderEditor()

Suitable for Range
Default for (none)

Optional parameters alignment, bg_color, high, increment, low, show_value, slider_color, text_color,
tip_color

The ThemedSliderEditor() factory generates a slider control that is formatted according to specified or default themes.
All editor styles have the same appearance. The value is edited by modifying its textual representation. The back-
ground of the control updates to reflect the value relative to the total range represented by a slider. For example, if the
range is from -2 to 2, a value of 0 is represented by a bar covering the left half of the control area, as shown in Figure
59.

Figure 5.59: Figure 59: Themed slider without focus, and with focus

5.11.11 ThemedTextEditor()

Suitable for Str, String, Unicode, CStr, CUnicode, and any trait whose value is a string
Default for (none)

Optional parameters auto_set, enter_set, evaluate, evaluate_name, mapping, multi_line, password,
theme

The ThemedTextEditor() factory generates a text editor that is formatted according to a specified theme. If no theme
is specified, the editor uses the theme, if any, specified by the surrounding Group or View. Thus, there is no default
theme. All editor styles have the same appearance, except the read-only style, which is not editable.

Figure 5.60: Figure 60: Themed text editor, without focus and with focus

5.11.12 ThemedVerticalNotebookEditor()

Suitable for Lists of Instances
Default for (none)

Optional parameters closed_theme, double_click, open_theme, page_name, multiple_open, scrollable,
view

The ThemedVerticalNotebookEditor() factory generates a “notebook” editor, containing tabs that can be vertically
expanded or collapsed. It can be used for lists of instances, similarly to the ListEditor() factory, with the use_notebook
parameter. You can specify themes to use for the open and closed states of the tabs.

Figure 5.61: Figure 61: Themed vertical notebook, with tabs for Person instances closed

152 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

Figure 5.62: Figure 62: Themed vertical notebook, with one tab open

5.12 Tips, Tricks and Gotchas

5.12.1 Getting and Setting Model View Elements

For some applications, it can be necessary to retrieve or manipulate the View objects associated with a given model
object. The HasTraits class defines two methods for this purpose: trait_views() and trait_view().

trait_views()

The trait_views() method, when called without arguments, returns a list containing the names of all Views defined
in the object’s class. For example, if sam is an object of type SimpleEmployee3 (from Example 6), the method call
sam.trait_views () returnsthe list ["all_view’, 'traits_view’].

s

Alternatively, a call to ‘trait_views (view_element_type)’ returns a list of all named instances of class
view_element_type defined in the object’s class. The possible values of view_element_type are:

* View

* Group

e [tem

* ViewElement

* ViewSubElement

Thus calling trait_views (View) 1is identical to calling trait_views (). Note that the call
sam.trait_views (Group) returns an empty list, even though both of the Views defined in SimpleEmployee
contain Groups. This is because only named elements are returned by the method.

Group and Item are both subclasses of ViewSubElement, while ViewSubElement and View are both subclasses of
ViewElement. Thus, acallto trait_views (ViewSubElement) returns a list of named Items and Groups, while
trait_views (ViewElement) returns a list of named Items, Groups and Views.

trait_view()

The trait_view() method is used for three distinct purposes:
¢ To retrieve the default View associated with an object
¢ To retrieve a particular named ViewElement (i.e., Item, Group or View)
¢ To define a new named ViewElement

For example:

e obj.trait_view () returns the default View associated with object obj. For example,
sam.trait_view () returns the View object called traits_view. Note that unlike trait_views(),
trait_view() returns the View itself, not its name.

e obj.trait_view ('my_view’) returns the view element named my_view (or None if my_view is not
defined).

* obj.trait_view ('my_group’, Group(’a’, ’'b’)) defines a Group with the name my_group.
Note that although this Group can be retrieved using trait_view (), its name does not appear in the list

5.12. Tips, Tricks and Gotchas 153

Traits 3 User Manual, Release 3.2.1

returned by traits_view (Group). This is because my_group is associated with obj itself, rather than
with its class.

