The Org Manual

Release 8.3.4 (release’8.3.4)

by Carsten Dominik

with contributions by Bastien Guerry, Nicolas Goaziou, Eric Schulte, Jambunathan K, Dan
Davison, Thomas Dye, David O’Toole, and Philip Rooke.

This manual is for Org version 8.3.4 (release’8.3.4).
Copyright (©) 20042016 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual.”

Short Contents

1 Introduction 1
2 Document structure e 6
3 Tables ... 19
4 Hyperlinks. 38
5 TODO ItemS « oo e e e e e 46
6 TagS. . e 59
7 Properties and columns oo, 64
8 Datesand times 73
9 Capture - Refile - Archive 89
10 Agenda VIEWS . . oottt e 100
11 Markup for rich export.......... ..., 129
12 Exportingo 140
13 Publishing 185
14 Working with source code 195
15 Miscellaneoust 224
A Hackingii i 237
B MobileOrg 252
C History and acknowledgments 254
D GNU Free Documentation License. 260
Concept INAeX .« v v v v e 268
Keyindex 277
Command and function index 282

Variable iIndex.o oo 286

Table of Contents

1 Introduction.................., 1
1.1 SUIMINATY . ettt e e e e e e e e 1
1.2 Installation 2
1.3 Activationoui 3
1.4 Feedback.........ooiiii e 3
1.5 Typesetting conventions used in this manual....................)

2 Document structure............................ 6
2.1 OULHNES .. e ettt 6
2.2 HeadlineSovin e 6
2.3 Visibility cyclingo 6

2.3.1 Global and local cycling i 6

2.3.2 Initial visibility...... ... 8

2.3.3 Catching invisible edits........... ... i 8
2.4 MOtION. ..ot 8
2.5 Structure editing....... ..ot 9
2.6 SPATSE TTES . . ottt ettt et e 11
2.7 Plain lists. ... 12
2.8 DIaWeTrS. ..t e 15
2.9 BlocKks ..o 16
2.10 Footnotes.o 16
2.11 The Orgstruct minor mode. ..., 18
2,12 O SYIEAX .ttt et ettt e 18

3 Tables........... 19
3.1 The built-in table editor.......... ... oo i 19
3.2 Column width and alignment.................................. 22
3.3 Column groUupPS.vte it e e 23
3.4 The Orgtbl minor mode......... ..o, 24
3.5 The spreadsheet....... ... oo i 24

3.5.1 Referenceso 24
3.5.2 Formula syntax for Calc............o L. 27
3.5.3 Emacs Lisp forms as formulas 29
3.5.4 Durations and time values................................ 29
3.5.5 Field and range formulas.............. oo 29
3.5.6 Column formulas............. .. i i 30
3.5.7 Lookup functions.............ciiiiiiiiiiii 31
3.5.8 Editing and debugging formulas............. 31
3.5.9 Updating the table....... 34
3.5.10 Advanced features......... ... 34

3.6 Org-Plot. ..o 36

4 Hyperlinks.......... 38
4.1 Link format........ .o 38
4.2 Internal links ... o 38

4.2.1 Radio targetsoouiiiiiii i 39
4.3 External links..........o 39
4.4 Handling links ... 41
4.5 Using links outside Orgo 44
4.6 Link abbreviationso i i 44
4.7 Search options in file links............ 45
4.8 Custom Searches........ ...t 45

TODO items...................... i .. 46
5.1 Basic TODO functionality............. 46
5.2 Extended use of TODO keywordscooiiiiiii... 47

5.2.1 TODO keywords as workflow states 47

5.2.2 TODO keywords as typesvvevriieiiiieainannn 48

5.2.3 Multiple keyword sets in one file.......................... 48

5.2.4 Fast access to TODO states ..., 49

5.2.5 Setting up keywords for individual files................... 49

5.2.6 Faces for TODO keywords...........ocoviiiiiiiiiiiinn. 50

5.2.7 TODO dependenciesoouuieeiirinenninannnnn... 50
5.3 Progress logging i 52

5.3.1 Closing itemsttt 52

5.3.2 Tracking TODO state changes............................ 52

5.3.3 Tracking your habits i 53
5.4 Priorities 59
5.5 Breaking tasks down into subtasksl 56
5.6 CheckboXest 56

Tags . oo 59
6.1 Tag inheritance oo 59
6.2 Setting tagS . vttt 59
6.3 Tag hierarchyo 62
6.4 Tagsearchesooii i 63
Properties and columns....................... 64
7.1 Property syntax........ ..o 64
7.2 Special propertiesttt 66
7.3 Property searches......... ..o 66
7.4 Property Inheritance......... ... 67
7.5 Column VIEW.ttt 67
7.5.1 Defining columns. ... 68
7.5.1.1 Scope of column definitions.......................... 68
7.5.1.2 Column attributes........... ..., 68

7.5.2 Using column View ..., 70
7.5.3 Capturing column view......... ..., 71

7.6 The Property APL 72

iii

8 Datesand times............................... 73
8.1 Timestamps, deadlines, and scheduling 73
8.2 Creating timestampst 74

8.2.1 The date/time promptc..oviiiiiiiiiiii... 75
8.2.2 Custom time format.............. ... i i 7
8.3 Deadlines and scheduling............ L 7
8.3.1 Inserting deadlines or schedules........................... 78
8.3.2 Repeated tasks.........cc i 79
8.4 Clocking work time i 80
8.4.1 Clocking commands.............oiiiiiiiiiiiii.. 81
8.4.2 Theclock table........ ... 82
8.4.3 Resolving idle time and continuous clocking............... 85
8.5 Effort estimates......... .o 86
8.6 Taking notes with a timer............. L. 87

9 Capture - Refile - Archive.................... 89

0.1 CaPtULE. - ettt e 89
9.1.1 Setting up captureooiiiiiiiiieiiii .. 89
9.1.2 Using captureoovnniiii e 89
9.1.3 Capture templates ..., 90

9.1.3.1 Template elementscooiiiiii .. 91
9.1.3.2 Template expansionccooviiiiiiiiiieea.... 93
9.1.3.3 Templates in contextsccoviiiiiiiea.... 94

9.2 Attachments.......... ...t 94

9.3 RSSfeeds.....coouiiii 96

9.4 Protocols for external access.............cooiiiiiiiiii ... 96

9.5 Refile and copy .« .ovvviiiin 96

9.6 Archivingot 97
9.6.1 Moving a tree to the archive file.......................... 98
9.6.2 Internal archivingo i i 98

10 Agenda views 100
10.1 Agenda files ... 100
10.2 The agenda dispatcher........... ... i L 101
10.3 The built-in agenda Views........ ..o, 102

10.3.1 The weekly/daily agenda...............cooooiiiia.. 102
10.3.2 The global TODO list.........cooiiiiiiiiiii .. 104
10.3.3 Matching tags and properties 105
10.3.4 Timeline for a single file........., 107
10.3.5 Search view 108
10.3.6 Stuck projectso 108

10.4 Presentation and sorting................coiiiiiiiiiiia 109
10.4.1 Categories . ..ovv vt 109
10.4.2 Time-of-day specifications................. ... ooo... 109
10.4.3 Sorting agenda items. ..., 110
10.4.4 Filtering/limiting agenda items......................... 110

10.5 Commands in the agenda buffer............................. 113

iv

10.6 Custom agenda VIEWSovirrteeniriteniieenanennns 122

10.6.1 Storing searches........ ... 122
10.6.2 Block agendao 123
10.6.3 Setting options for custom commands 123
10.7 Exporting agenda views...........c..iiiiiiiiiiiiiii 125
10.8 Using column view in the agenda............................ 127
11 Markup for rich export.................. ... 129
11.1 Structural markup elements............, 129
11.2 Images and Tables....... ... 131
11.3 Literal examples...... ... 132
11.4 Include files.o 133
11.5 Index entries.coouuiiiiiii e 134
11.6 Macro replacement. ... 135
11.7 Embedded IXTEXo 136
11.7.1 Special symbols........ ..o 136
11.7.2 Subscripts and superscriptsc.oiiiiiiii... 136
11.7.3 ITEX fragmentsooviiii i 137
11.7.4 Previewing INTEX fragments........t 137
11.7.5 Using CDIXTEX to enter math.............. 138
11.8 Special blocks. ... i 139
12 Exporting............. ..., 140
12.1 The export dispatcher i 140
12.2 Export back-ends.......... 141
12.3 Export settings...... ..o 141
12.4 ASCII/Latin-1/UTF-8 eXportc.cvuuiuiinenninennan.. 144
12.5 Beamer eXport. 145
12.5.1 Beamer export commands.............cooiiiiiiiiii.. 145
12.5.2 Beamer specific export settings......................... 145
12.5.3 Sectioning, Frames and Blocks in Beamer............... 146
12.5.4 Beamer specific syntax........... ... i 147
12.5.5 Editing support....... .o 148
12.5.6 A Beamer example...........ooiiiiiiiiiiiii ., 148
12.6 HTML eXPOTt ..ottt e 149
12.6.1 HTML export commandsccoiiiiiiiiea.n.. 149
12.6.2 HTML Specific export settings, 149
12.6.3 HTML doctypesooveviiiiii it 150
12.6.4 HTML preamble and postamble........................ 151
12.6.5 Quoting HTML tagscovviiiiiiiiii .. 151
12.6.6 Links in HTML export..........ccooiiiiiiiiiiii... 152
12.6.7 Tables in HTML export.........coooiiiiiiiiiiiia.n. 152
12.6.8 Images in HTML export 153
12.6.9 Math formatting in HTML export...................... 153
12.6.10 Text areas in HTML export.............. ..ot 153
12.6.11 CSS SUPPOTt . v vve ettt 154
12.6.12 JavaScript supported display of web pages............. 155