5.13 Appendix I: Glossary of Terms

attribute An element of data that is associated with all instances of a given class, and is named at the class level.
19 In most cases, attributes are stored and assigned separately for each instance (for the exception, see class
attribute). Synonyms include “data member” and “instance variable”.

class attribute An element of data that is associated with a class, and is named at the class level. There is only one
value for a class attribute, associated with the class itself. In contrast, for an instance attribute, there is a value
associated with every instance of a class.

command button A button on a window that globally controls the window. Examples include OK, Cancel, Apply,
Revert, and:guilabel:* Help®.

controller The element of the MVC (“model-view-controller”) design pattern that manages the transfer of informa-
tion between the data model and the view used to observe and edit it.

dialog box A secondary window whose purpose is for a user to specify additional information when entering a
command.

editor A user interface component for editing the value of a trait attribute. Each type of trait has a default editor, but
you can override this selection with one of a number of editor factories provided by the Traits UI package. In
some cases an editor can include multiple widgets, e.g., a slider and a text box for a Range trait attribute.

editor factory An instance of the Traits class EditorFactory. Editor factories generate the actual widgets used in a
user interface. You can use an editor factory without knowing what the underlying GUI toolkit is.

factory An object used to produce other objects at run time without necessarily assigning them to named variables
or attributes. A single factory is often parameterized to produce instances of different classes as needed.

Group An object that specifies an ordered set of Items and other Groups for display in a Traits UI View. Various
display options can be specified by means of attributes of this class, including a border, a group label, and the
orientation of elements within the Group. An instance of the Traits UI class Group.

Handler A Traits UI object that implements GUI logic (data manipulation and dynamic window behavior) for one
or more user interface windows. A Handler instance fills the role of controller in the MVC design pattern. An
instance of the Traits UI class Handler.

HasTraits A class defined in the Traits package to specify objects whose attributes are typed. That is, any attribute
of a HasTraits subclass can be a trait attribute.

instance A concrete entity belonging to an abstract category such as a class. In object-oriented programming termi-
nology, an entity with allocated memory storage whose structure and behavior are defined by the class to which
it belongs. Often called an object.

Item A non-subdividable element of a Traits user interface specification (View), usually specifying the display op-
tions to be used for a single trait attribute. An instance of the Traits UI class Item.

live A term used to describe a window that is linked directly to the underlying model data, so that changes to data in
the interface are reflected immediately in the model. A window that is not live displays and manipulates a copy
of the model data until the user confirms any changes.

livemodal A term used to describe a window that is both /ive and modal.

19 This is not always the case in Python, where attributes can be added to individual objects.

154 Chapter 5. Traits Ul User Guide

Traits 3 User Manual, Release 3.2.1

MVC A design pattern for interactive software applications. The initials stand for “Model-View-Controller”, the
three distinct entities prescribed for designing such applications. (See the glossary entries for model, view, and
controller.)

modal A term used to describe a window that causes the remainder of the application to be suspended, so that the
user can interact only with the window until it is closed.

model A component of the MVC design pattern for interactive software applications. The model consists of the set
of classes and objects that define the underlying data of the application, as well as any internal (i.e., non-GUI-
related) methods or functions on that data.

nonmodal A term used to describe a window that is neither /ive nor modal.
object Synonym for instance.

panel A user interface region similar to a window except that it is embedded in a larger window rather than existing
independently.

predefined trait type Any trait type that is built into the Traits package.

subpanel A variation on a panel that ignores (i.e., does not display) any command buttons.

trait A term used loosely to refer to either a frait type or a trait attribute.

trait attribute An arrribute whose type is specified and checked by means of the Traits package.
trait type A type-checked data type, either built into or implemented by means of the Traits package.
Traits An open source package engineered by Enthought, Inc. to perform explicit typing in Python.
Traits UL A high-level user interface toolkit designed to be used with the Traits package.

View A template object for constructing a GUI window or panel for editing a set of traits. The structure of a View is
defined by one or more Group or Item objects; a number of attributes are defined for specifying display options
including height and width, menu bar (if any), and the set of buttons (if any) that are displayed. A member of
the Traits UI class View.

view A component of the MVC design pattern for interactive software applications. The view component encom-
passes the visual aspect of the application, as opposed to the underlying data (the model) and the application’s
behavior (the controller).

ViewElement A View, Group or Item object. The ViewElement class is the parent of all three of these subclasses.
widget An interactive element in a graphical user interface, e.g., a scrollbar, button, pull-down menu or text box.

wizard An interface composed of a series of dialog box windows, usually used to guide a user through an interactive
task such as software installation.

wx A shorthand term for the low-level GUI toolkit on which TraitsUI and PyFace are currently based (wxWidgets)
and its Python wrapper (wxPython).

5.14 Appendix II: Editor Factories for Predefined Traits

Predefined traits that are not listed in this table use TextEditor() by default, and have no other appropriate editor
factories.

| Trait | Default Editor Factory Other Possible Editor Factories
Any TextEditor EnumEditor, ImageEnumEditor, ValueEditor
Array ArrayEditor (for 2-D arrays)
Bool BooleanEditor ThemedCheckboxEditor

\ Continued on next page |

5.14. Appendix lI: Editor Factories for Predefined Traits 155

http://wxwidgets.org
http://www.wxpython.org

Traits 3 User Manual,

Release 3.2.1

Table 5.1 — continued from previous page

Button ButtonEditor
CArray ArrayEditor (for 2-D arrays)
CBool BooleanEditor
CComplex TextEditor
CFloat, CInt, CLong | TextEditor LEDEditor
Code CodeEditor
Color ColorEditor
Complex TextEditor
CStr, CUnicode TextEditor (multi_line=True) | CodeEditor, HTMLEditor
Dict TextEditor ValueEditor
Directory DirectoryEditor
Enum EnumEditor ImageEnumEditor
Event (none) ButtonEditor, ToolbarButtonEditor
File FileEditor AnimatedGIFEditor
Float TextEditor LEDEditor
Font FontEditor
HTML HTMLEditor
Instance InstanceEditor TreeEditor, DropEditor, DNDEditor,
List TableEditor for lists of HasTraits objects; ListEditor for all other lists. | CheckListEditor, SetEditor, ValueEd;
Long TextEditor LEDEditor
Password TextEditor(password=True)
PythonValue ShellEditor
Range RangeEditor ThemedSliderEditor
Regex TextEditor CodeEditor
RGBColor RGBColorEditor
Str TextEditor(multi_line=True) CodeEditor, HTMLEditor
String TextEditor CodeEditor, ThemedTextEditor
This InstanceEditor
ToolbarButton ButtonEditor
Tuple TupleEditor
UlDebugger ButtonEditor (button calls the UIDebugEditor factory)
Unicode TextEditor(multi_line=True) HTMLEditor
WeakRef InstanceEditor
156 Chapter 5. Traits Ul User Guide

CHAPTER
SIX

INDICES AND TABLES

e Index

e Module Index

 Search Page
e Search Page

157

	Traits 3 User Manual
	Traits 3 User Manual
	Introduction
	Defining Traits: Initialization and Validation
	Trait Notification
	Deferring Trait Definitions
	Custom Traits
	Advanced Topics

	Indices and tables
	Traits 3 Tutorials
	Writing a graphical application for scientific programming using TraitsUI

	Indices and tables
	Traits UI User Guide
	Traits UI User Guide
	Introduction
	The View and Its Building Blocks
	Customizing a View
	Advanced View Concepts
	Controlling the Interface: the Handler
	Traits UI Themes
	Introduction to Trait Editor Factories
	The Predefined Trait Editor Factories
	Advanced Trait Editors
	``Extra'' Trait Editor Factories
	Tips, Tricks and Gotchas
	Appendix I: Glossary of Terms
	Appendix II: Editor Factories for Predefined Traits

	Indices and tables