12.7 TEX and PDF export. 156

12.7.1 ETEX export commandsoovuveennineninnnnnn.. 156

12.7.2 IATEX specific export settingscoooeiiiiinn. 156
12.7.3 Header and sectioning structure........................ 157
12.7.4 Quoting BTEX code.ot 158
12.7.5 IATEX specific attributes oL 158
12.8 Markdown export..........ooiiiiiiiii e 162
12.9 OpenDocument Text export..........c.cooiiiiiiiiieniia... 163
12.9.1 Pre-requisites for ODT export...............oooion... 163
12.9.2 ODT export commandsccovvuiiieiiineeann... 163
12.9.3 ODT specific export settingscoooviii.. 164
12.9.4 Extending ODT exportc.ccoiiiiiiiiiiii... 164
12.9.5 Applying custom styles.......... ... 164
12.9.6 Links in ODT export.........ccooiiiiiiiiiiiiia.n, 165
12.9.7 Tables in ODT export........coviiiiiiiiiiiiiaann. 165
12.9.8 Images in ODT export ..., 166
12.9.9 Math formatting in ODT export 167
12.9.10 Labels and captions in ODT export 169
12.9.11 Literal examples in ODT export 169
12.9.12 Advanced topics in ODT export..............c.ouo.... 169
12,10 Org eXpoOrt « vttt 174
12.11 Texinfo exXporto 175
12.11.1 Texinfo export commands.............coviiiiieiina... 175
12.11.2 Texinfo specific export settings........................ 175
12.11.3 Document preamble............ ... i 176
12.11.4 Headings and sectioning structure..................... 177
12.11.5 Indices. .. ovoorn i e 177
12.11.6 Quoting Texinfo code i, 178
12.11.7 Texinfo specific attributes................ 178
12.11.8 Anexample. i 178
12.12 iCalendar export........ovriieiii i 180
12.13 Other built-in back-ends............. 181
12.14 Export in foreign buffers.........ol 181
12.15 Advanced configuration............. 181
13 Publishing.............. L. 185
13.1 Configuration........ ... 185
13.1.1 The variable org-publish-project-alist............. 185
13.1.2 Sources and destinations for files............. 185
13.1.3 Selecting files ... 186
13.1.4 Publishing action i 186
13.1.5 Options for the exporterscoiiiiiit. 187
13.1.6 Links between published files........................... 191
13.1.7 Generating a sitemap ..., 191
13.1.8 Generating an index ... 192
13.2 Uploading files.oouuiiii 192
13.3 Sample configuration........... ... i 193
13.3.1 Example: simple publishing configuration 193

13.3.2 Example: complex publishing configuration............. 193

vii

13.4 Triggering publication i, 194
14 Working with source code.................. 195
14.1 Structure of code blocks 195
14.2 Editing source codeot 196
14.3 Exporting code blocks o i 196
14.4 Extracting source code...........ouuiiiiiiiiiiiiiinenenan.. 197
14.5 Evaluating code blocks........... ... i il 198
14.6 Library of Babel........ ... i 199
147 LanguageSttt ettt e 200
14.8 Header argumentsccoouuiiiiiiieiniiiiniieann 201
14.8.1 Using header arguments.............. ..., 201
14.8.2 Specific header arguments............. ... 203
14.8.2.1 tVaT ottt 204
14.8.2.2 tresults ..ottt e 208
14.82.3 file.. .o 209
14.8.2.4 :file-deSC....cuunuiiiiiii i 210
14.8.2.5 tfile=—eXt.oueut i 210
14.8.2.6 :output-dir........... il 210
14.8.2.7 :dir and remote execution........................ 210
14.8.2.8 :1eXPOrtsS ...t 211
14.8.2.9 ttanglecooiutii i 211
14.8.2.10 imKRAITD « oottt e 212
14.8.2.11 :COMMENTS .o\ttt ettt 212
14.8.2.12 :padline..........oiiiiiiiiiiiiii 212
14.8.2.13 :mo-expand...............iiiiiiii 212
14.8.2.14 :sesSion.........oiiiiiiiiii 212
14.8.2.15 tHOWED .. vvt ettt e e 213
14.8.2.16 :noweb-ref........ i 213
14.8.2.17 :nOWEb=SEP....oiini i 214
14.8.2.18 :cache ...t 214
14.8.2.19 1SeP it 215
14.8.2.20 :hlinesoiiinniin i 215
14.8.2.21 :COLNAMES . ..ttt e 216
14.8.2.22 TOWNAMES ...\ttt ettt 217
14.8.2.23 :shebang.............ciiiiiiiiiiiiiii 217
14.8.2.24 :tangle-model 218
14.8.2.25 teval. ...t e 218
14.8.2.26 tWIaD. ..ttt 218
14.8.2.27 1POSt. o 218
14.8.2.28 :prologue.........cooiiuiiiiiiiiii i 219
14.8.2.29 :epilogue........... ...l 220

14.9 Results of evaluation.............o i 220
14.9.1 NON-SESSION . o oot 220
14.9.1.1 :results value......coovviiniiiiiineeeennn.. 220
14.9.1.2 :resultsoutput................ ...l 220
14.9.2 SESSION .\ttt et 220

14.9.2.1 :results value..........ouniiiniiiiiaanann, 220

viii

14.9.22 :resultsoutputoiiiiiiiiiiia, 221

14.10 Noweb reference syntax........ ..., 221
14.11 Key bindings and useful functions................ 222
14.12 Batch executiono 223
15 Miscellaneous L. 224
15.1 Completion 224
15.2 Easy templateso 224
15.3 Speed KeyS. .o .vvin i 225
15.4 Code evaluation and security issues 225
15.5 Customization ... 226
15.6 Summary of in-buffer settings................, 226
15.7 The very busy C-c C-cKkey.......coiiiiiiiii .. 230
15.8 A cleaner outline view 231
15.9 Using Org on a ttyovvnneei e 232
15.10 Interaction with other packages............................ 233
15.10.1 Packages that Org cooperates with.................... 233
15.10.2 Packages that lead to conflicts with Org mode......... 234
15.11 org-crypt.el. ..o 236
Appendix A Hacking.......................... 237
Al HOOKS. .ot 237
A2 Add-on packageso 237
A.3 Adding hyperlink types..........c.ooiiiiiiii i 237
A.4 Adding export back-endso 239
A.5 Context-sensitive commands............c.ooviiiiiii... 239
A.6 Tables and lists in arbitrary syntaxcooe... 240
A6.1 Radiotables........ ..o 240
A.6.2 A KETIEX example of radio tables............. 241
A.6.3 Translator functions.............. i, 242
A6.4 Radio ists....ooieeii 243
A7 Dynamic blockso i 244
A.8 Special agenda VIEWS 245
A9 Speeding up your agendas ... 246
A.10 Extracting agenda information oL 247
A.11 Using the property AP i, 248
A.12 Using the mapping APL 249
Appendix B MobileOrg 252
B.1 Setting up the staging area ... 252
B.2 Pushing to MobileOrg ... 252

B.3 Pulling from MobileOrg 253

Appendix C History and acknowledgments

... 254
C.1 From Carstenoouuer e e 254
C.2 TFrom Bastien..........oooui i 255
C.3 List of contributions.couiiii 255

... 260
Concept index.................... 268
Keyindex............ ... i, 277
Command and function index................... 282

Variable index............ 286

ix

Chapter 1: Introduction 1

1 Introduction

1.1 Summary

Org is a mode for keeping notes, maintaining TODO lists, and project planning with a
fast and effective plain-text system. It also is an authoring system with unique support for
literate programming and reproducible research.

Org is implemented on top of Outline mode, which makes it possible to keep the content
of large files well structured. Visibility cycling and structure editing help to work with the
tree. Tables are easily created with a built-in table editor. Plain text URL-like links connect
to websites, emails, Usenet messages, BBDB entries, and any files related to the projects.

Org develops organizational tasks around notes files that contain lists or information
about projects as plain text. Project planning and task management makes use of metadata
which is part of an outline node. Based on this data, specific entries can be extracted in
queries and create dynamic agenda views that also integrate the Emacs calendar and diary.
Org can be used to implement many different project planning schemes, such as David
Allen’s GTD system.

Org files can serve as a single source authoring system with export to many different
formats such as HTML, IXTEX, Open Document, and Markdown. New export backends can
be derived from existing ones, or defined from scratch.

Org files can include source code blocks, which makes Org uniquely suited for authoring
technical documents with code examples. Org source code blocks are fully functional; they
can be evaluated in place and their results can be captured in the file. This makes it possible
to create a single file reproducible research compendium.

Org keeps simple things simple. When first fired up, it should feel like a straightforward,
easy to use outliner. Complexity is not imposed, but a large amount of functionality is
available when needed. Org is a toolbox. Many users actually run only a (very personal)
fraction of Org’s capabilities, and know that there is more whenever they need it.

All of this is achieved with strictly plain text files, the most portable and future-proof
file format. Org runs in Emacs. Emacs is one of the most widely ported programs, so that
Org mode is available on every major platform.

There is a website for Org which provides links to the newest version of Org, as well as
additional information, frequently asked questions (FAQ), links to tutorials, etc. This page
is located at http://orgmode.org.

An earlier version (7.3) of this manual is available as a paperback book from Network
Theory Ltd.

http://orgmode.org
http://www.network-theory.co.uk/org/manual/
http://www.network-theory.co.uk/org/manual/

Chapter 1: Introduction 2

1.2 Installation

Org is part of recent distributions of GNU Emacs, so you normally don’t need to install it.
If, for one reason or another, you want to install Org on top of this pre-packaged version,
there are three ways to do it:

e By using Emacs package system.
e By downloading Org as an archive.
e By using Org’s git repository.

We strongly recommend to stick to a single installation method.

Using Emacs packaging system
Recent Emacs distributions include a packaging system which lets you install Elisp libraries.
You can install Org with M-x package-install RET org.

Important: you need to do this in a session where no .org file has been visited, i.e., where
no Org built-in function have been loaded. Otherwise autoload Org functions will mess up
the installation.

Then, to make sure your Org configuration is taken into account, initialize the package
system with (package-initialize) in your .emacs before setting any Org option. If you
want to use Org’s package repository, check out the Org ELPA page.

Downloading Org as an archive

You can download Org latest release from Org’s website. In this case, make sure you set
the load-path correctly in your .emacs:
(add-to-list 'load-path ""/path/to/orgdir/lisp")
The downloaded archive contains contributed libraries that are not included in Emacs.
If you want to use them, add the contrib directory to your load-path:
(add-to-1list 'load-path "~“/path/to/orgdir/contrib/lisp" t)

Optionally, you can compile the files and/or install them in your system. Run make help
to list compilation and installation options.

Using Org’s git repository
You can clone Org’s repository and install Org like this:
$ cd “/src/

$ git clone git://orgmode.org/org-mode.git
$ make autoloads

Note that in this case, make autoloads is mandatory: it defines Org’s version in
org-version.el and Org’s autoloads in org-loaddefs.el.

Remember to add the correct load-path as described in the method above.

You can also compile with make, generate the documentation with make doc, create a
local configuration with make config and install Org with make install. Please run make
help to get the list of compilation/installation options.

For more detailed explanations on Org’s build system, please check the Org Build System
page on Worg.

http://orgmode.org/elpa.html
http://orgmode.org/
http://orgmode.org/worg/dev/org-build-system.html

Chapter 1: Introduction 3

1.3 Activation

Since Emacs 22.2, files with the .org extension use Org mode by default. If you are using
an earlier version of Emacs, add this line to your .emacs file:

(add-to-list 'auto-mode-alist '("\\.org\\'" . org-mode))
Org mode buffers need font-lock to be turned on: this is the default in Emacs’.

There are compatibility issues between Org mode and some other Elisp packages, please
take the time to check the list (see Section 15.10.2 [Conflicts], page 234).

The four Org commands org-store-link, org-capture, org-agenda, and
org-iswitchb should be accessible through global keys (i.e., anywhere in Emacs, not just
in Org buffers). Here are suggested bindings for these keys, please modify the keys to your
own liking.

(global-set-key "\C-cl" 'org-store-link)
(global-set-key "\C-ca" 'org-agenda)
(global-set-key "\C-cc" 'org-capture)
(global-set-key "\C-cb" 'org-iswitchb)

To turn on Org mode in a file that does not have the extension .org, make the first line
of a file look like this:

MY PROJECTS —*- mode: org; —*-—

which will select Org mode for this buffer no matter what the file’s name is. See also the
variable org-insert-mode-line-in-empty-file.

Many commands in Org work on the region if the region is active. To make use of this,
you need to have transient-mark-mode (zmacs-regions in XEmacs) turned on. In Emacs
23 this is the default, in Emacs 22 you need to do this yourself with

(transient-mark-mode 1)

If you do not like transient-mark-mode, you can create an active region by using the
mouse to select a region, or pressing C-SPC twice before moving the cursor.

1.4 Feedback

If you find problems with Org, or if you have questions, remarks, or ideas about it, please
mail to the Org mailing list emacs-orgmode@gnu.org. You can subscribe to the list on this
web page. If you are not a member of the mailing list, your mail will be passed to the list
after a moderator has approved it2.

For bug reports, please first try to reproduce the bug with the latest version of Org
available—if you are running an outdated version, it is quite possible that the bug has been
fixed already. If the bug persists, prepare a report and provide as much information as
possible, including the version information of Emacs (M-x emacs-version RET) and Org
(M-x org-version RET), as well as the Org related setup in .emacs. The easiest way to do
this is to use the command

Lof you don’t use font-lock globally, turn it on in Org buffer with (add-hook 'org-mode-hook 'turn-on-
font-lock)

2 Please consider subscribing to the mailing list, in order to minimize the work the mailing list moderators
have to do.

mailto:emacs-orgmode@gnu.org
https://lists.gnu.org/mailman/listinfo/emacs-orgmode
https://lists.gnu.org/mailman/listinfo/emacs-orgmode

Chapter 1: Introduction 4

M-x org-submit-bug-report RET
which will put all this information into an Emacs mail buffer so that you only need to add

your description. If you are not sending the Email from within Emacs, please copy and
paste the content into your Email program.

Sometimes you might face a problem due to an error in your Emacs or Org mode setup.
Before reporting a bug, it is very helpful to start Emacs with minimal customizations and
reproduce the problem. Doing so often helps you determine if the problem is with your
customization or with Org mode itself. You can start a typical minimal session with a
command like the example below.

$ emacs -Q -1 /path/to/minimal-org.el

However if you are using Org mode as distributed with Emacs, a minimal setup is not
necessary. In that case it is sufficient to start Emacs as emacs -Q. The minimal-org.el
setup file can have contents as shown below.

;35 Minimal setup to load latest 'org-mode'

;3 activate debugging

(setq debug-on-error t
debug-on-signal nil
debug-on-quit nil)

;; add latest org-mode to load path
(add-to-list 'load-path (expand-file-name "/path/to/org-mode/lisp"))
(add-to-list 'load-path (expand-file-name "/path/to/org-mode/contrib/lisp" t))

If an error occurs, a backtrace can be very useful (see below on how to create one). Often
a small example file helps, along with clear information about:

1. What exactly did you do?
2. What did you expect to happen?
3. What happened instead?

Thank you for helping to improve this program.

How to create a useful backtrace

If working with Org produces an error with a message you don’t understand, you may have
hit a bug. The best way to report this is by providing, in addition to what was mentioned
above, a backtrace. This is information from the built-in debugger about where and how
the error occurred. Here is how to produce a useful backtrace:

1. Reload uncompiled versions of all Org mode Lisp files. The backtrace contains much
more information if it is produced with uncompiled code. To do this, use

C-u M-x org-reload RET
or select Org -> Refresh/Reload -> Reload Org uncompiled from the menu.

2. Go to the Options menu and select Enter Debugger on Error (XEmacs has this option
in the Troubleshooting sub-menu).

3. Do whatever you have to do to hit the error. Don’t forget to document the steps you
take.

Chapter 1: Introduction 5

4. When you hit the error, a *Backtrace* buffer will appear on the screen. Save this
buffer to a file (for example using C-x C-w) and attach it to your bug report.

1.5 Typesetting conventions used in this manual

TODO keywords, tags, properties, etc.

Org mainly uses three types of keywords: TODO keywords, tags and property names. In
this manual we use the following conventions:

TODO
WAITING TODO keywords are written with all capitals, even if they are user-defined.

boss
ARCHIVE User-defined tags are written in lowercase; built-in tags with special meaning
are written with all capitals.

Release
PRIORITY User-defined properties are capitalized; built-in properties with special meaning
are written with all capitals.

Moreover, Org uses option keywords (like #+TITLE to set the title) and environment
keywords (like #+BEGIN_HTML to start a HTML environment). They are written in uppercase
in the manual to enhance its readability, but you can use lowercase in your Org files®.

Keybindings and commands

The manual suggests a few global keybindings, in particular C-c a for org-agenda and C-c
c for org-capture. These are only suggestions, but the rest of the manual assumes that
these keybindings are in place in order to list commands by key access.

Also, the manual lists both the keys and the corresponding commands for accessing
a functionality. Org mode often uses the same key for different functions, depending on
context. The command that is bound to such keys has a generic name, like org-metaright.
In the manual we will, wherever possible, give the function that is internally called by
the generic command. For example, in the chapter on document structure, M-right will
be listed to call org-do-demote, while in the chapter on tables, it will be listed to call
org-table-move-column-right. If you prefer, you can compile the manual without the
command names by unsetting the flag cmdnames in org.texi.

3 Easy templates insert lowercase keywords and Babel dynamically inserts #+results.

Chapter 2: Document structure 6

2 Document structure

Org is based on Outline mode and provides flexible commands to edit the structure of the
document.

2.1 Outlines

Org is implemented on top of Outline mode. Outlines allow a document to be organized
in a hierarchical structure, which (at least for me) is the best representation of notes and
thoughts. An overview of this structure is achieved by folding (hiding) large parts of the
document to show only the general document structure and the parts currently being worked
on. Org greatly simplifies the use of outlines by compressing the entire show/hide function-
ality into a single command, org-cycle, which is bound to the TAB key.

2.2 Headlines

Headlines define the structure of an outline tree. The headlines in Org start with one or
more stars, on the left margin2. For example:

* Top level headline
** Second level
*%xx 3rd level
some text
x 3rd level
more text

* Another top level headline

Note that a headline named after org-footnote-section, which defaults to ‘Footnotes’,
is considered as special. A subtree with this headline will be silently ignored by exporting
functions.

Some people find the many stars too noisy and would prefer an outline that has white-
space followed by a single star as headline starters. Section 15.8 [Clean view], page 231,
describes a setup to realize this.

An empty line after the end of a subtree is considered part of it and will be hidden when
the subtree is folded. However, if you leave at least two empty lines, one empty line will
remain visible after folding the subtree, in order to structure the collapsed view. See the
variable org-cycle-separator-lines to modify this behavior.

2.3 Visibility cycling

2.3.1 Global and local cycling

Outlines make it possible to hide parts of the text in the buffer. Org uses just two commands,
bound to TAB and S-TAB to change the visibility in the buffer.

1 See the variables org-special-ctrl-a/e, org-special-ctrl-k, and org-ctrl-k-protect-subtree to
configure special behavior of C-a, C-e, and C-k in headlines.

2 Clocking only works with headings indented less than 30 stars.

Chapter 2: Document structure 7

TAB

S-TAB
C-u TAB

org-cycle
Subtree cycling: Rotate current subtree among the states

,—> FOLDED -> CHILDREN -> SUBTREE --.

The cursor must be on a headline for this to work®. When the cursor is at the
beginning of the buffer and the first line is not a headline, then TAB actually
runs global cycling (see below)*. Also when called with a prefix argument (C-u
TAB), global cycling is invoked.

org-global-cycle
Global cycling: Rotate the entire buffer among the states

,—> OVERVIEW -> CONTENTS -> SHOW ALL --.

When S-TAB is called with a numeric prefix argument N, the CONTENTS view
up to headlines of level N will be shown. Note that inside tables, S-TAB jumps
to the previous field.

C-u C-u TAB org-set-startup-visibility

Switch back to the startup visibility of the buffer (see Section 2.3.2 [Initial
visibility], page 8).

)

C-u C-u C-u TAB show-all

C-c C-r

C-c C-k

C-c TAB

C-cC-xb

Show all, including drawers.

org-reveal
Reveal context around point, showing the current entry, the following heading
and the hierarchy above. Useful for working near a location that has been
exposed by a sparse tree command (see Section 2.6 [Sparse trees|, page 11) or
an agenda command (see Section 10.5 [Agenda commands], page 113). With a
prefix argument show, on each level, all sibling headings. With a double prefix

argument, also show the entire subtree of the parent.

show-branches
Expose all the headings of the subtree, CONTENT view for just one subtree.

show-children
Expose all direct children of the subtree. With a numeric prefix argument N,
expose all children down to level N.

org-tree-to-indirect-buffer
Show the current subtree in an indirect buffer®. With a numeric prefix argument
N, go up to level N and then take that tree. If N is negative then go up that
many levels. With a C-u prefix, do not remove the previously used indirect
buffer.

3 see, however, the option org-cycle-emulate-tab.

4 see the option org-cycle-global-at-bob.

® The indirect buffer (see Section “Indirect Buffers” in GNU Emacs Manual) will contain the entire buffer,
but will be narrowed to the current tree. Editing the indirect buffer will also change the original buffer,
but without affecting visibility in that buffer.

Chapter 2: Document structure 8

C-cCxv org-copy-visible
Copy the wvisible text in the region into the kill ring.

2.3.2 Initial visibility

When Emacs first visits an Org file, the global state is set to OVERVIEW, i.e., only the
top level headlines are visible®. This can be configured through the variable org-startup-
folded, or on a per-file basis by adding one of the following lines anywhere in the buffer:

#+STARTUP: overview
#+STARTUP: content
#+STARTUP: showall
#+STARTUP: showeverything

The startup visibility options are ignored when the file is open for the first time during the
agenda generation: if you want the agenda to honor the startup visibility, set org-agenda-
inhibit-startup to nil.

Furthermore, any entries with a ‘VISIBILITY property (see Chapter 7 [Properties and
columns|, page 64) will get their visibility adapted accordingly. Allowed values for this
property are folded, children, content, and all.

C-u C-u TAB org-set-startup-visibility
Switch back to the startup visibility of the buffer, i.e., whatever is requested by
startup options and ‘VISIBILITY properties in individual entries.

2.3.3 Catching invisible edits

Sometimes you may inadvertently edit an invisible part of the buffer and be confused on
what has been edited and how to undo the mistake. Setting org-catch-invisible-edits
to non-nil will help prevent this. See the docstring of this option on how Org should catch
invisible edits and process them.

2.4 Motion

The following commands jump to other headlines in the buffer.

C-c C-n outline-next-visible-heading
Next heading.

C-c C-p outline-previous-visible-heading
Previous heading.

C-c C-f org-forward-same-level
Next heading same level.

C-c C-b org-backward-same-level
Previous heading same level.

C-c C-u outline-up-heading
Backward to higher level heading.

6 When org-agenda-inhibit-startup is non-nil, Org will not honor the default visibility state when first
opening a file for the agenda (see Section A.9 [Speeding up your agendas|, page 246).

Chapter 2: Document structure 9

C-c C-j

org-goto
Jump to a different place without changing the current outline visibility. Shows
the document structure in a temporary buffer, where you can use the following
keys to find your destination:

TAB Cycle visibility.

down / up Next/previous visible headline.

RET Select this location.

/ Do a Sparse-tree search

The following keys work if you turn off org-goto-auto-isearch
n/p Next /previous visible headline.

f/0 Next /previous headline same level.

u One level up.

0-9 Digit argument.

q Quit

See also the option org-goto-interface.

2.5 Structure editing

M-RET

C-RET

M-S-RET

C-S-RET

org-insert-heading
Insert a new heading/item with the same level as the one at point.

If the cursor is in a plain list item, a new item is created (see Section 2.7 [Plain
lists], page 12). To prevent this behavior in lists, call the command with one
prefix argument. When this command is used in the middle of a line, the line
is split and the rest of the line becomes the new item or headline. If you do not
want the line to be split, customize org-M-RET-may-split-line.

If the command is used at the beginning of a line, and if there is a heading or
an item at point, the new heading/item is created before the current line. If the
command is used at the end of a folded subtree (i.e., behind the ellipses at the
end of a headline), then a headline will be inserted after the end of the subtree.

Calling this command with C-u C-u will unconditionally respect the headline’s
content and create a new item at the end of the parent subtree.

If point is at the beginning of a normal line, turn this line into a heading.

org-insert-heading-respect-content
Just like M-RET, except when adding a new heading below the current heading,
the new heading is placed after the body instead of before it. This command
works from anywhere in the entry.

org-insert-todo-heading
Insert new TODO entry with same level as current heading. See also the vari-
able org-treat-insert-todo-heading-as-state-change.

org-insert-todo-heading-respect-content
Insert new TODO entry with same level as current heading. Like C-RET, the
new headline will be inserted after the current subtree.

Chapter 2: Document structure 10

TAB org-cycle
In a new entry with no text yet, the first TAB demotes the entry to become a
child of the previous one. The next TAB makes it a parent, and so on, all the
way to top level. Yet another TAB, and you are back to the initial level.

M-left org-do-promote
Promote current heading by one level.

M-right org-do—-demote
Demote current heading by one level.

M-S-left org-promote-subtree
Promote the current subtree by one level.

M-S-right org-demote-subtree
Demote the current subtree by one level.

M-S-up org-move-subtree-up
Move subtree up (swap with previous subtree of same level).

M-S-down org-move-subtree-down
Move subtree down (swap with next subtree of same level).

M-h org-mark-element
Mark the element at point. Hitting repeatedly will mark subsequent elements
of the one just marked. E.g., hitting M-h on a paragraph will mark it, hitting
M-h immediately again will mark the next one.

C-c @ org-mark-subtree
Mark the subtree at point. Hitting repeatedly will mark subsequent subtrees
of the same level than the marked subtree.

C-c C-x C-w org-cut-subtree
Kill subtree, i.e., remove it from buffer but save in kill ring. With a numeric
prefix argument N, kill N sequential subtrees.

C-c C—x M-w org-copy-subtree
Copy subtree to kill ring. With a numeric prefix argument N, copy the N
sequential subtrees.

C-c C-x C-y org-paste-subtree
Yank subtree from kill ring. This does modify the level of the subtree to make
sure the tree fits in nicely at the yank position. The yank level can also be
specified with a numeric prefix argument, or by yanking after a headline marker
like ‘%’

C-y org-yank
Depending on the options org-yank-adjusted-subtrees and org-yank-
folded-subtrees, Org’s internal yank command will paste subtrees folded
and in a clever way, using the same command as C-c C-x C-y. With the
default settings, no level adjustment will take place, but the yanked tree will
be folded unless doing so would swallow text previously visible. Any prefix
argument to this command will force a normal yank to be executed, with the
prefix passed along. A good way to force a normal yank is C-u C-y. If you

Chapter 2: Document structure 11

C-cC-xc

C-c C-w

C-xns

C-xnb

C-xnw

use yank-pop after a yank, it will yank previous kill items plainly, without
adjustment and folding.

org-clone-subtree-with-time-shift
Clone a subtree by making a number of sibling copies of it. You will be prompted
for the number of copies to make, and you can also specify if any timestamps
in the entry should be shifted. This can be useful, for example, to create a
number of tasks related to a series of lectures to prepare. For more details, see
the docstring of the command org-clone-subtree-with-time-shift.

org-refile
Refile entry or region to a different location. See Section 9.5 [Refile and copy],
page 96.

org-sort
Sort same-level entries. When there is an active region, all entries in the region
will be sorted. Otherwise the children of the current headline are sorted. The
command prompts for the sorting method, which can be alphabetically, numer-
ically, by time (first timestamp with active preferred, creation time, scheduled
time, deadline time), by priority, by TODO keyword (in the sequence the key-
words have been defined in the setup) or by the value of a property. Reverse
sorting is possible as well. You can also supply your own function to extract
the sorting key. With a C-u prefix, sorting will be case-sensitive.

org-narrow-to-subtree
Narrow buffer to current subtree.

org-narrow-to-block
Narrow buffer to current block.

widen
Widen buffer to remove narrowing.

org-toggle-heading
Turn a normal line or plain list item into a headline (so that it becomes a
subheading at its location). Also turn a headline into a normal line by removing
the stars. If there is an active region, turn all lines in the region into headlines.
If the first line in the region was an item, turn only the item lines into headlines.
Finally, if the first line is a headline, remove the stars from all headlines in the
region.

When there is an active region (Transient Mark mode), promotion and demotion work
on all headlines in the region. To select a region of headlines, it is best to place both point
and mark at the beginning of a line, mark at the beginning of the first headline, and point
at the line just after the last headline to change. Note that when the cursor is inside a table
(see Chapter 3 [Tables|, page 19), the Meta-Cursor keys have different functionality.

2.6 Sparse trees

An important feature of Org mode is the ability to construct sparse trees for selected
information in an outline tree, so that the entire document is folded as much as possible,

Chapter 2: Document structure 12

but the selected information is made visible along with the headline structure above it”.
Just try it out and you will see immediately how it works.

Org mode contains several commands for creating such trees, all these commands can
be accessed through a dispatcher:

C-c/ org-sparse-tree
This prompts for an extra key to select a sparse-tree creating command.

C-c/r org-occur
Prompts for a regexp and shows a sparse tree with all matches. If the match
is in a headline, the headline is made visible. If the match is in the body
of an entry, headline and body are made visible. In order to provide minimal
context, also the full hierarchy of headlines above the match is shown, as well as
the headline following the match. Each match is also highlighted; the highlights
disappear when the buffer is changed by an editing command®, or by pressing
C-c C-c. When called with a C-u prefix argument, previous highlights are kept,
so several calls to this command can be stacked.

M-gn or M-g M-n next-error
Jump to the next sparse tree match in this buffer.

M-gp or M-gM-p previous-error
Jump to the previous sparse tree match in this buffer.

For frequently used sparse trees of specific search strings, you can use the option
org-agenda-custom-commands to define fast keyboard access to specific sparse trees.
These commands will then be accessible through the agenda dispatcher (see Section 10.2
[Agenda dispatcher], page 101). For example:

(setq org-agenda-custom-commands
"(("f" occur-tree "FIXME")))

will define the key C-c a f as a shortcut for creating a sparse tree matching the string
‘FIXME’.

The other sparse tree commands select headings based on TODO keywords, tags, or
properties and will be discussed later in this manual.

To print a sparse tree, you can use the Emacs command ps-print-buffer-with-faces
which does not print invisible parts of the document®. Or you can use C-c C-e C-v to
export only the visible part of the document and print the resulting file.

2.7 Plain lists

Within an entry of the outline tree, hand-formatted lists can provide additional structure.
They also provide a way to create lists of checkboxes (see Section 5.6 [Checkboxes], page 56).
Org supports editing such lists, and every exporter (see Chapter 12 [Exporting], page 140)
can parse and format them.

Org knows ordered lists, unordered lists, and description lists.

7 See also the variable org-show-context-detail to decide how much context is shown around each match.
8 This depends on the option org-remove-highlights-with-change

9 This does not work under XEmacs, because XEmacs uses selective display for outlining, not text
properties.

Chapter 2: Document structure 13

e Unordered list items start with ‘=7, ‘“+’, or ‘*’19 as bullets.

e Ordered list items start with a numeral followed by either a period or a right paren-
thesis', such as ‘1.7 or ‘1)’*2. If you want a list to start with a different value (e.g.,
20), start the text of the item with [@20]'3. Those constructs can be used in any item
of the list in order to enforce a particular numbering.

e Description list items are unordered list items, and contain the separator ¢ ::’ to
distinguish the description term from the description.

Items belonging to the same list must have the same indentation on the first line. In

particular, if an ordered list reaches number ‘10.°, then the 2—digit numbers must be written
left-aligned with the other numbers in the list. An item ends before the next line that is
less or equally indented than its bullet/number.

A list ends whenever every item has ended, which means before any line less or equally

indented than items at top level. It also ends before two blank lines'*. In that case, all
items are closed. Here is an example:

** Lord of the Rings
My favorite scenes are (in this order)
1. The attack of the Rohirrim
2. Eowyn's fight with the witch king
+ this was already my favorite scene in the book
+ I really like Miranda Otto.
3. Peter Jackson being shot by Legolas
- on DVD only
He makes a really funny face when it happens.
But in the end, no individual scenes matter but the film as a whole.
Important actors in this film are:
- Elijah Wood :: He plays Frodo
- Sean Astin :: He plays Sam, Frodo's friend. I still remember
him very well from his role as Mikey Walsh in The Goonies.

Org supports these lists by tuning filling and wrapping commands to deal with them

correctly'®, and by exporting them properly (see Chapter 12 [Exporting], page 140). Since
indentation is what governs the structure of these lists, many structural constructs like
#+BEGIN_. .. blocks can be indented to signal that they belong to a particular item.

10

11
12

13

14

When using ‘*’ as a bullet, lines must be indented or they will be seen as top-level headlines. Also, when
you are hiding leading stars to get a clean outline view, plain list items starting with a star may be hard
to distinguish from true headlines. In short: even though ‘*’ is supported, it may be better to not use it
for plain list items.

You can filter out any of them by configuring org-plain-list-ordered-item-terminator.

You can also get ‘a.’; ‘A.’, ‘a)’ and ‘A)’ by configuring org-list-allow-alphabetical. To minimize
confusion with normal text, those are limited to one character only. Beyond that limit, bullets will
automatically fallback to numbers.

If there’s a checkbox in the item, the cookie must be put before the checkbox. If you have activated
alphabetical lists, you can also use counters like [@b].

See also org-list-empty-line-terminates-plain-lists.

Org only changes the filling settings for Emacs. For XEmacs, you should use Kyle E. Jones’
filladapt.el. To turn this on, put into .emacs: (require 'filladapt)

Chapter 2: Document structure 14

If you find that using a different bullet for a sub-list (than that used for the current
list-level) improves readability, customize the variable org-list-demote-modify-bullet.
To get a greater difference of indentation between items and their sub-items, customize
org-list-indent-offset.

The following commands act on items when the cursor is in the first line of an item (the
line with the bullet or number). Some of them imply the application of automatic rules to
keep list structure intact. If some of these actions get in your way, configure org-list-

automatic-

TAB

M-RET

M-S-RET

S-up
S—-down

M-up
M-down

M-left
M-right
M-S-left
M-S-right

rules to disable them individually.

org-cycle
Items can be folded just like headline levels. Normally this works only if the
cursor is on a plain list item. For more details, see the variable org-cycle-
include-plain-lists. If this variable is set to integrate, plain list items
will be treated like low-level headlines. The level of an item is then given by
the indentation of the bullet/number. Items are always subordinate to real
headlines, however; the hierarchies remain completely separated. In a new
item with no text yet, the first TAB demotes the item to become a child of the
previous one. Subsequent TABs move the item to meaningful levels in the list
and eventually get it back to its initial position.

org-insert-heading
Insert new item at current level. With a prefix argument, force a new heading
(see Section 2.5 [Structure editing], page 9). If this command is used in the
middle of an item, that item is split in two, and the second part becomes the
new item!®. If this command is executed before item’s body, the new item is
created before the current one.

Insert a new item with a checkbox (see Section 5.6 [Checkboxes|, page 56).

Jump to the previous/next item in the current list'”, but only if org-support-
shift-select is off. If not, you can still use paragraph jumping commands
like C-up and C-down to quite similar effect.

Move the item including subitems up/down'® (swap with previous/next item

of same indentation). If the list is ordered, renumbering is automatic.

Decrease/increase the indentation of an item, leaving children alone.

Decrease/increase the indentation of the item, including subitems. Initially, the
item tree is selected based on current indentation. When these commands are
executed several times in direct succession, the initially selected region is used,

16 1f you do not want the item to be split, customize the variable org-M-RET-may-split-1line.

17 1f you want to cycle around items that way, you may customize org-list-use-circular-motion.

18 See org-list-use-circular-motion for a cyclic behavior.

Chapter 2:

C-c C-c

C-c C-*

Document structure 15

even if the new indentation would imply a different hierarchy. To use the new
hierarchy, break the command chain with a cursor motion or so.

As a special case, using this command on the very first item of a list will
move the whole list. This behavior can be disabled by configuring org-list-
automatic-rules. The global indentation of a list has no influence on the text
after the list.

If there is a checkbox (see Section 5.6 [Checkboxes|, page 56) in the item line,

toggle the state of the checkbox. In any case, verify bullets and indentation
consistency in the whole list.

Cycle the entire list level through the different itemize/enumerate bullets (‘-’,
7047 41,7 41)7) or a subset of them, depending on org-plain-list-ordered-
item-terminator, the type of list, and its indentation. With a numeric prefix
argument N, select the Nth bullet from this list. If there is an active region
when calling this, selected text will be changed into an item. With a prefix
argument, all lines will be converted to list items. If the first line already was a
list item, any item marker will be removed from the list. Finally, even without
an active region, a normal line will be converted into a list item.

Turn a plain list item into a headline (so that it becomes a subheading at its
location). See Section 2.5 [Structure editing], page 9, for a detailed explanation.

Turn the whole plain list into a subtree of the current heading. Checkboxes (see
Section 5.6 [Checkboxes|, page 56) will become TODO (resp. DONE) keywords
when unchecked (resp. checked).

S-left/right

This command also cycles bullet styles when the cursor in on the bullet or
anywhere in an item line, details depending on org-support-shift-select.

Sort the plain list. You will be prompted for the sorting method: numeri-
cally, alphabetically, by time, by checked status for check lists, or by a custom
function.

2.8 Drawers

Sometimes

you want to keep information associated with an entry, but you normally don’t

want to see it. For this, Org mode has drawers. They can contain anything but a headline
and another drawer. Drawers look like this:

** This is a headline
Still outside the drawer

DRAWERNAME:

This is inside the drawer.
:END:
After the drawer.

You can interactively insert drawers at point by calling org-insert-drawer, which is
bound to C-c C-x d. With an active region, this command will put the region inside the
drawer. With a prefix argument, this command calls org-insert-property-drawer and

Chapter 2: Document structure 16

add a property drawer right below the current headline. Completion over drawer keywords
is also possible using M-TAB.

Visibility cycling (see Section 2.3 [Visibility cycling], page 6) on the headline will hide
and show the entry, but keep the drawer collapsed to a single line. In order to look inside
the drawer, you need to move the cursor to the drawer line and press TAB there. Org mode
uses the PROPERTIES drawer for storing properties (see Chapter 7 [Properties and columns],
page 64), and you can also arrange for state change notes (see Section 5.3.2 [Tracking TODO
state changes|, page 52) and clock times (see Section 8.4 [Clocking work time], page 80) to
be stored in a drawer LOGBOOK. If you want to store a quick note in the LOGBOOK drawer,
in a similar way to state changes, use

C-c C-z Add a time-stamped note to the LOGBOOK drawer.

You can select the name of the drawers which should be exported with org-export-
with-drawers. In that case, drawer contents will appear in export output. Property
drawers are not affected by this variable: configure org-export-with-properties instead.

2.9 Blocks

Org mode uses begin...end blocks for various purposes from including source code examples
(see Section 11.3 [Literal examples|, page 132) to capturing time logging information (see
Section 8.4 [Clocking work time|, page 80). These blocks can be folded and unfolded by
pressing TAB in the begin line. You can also get all blocks folded at startup by configuring
the option org-hide-block-startup or on a per-file basis by using

#+STARTUP: hideblocks

#+STARTUP: nohideblocks

2.10 Footnotes

Org mode supports the creation of footnotes. In contrast to the footnote.el package, Org
mode’s footnotes are designed for work on a larger document, not only for one-off documents
like emails.

A footnote is started by a footnote marker in square brackets in column 0, no indentation
allowed. It ends at the next footnote definition, headline, or after two consecutive empty
lines. The footnote reference is simply the marker in square brackets, inside text. For
example:

The Org homepage[fn:1] now looks a lot better than it used to.

[fn:1] The link is: http://orgmode.org
Org mode extends the number-based syntax to named footnotes and optional inline def-
inition. Using plain numbers as markers (as footnote.el does) is supported for backward

compatibility, but not encouraged because of possible conflicts with IATEX snippets (see
Section 11.7 [Embedded IATEX], page 136). Here are the valid references:

[1] A plain numeric footnote marker. Compatible with footnote.el, but not rec-
ommended because something like ‘[1]’ could easily be part of a code snippet.

[fn:name]
A named footnote reference, where name is a unique label word, or, for simplicity
of automatic creation, a number.

Chapter 2: Document structure 17

[fn:: This is the inline definition of this footnote]
A ITEX-like anonymous footnote where the definition is given directly at the
reference point.

[fn:name: a definition]
An inline definition of a footnote, which also specifies a name for the note. Since
Org allows multiple references to the same note, you can then use [fn:name]
to create additional references.

Footnote labels can be created automatically, or you can create names yourself. This
is handled by the variable org-footnote-auto-label and its corresponding #+STARTUP
keywords. See the docstring of that variable for details.

The following command handles footnotes:

C-c C-x £ The footnote action command.

When the cursor is on a footnote reference, jump to the definition. When it is
at a definition, jump to the (first) reference.

Otherwise, create a new footnote. Depending on the option org-footnote-
define-inline!®, the definition will be placed right into the text as part
of the reference, or separately into the location determined by the option
org-footnote-section.

When this command is called with a prefix argument, a menu of additional
options is offered:

s Sort the footnote definitions by reference sequence. During editing,
Org makes no effort to sort footnote definitions into a particular
sequence. If you want them sorted, use this command, which will
also move entries according to org-footnote-section. Automatic
sorting after each insertion/deletion can be configured using the
option org-footnote-auto-adjust.

r Renumber the simple fn:N footnotes. Automatic renumbering
after each insertion/deletion can be configured using the option
org-footnote-auto-adjust.

S Short for first r, then s action.

n Normalize the footnotes by collecting all definitions (including
inline definitions) into a special section, and then numbering them
in sequence. The references will then also be numbers. This is
meant to be the final step before finishing a document (e.g., sending
off an email).

d Delete the footnote at point, and all definitions of and references
to it.

Depending on the variable org-footnote-auto-adjust®’, renumbering and
sorting footnotes can be automatic after each insertion or deletion.

C-c C-c If the cursor is on a footnote reference, jump to the definition. If it is a the
definition, jump back to the reference. When called at a footnote location with
a prefix argument, offer the same menu as C-c C-x f.

19 The corresponding in-buffer setting is: #+STARTUP: fninline or #+STARTUP: nofninline

20 the corresponding in-buffer options are fnadjust and nofnadjust.

Chapter 2: Document structure 18

C-c C-o or mouse-1/2
Footnote labels are also links to the corresponding definition /reference, and you
can use the usual commands to follow these links.

C-c' Edit the footnote definition corresponding to the reference at point in a seperate
window. This may be useful if editing footnotes in a narrowed buffer. The
window can be closed by pressing C-c .

2.11 The Orgstruct minor mode

If you like the intuitive way the Org mode structure editing and list formatting works,
you might want to use these commands in other modes like Text mode or Mail mode as
well. The minor mode orgstruct-mode makes this possible. Toggle the mode with M-x
orgstruct-mode RET, or turn it on by default, for example in Message mode, with one of:

(add-hook 'message-mode-hook 'turn-on-orgstruct)
(add-hook 'message-mode-hook 'turn-on-orgstruct++)

When this mode is active and the cursor is on a line that looks to Org like a headline
or the first line of a list item, most structure editing commands will work, even if the same
keys normally have different functionality in the major mode you are using. If the cursor is
not in one of those special lines, Orgstruct mode lurks silently in the shadows.

When you use orgstruct++-mode, Org will also export indentation and autofill settings
into that mode, and detect item context after the first line of an item.

You can also use Org structure editing to fold and unfold headlines in any file, provided
you defined orgstruct-heading-prefix-regexp: the regular expression must match the
local prefix to use before Org’s headlines. For example, if you set this variable to ";;
" in Emacs Lisp files, you will be able to fold and unfold headlines in Emacs Lisp com-
mented lines. Some commands like org-demote are disabled when the prefix is set, but
folding/unfolding will work correctly.

2.12 Org syntax

A reference document providing a formal description of Org’s syntax is available as a draft
on Worg, written and maintained by Nicolas Goaziou. It defines Org’s core internal concepts
such as headlines, sections, affiliated keywords, (greater) elements and objects.
Each part of an Org file falls into one of the categories above.

To explore the abstract structure of an Org buffer, run this in a buffer:
M-: (org-element-parse-buffer) RET

It will output a list containing the buffer’s content represented as an abstract structure.
The export engine relies on the information stored in this list. Most interactive commands
(e.g., for structure editing) also rely on the syntactic meaning of the surrounding context.

http://orgmode.org/worg/dev/org-syntax.html
http://orgmode.org/worg/dev/org-syntax.html

Chapter 3: Tables 19

3 Tables

Org comes with a fast and intuitive table editor. Spreadsheet-like calculations are supported
using the Emacs calc package (see Gnu Emacs Calculator Manual).

3.1 The built-in table editor

Org makes it easy to format tables in plain ASCII. Any line with ‘|’ as the first non-
whitespace character is considered part of a table. ‘|’ is also the column separator!. A
table might look like this:

| Name | Phone | Age |
| ===mmn 4mmmmmee 4mmmee |
| Peter | 1234 | 17 |
| Anna | 4321 | 25 |

A table is re-aligned automatically each time you press TAB or RET or C-c C-c inside the
table. TAB also moves to the next field (RET to the next row) and creates new table rows
at the end of the table or before horizontal lines. The indentation of the table is set by the
first line. Any line starting with ‘|-’ is considered as a horizontal separator line and will be
expanded on the next re-align to span the whole table width. So, to create the above table,
you would only type

| Name | Phone | Age |

I -
and then press TAB to align the table and start filling in fields. Even faster would be to
type |Name |Phone|Age followed by C-c RET.

When typing text into a field, Org treats DEL, Backspace, and all character keys in a
special way, so that inserting and deleting avoids shifting other fields. Also, when typing
immediately after the cursor was moved into a new field with TAB, S-TAB or RET, the field
is automatically made blank. If this behavior is too unpredictable for you, configure the
options org-enable-table-editor and org-table-auto-blank-field.

Creation and conversion

C-c | org-table-create-or-convert-from-region
Convert the active region to a table. If every line contains at least one TAB
character, the function assumes that the material is tab separated. If every line
contains a comma, comma-separated values (CSV) are assumed. If not, lines are
split at whitespace into fields. You can use a prefix argument to force a specific
separator: C-u forces CSV, C-u C-u forces TAB, C-u C-u C-u will prompt for a
regular expression to match the separator, and a numeric argument N indicates
that at least N consecutive spaces, or alternatively a TAB will be the separator.
If there is no active region, this command creates an empty Org table. But it
is easier just to start typing, like | Name|Phone|Age RET |- TAB.

Re-aligning and field motion
C-c C-c org-table-align
Re-align the table and don’t move to another field.

I To insert a vertical bar into a table field, use \vert or, inside a word abc\vert{}def.

Chapter 3:

C-c SPC

<TAB>

S-TAB

RET

M-a

M-e

Tables 20

org-table-blank-field
Blank the field at point.

org-table-next-field
Re-align the table, move to the next field. Creates a new row if necessary.

org-table-previous-field
Re-align, move to previous field.

org-table-next-row
Re-align the table and move down to next row. Creates a new row if necessary.
At the beginning or end of a line, RET still does NEWLINE, so it can be used
to split a table.

org-table-beginning-of-field
Move to beginning of the current table field, or on to the previous field.

org-table-end-of-field
Move to end of the current table field, or on to the next field.

Column and row editing

M-left
M-right

M-S-left

M-S-right

M-up
M-down

M-S-up

M-S-down

C-c RET

org-table-move-column-left
org-table-move-column-right
Move the current column left/right.

org-table-delete-column
Kill the current column.

org-table-insert-column
Insert a new column to the left of the cursor position.

org-table-move-row-up
org-table-move-row-down
Move the current row up/down.

org-table-kill-row
Kill the current row or horizontal line.

org-table-insert-row
Insert a new row above the current row. With a prefix argument, the line is
created below the current one.

org-table-insert-hline
Insert a horizontal line below current row. With a prefix argument, the line is
created above the current line.

org-table-hline-and-move
Insert a horizontal line below current row, and move the cursor into the row
below that line.

org-table-sort-lines
Sort the table lines in the region. The position of point indicates the column
to be used for sorting, and the range of lines is the range between the nearest
horizontal separator lines, or the entire table. If point is before the first column,
you will be prompted for the sorting column. If there is an active region, the

Chapter 3: Tables 21

mark specifies the first line and the sorting column, while point should be in the
last line to be included into the sorting. The command prompts for the sorting
type (alphabetically, numerically, or by time). You can sort in normal or reverse
order. You can also supply your own key extraction and comparison functions.
When called with a prefix argument, alphabetic sorting will be case-sensitive.

Regions

C-c C-x M-w org-table-copy-region
Copy a rectangular region from a table to a special clipboard. Point and mark
determine edge fields of the rectangle. If there is no active region, copy just the
current field. The process ignores horizontal separator lines.

C-c C-x C-w org-table-cut-region
Copy a rectangular region from a table to a special clipboard, and blank all
fields in the rectangle. So this is the “cut” operation.

C-c C-x C-y org-table-paste-rectangle
Paste a rectangular region into a table. The upper left corner ends up in the
current field. All involved fields will be overwritten. If the rectangle does not
fit into the present table, the table is enlarged as needed. The process ignores
horizontal separator lines.

M-RET org-table-wrap-region
Split the current field at the cursor position and move the rest to the line below.
If there is an active region, and both point and mark are in the same column,
the text in the column is wrapped to minimum width for the given number of
lines. A numeric prefix argument may be used to change the number of desired
lines. If there is no region, but you specify a prefix argument, the current field
is made blank, and the content is appended to the field above.

Calculations

C-c + org-table-sum
Sum the numbers in the current column, or in the rectangle defined by the
active region. The result is shown in the echo area and can be inserted with
C-y.

S-RET org-table-copy-down
When current field is empty, copy from first non-empty field above. When not
empty, copy current field down to next row and move cursor along with it.
Depending on the option org-table-copy-increment, integer field values will
be incremented during copy. Integers that are too large will not be incremented.
Also, a 0 prefix argument temporarily disables the increment. This key is
also used by shift-selection and related modes (see Section 15.10.2 [Conflicts]
page 234).

)

Miscellaneous

C-c ~ org-table-edit-field
Edit the current field in a separate window. This is useful for fields that are not
fully visible (see Section 3.2 [Column width and alignment]|, page 22). When
called with a C-u prefix, just make the full field visible, so that it can be edited

Chapter 3: Tables 22

in place. When called with two C-u prefixes, make the editor window follow the
cursor through the table and always show the current field. The follow mode
exits automatically when the cursor leaves the table, or when you repeat this
command with C-u C-u C-c ~.

M-x org-table-import RET
Import a file as a table. The table should be TAB or whitespace separated. Use,
for example, to import a spreadsheet table or data from a database, because
these programs generally can write TAB-separated text files. This command
works by inserting the file into the buffer and then converting the region to
a table. Any prefix argument is passed on to the converter, which uses it to
determine the separator.

C-c | org-table-create-or-convert-from-region
Tables can also be imported by pasting tabular text into the Org buffer, se-
lecting the pasted text with C-x C-x and then using the C-c | command (see
above under Creation and conversion).

M-x org-table-export RET

Export the table, by default as a TAB-separated file. Use for data exchange
with, for example, spreadsheet or database programs. The format used to
export the file can be configured in the option org-table-export-default-
format. You may also use properties TABLE_EXPORT_FILE and TABLE_EXPORT_
FORMAT to specify the file name and the format for table export in a subtree. Org
supports quite general formats for exported tables. The exporter format is the
same as the format used by Orgtbl radio tables, see Section A.6.3 [Translator
functions|, page 242, for a detailed description.

If you don’t like the automatic table editor because it gets in your way on lines which
you would like to start with ‘|’, you can turn it off with

(setq org-enable-table-editor nil)

Then the only table command that still works is C-c¢ C-c to do a manual re-align.

3.2 Column width and alignment

The width of columns is automatically determined by the table editor. And also the align-
ment of a column is determined automatically from the fraction of number-like versus
non-number fields in the column.

Sometimes a single field or a few fields need to carry more text, leading to inconveniently
wide columns. Or maybe you want to make a table with several columns having a fixed
width, regardless of content. To set? the width of a column, one field anywhere in the
column may contain just the string ‘<N>” where ‘N’ is an integer specifying the width of the
column in characters. The next re-align will then set the width of this column to this value.

2 This feature does not work on XEmacs.

Chapter 3: Tables 23

R e | [-——+-———————- |
[| | | | <6> |
1	one		1	one
2	two	-——=\	2	two
3	This is a long chunk of text	-—==/	3	This=>
4	four		4	four
e | [-——+-——————- |

Fields that are wider become clipped and end in the string ‘=>’. Note that the full text
is still in the buffer but is hidden. To see the full text, hold the mouse over the field—a
tool-tip window will show the full content. To edit such a field, use the command C-c °
(that is C-c followed by the grave accent). This will open a new window with the full field.
Edit it and finish with C-c C-c.

When visiting a file containing a table with narrowed columns, the necessary character
hiding has not yet happened, and the table needs to be aligned before it looks nice. Setting
the option org-startup-align-all-tables will realign all tables in a file upon visiting,
but also slow down startup. You can also set this option on a per-file basis with:

#+STARTUP: align
#+STARTUP: noalign

If you would like to overrule the automatic alignment of number-rich columns to the
right and of string-rich column to the left, you can use ‘<r>’, ‘<c>’ or ‘<1>’ in a similar
fashion. You may also combine alignment and field width like this: ‘<r10>’.

Lines which only contain these formatting cookies will be removed automatically when
exporting the document.

3.3 Column groups

When Org exports tables, it does so by default without vertical lines because that is visually
more satisfying in general. Occasionally however, vertical lines can be useful to structure a
table into groups of columns, much like horizontal lines can do for groups of rows. In order
to specify column groups, you can use a special row where the first field contains only /.
The further fields can either contain ‘<’ to indicate that this column should start a group,
>’ to indicate the end of a column, or ‘<>’ (no space between ‘<’ and ‘>’) to make a column
a group of its own. Boundaries between column groups will upon export be marked with
vertical lines. Here is an example:

| N | N2 | N°3 | N°4 | "sqrt(n)”

I
| ———t=———- te————- Fo——— Fomm Fom e |
/71 < > < | > |
11 11 11 1] 1 11
| 2| 4 | | 16 | 1.4142 | 1.1892 |
| 31 9 27 | 81| 1.7321 | 1.3161 |
| ———4————- +———— +-———= o o |

#+TBLFM: $2=$1"2::$3=$1"3::$4=$1"4::$5=sqrt($1) : : $6=sqrt (sqrt (($1)))

It is also sufficient to just insert the column group starters after every vertical line you
would like to have:

3 Centering does not work inside Emacs, but it does have an effect when exporting to HTML.

Chapter 3: Tables 24

3.4 The Orgtbl minor mode

If you like the intuitive way the Org table editor works, you might also want to use it
in other modes like Text mode or Mail mode. The minor mode Orgtbl mode makes this
possible. You can always toggle the mode with M-x orgtbl-mode RET. To turn it on by
default, for example in Message mode, use

(add-hook 'message-mode-hook 'turn-on-orgtbl)

Furthermore, with some special setup, it is possible to maintain tables in arbitrary
syntax with Orgtbl mode. For example, it is possible to construct ¥TEX tables with the
underlying ease and power of Orgtbl mode, including spreadsheet capabilities. For details,
see Section A.6 [Tables in arbitrary syntax], page 240.

3.5 The spreadsheet

The table editor makes use of the Emacs calc package to implement spreadsheet-like ca-
pabilities. It can also evaluate Emacs Lisp forms to derive fields from other fields. While
fully featured, Org’s implementation is not identical to other spreadsheets. For example,
Org knows the concept of a column formula that will be applied to all non-header fields
in a column without having to copy the formula to each relevant field. There is also a
formula debugger, and a formula editor with features for highlighting fields in the table
corresponding to the references at the point in the formula, moving these references by
arrow keys

3.5.1 References

To compute fields in the table from other fields, formulas must reference other fields or
ranges. In Org, fields can be referenced by name, by absolute coordinates, and by relative
coordinates. To find out what the coordinates of a field are, press C-c ? in that field, or
press C-c } to toggle the display of a grid.

Field references

Formulas can reference the value of another field in two ways. Like in any other spreadsheet,
you may reference fields with a letter/number combination like B3, meaning the 2nd field in
the 3rd row. However, Org prefers? to use another, more general representation that looks
like this:
@row$column
Column specifications can be absolute like $1, $2,...$N, or relative to the current column
(i.e., the column of the field which is being computed) like $+1 or $-2. $< and $> are

immutable references to the first and last column, respectively, and you can use $>>> to
indicate the third column from the right.

4 Org will understand references typed by the user as ‘B4’, but it will not use this syntax when offering
a formula for editing. You can customize this behavior using the option org-table-use-standard-
references.

Chapter 3: Tables 25

The row specification only counts data lines and ignores horizontal separator lines
(hlines). Like with columns, you can use absolute row numbers @1, @2,...0N, and row
numbers relative to the current row like @+3 or @-1. @< and @> are immutable references
the first and last® row in the table, respectively. You may also specify the row relative to
one of the hlines: @I refers to the first hline, @IT to the second, etc. @8-I refers to the first
such line above the current line, @+I to the first such line below the current line. You can
also write @III+2 which is the second data line after the third hline in the table.

@0 and $0 refer to the current row and column, respectively, i.e., to the row/column
for the field being computed. Also, if you omit either the column or the row part of the
reference, the current row/column is implied.

Org’s references with unsigned numbers are fixed references in the sense that if you use
the same reference in the formula for two different fields, the same field will be referenced
each time. Org’s references with signed numbers are floating references because the same
reference operator can reference different fields depending on the field being calculated by
the formula.

Here are a few examples:

02$3 2nd row, 3rd column (same as C2)

$5 column 5 in the current row (same as E&)

@2 current column, row 2

©-1$-3 the field one row up, three columns to the left
@-I$2 field just under hline above current row, column 2
©>$5 field in the last row, in column 5

Range references

You may reference a rectangular range of fields by specifying two field references connected
by two dots ‘..’. If both fields are in the current row, you may simply use ‘$2..$7’, but
if at least one field is in a different row, you need to use the general @row$column format
at least for the first field (i.e the reference must start with ‘@’ in order to be interpreted
correctly). Examples:

$1..%3 first three fields in the current row
$P..$Q range, using column names (see under Advanced)
$<c<. > start in third column, continue to the last but one

@2$1..04%$3 6 fields between these two fields (same as A2..C4)
@-1$-2..0-1 3 fields in the row above, starting from 2 columns on the left
@I..II between first and second hline, short for @I..@II

Range references return a vector of values that can be fed into Calc vector functions. Empty
fields in ranges are normally suppressed, so that the vector contains only the non-empty
fields. For other options with the mode switches ‘E’, ‘N’ and examples see Section 3.5.2
[Formula syntax for Calc|, page 27.

5 For backward compatibility you can also use special names like $LR5 and $LR12 to refer in a stable way
to the 5th and 12th field in the last row of the table. However, this syntax is deprecated, it should not
be used for new documents. Use @>$ instead.

Chapter 3: Tables 26

Field coordinates in formulas

One of the very first actions during evaluation of Calc formulas and Lisp formulas is to
substitute @# and $# in the formula with the row or column number of the field where the
current result will go to. The traditional Lisp formula equivalents are org-table-current-
dline and org-table-current-column. Examples:

if(o# % 2, $#, string(""))
Insert column number on odd rows, set field to empty on even rows.

$2 = ' (identity remote (F0O0, Q0#$1))
Copy text or values of each row of column 1 of the table named F0OO into column
2 of the current table.

@3 = 2 * remote (FOO, @1$$#)
Insert the doubled value of each column of row 1 of the table named FOO into
row 3 of the current table.

For the second/third example, the table named FO0 must have at least as many
rows/columns as the current table. Note that this is inefficient® for large number of
rows/columns.

Named references

‘$name’ is interpreted as the name of a column, parameter or constant. Constants are
defined globally through the option org-table-formula-constants, and locally (for the
file) through a line like

#+CONSTANTS: c=299792458. pi=3.14 eps=2.4e-6

Also properties (see Chapter 7 [Properties and columns], page 64) can be used as constants
in table formulas: for a property ‘:Xyz:’ use the name ‘$PROP_Xyz’, and the property
will be searched in the current outline entry and in the hierarchy above it. If you have
the constants.el package, it will also be used to resolve constants, including natural
constants like ‘$h’ for Planck’s constant, and units like ‘$km’ for kilometers’. Column
names and parameters can be specified in special table lines. These are described below,
see Section 3.5.10 [Advanced features|, page 34. All names must start with a letter, and
further consist of letters and numbers.

Remote references

You may also reference constants, fields and ranges from a different table, either in the
current file or even in a different file. The syntax is

remote (NAME-OR-ID,REF)

where NAME can be the name of a table in the current file as set by a #+NAME: Name line
before the table. It can also be the ID of an entry, even in a different file, and the reference
then refers to the first table in that entry. REF is an absolute field or range reference as
described above for example @3$3 or $somename, valid in the referenced table.

6 The computation time scales as O(N~2) because the table named F0O0 is parsed for each field to be read.

7 constants.el can supply the values of constants in two different unit systems, SI and cgs. Which one is

used depends on the value of the variable constants-unit-system. You can use the #+STARTUP options
constSI and constcgs to set this value for the current buffer.

Chapter 3: Tables 27

Indirection of NAME-OR-ID: When NAME-OR-ID has the format @ROW$COLUMN it will
be substituted with the name or ID found in this field of the current table. For example
remote($1, @>$2) => remote(year_2013, @>$1). The format B3 is not supported because
it can not be distinguished from a plain table name or ID.

3.5.2 Formula syntax for Calc

A formula can be any algebraic expression understood by the Emacs Calc package. Note
that calc has the non-standard convention that ‘/’ has lower precedence than ‘*’, so that
‘a/bxc’ is interpreted as ‘a/(b*c)’. Before evaluation by calc-eval (see Section “Calling
Calc from Your Lisp Programs” in GNU Emacs Calc Manual), variable substitution takes
place according to the rules described above. The range vectors can be directly fed into the
Calc vector functions like ‘vmean’ and ‘vsum’.

A formula can contain an optional mode string after a semicolon. This string consists
of flags to influence Calc and other modes during execution. By default, Org uses the
standard Calc modes (precision 12, angular units degrees, fraction and symbolic modes
off). The display format, however, has been changed to (float 8) to keep tables compact.
The default settings can be configured using the option org-calc-default-modes.

List of modes:

p20 Set the internal Calc calculation precision to 20 digits.

n3, s3, e2, f4
Normal, scientific, engineering or fixed format of the result of Calc passed back
to Org. Calc formatting is unlimited in precision as long as the Calc calculation
precision is greater.

D, R Degree and radian angle modes of Calc.
F,S Fraction and symbolic modes of Calc.
T, t Duration computations in Calc or Lisp, see Section 3.5.4 [Durations and time

values|, page 29.

E If and how to consider empty fields. Without ‘E’ empty fields in range references
are suppressed so that the Calc vector or Lisp list contains only the non-empty
fields. With ‘E’ the empty fields are kept. For empty fields in ranges or empty
field references the value ‘nan’ (not a number) is used in Calc formulas and
the empty string is used for Lisp formulas. Add ‘N’ to use 0 instead for both
formula types. For the value of a field the mode ‘N’ has higher precedence than
‘E.

N Interpret all fields as numbers, use 0 for non-numbers. See the next section to
see how this is essential for computations with Lisp formulas. In Calc formulas
it is used only occasionally because there number strings are already interpreted
as numbers without ‘N’.

L Literal, for Lisp formulas only. See the next section.

Unless you use large integer numbers or high-precision-calculation and -display for floating
point numbers you may alternatively provide a ‘printf’ format specifier to reformat the

Chapter 3: Tables 28

Calc result after it has been passed back to Org instead of letting Calc already do the
formatting®. A few examples:

$1+$2 Sum of first and second field

$1+$2;%.2f Same, format result to two decimals

exp ($2) +exp($1) Math functions can be used

$0;%.1£ Reformat current cell to 1 decimal
($3-32)*5/9 Degrees F -> C conversion

$c/$1/$cm Hz -> cm conversion, using constants.el
tan($1) ;Dp3s1 Compute in degrees, precision 3, display SCI 1
sin($1) ;Dp3%.1e Same, but use printf specifier for display
taylor($3,x=7,2) Taylor series of $3, at x=7, second degree

Calc also contains a complete set of logical operations, (see Section “Logical Operations”
in GNU Emacs Calc Manual). For example

if ($1 < 20, teen, string(""))
"teen" if age $1 is less than 20, else the Org table result field is set to empty
with the empty string.

if ("$1" == "nan" || "$2" == "nan", string(""), $1 + $2); Ef-1
Sum of the first two columns. When at least one of the input fields is empty
the Org table result field is set to empty. ‘E’ is required to not convert empty
fields to 0. ‘f-1’ is an optional Calc format string similar to ‘%.1£’ but leaves
empty results empty.

if (typeof (vmean($1..$7)) == 12, string(""), vmean($1l..$7); E
Mean value of a range unless there is any empty field. Every field in the range
that is empty is replaced by ‘nan’ which lets ‘vmean’ result in ‘nan’. Then
‘typeof == 12’ detects the ‘nan’ from ‘vmean’ and the Org table result field is
set to empty. Use this when the sample set is expected to never have missing
values.

if("$1..87" =="[1", string(""), vmean($1..$7))
Mean value of a range with empty fields skipped. Every field in the range that
is empty is skipped. When all fields in the range are empty the mean value is
not defined and the Org table result field is set to empty. Use this when the
sample set can have a variable size.

vmean($1..$7); EN
To complete the example before: Mean value of a range with empty fields
counting as samples with value 0. Use this only when incomplete sample sets
should be padded with 0 to the full size.

You can add your own Calc functions defined in Emacs Lisp with defmath and use them
in formula syntax for Calc.

8 The ‘printf’ reformatting is limited in precision because the value passed to it is converted into an
‘integer’ or ‘double’. The ‘integer’ is limited in size by truncating the signed value to 32 bits. The
‘double’ is limited in precision to 64 bits overall which leaves approximately 16 significant decimal digits.

Chapter 3: Tables 29

3.5.3 Emacs Lisp forms as formulas

It is also possible to write a formula in Emacs Lisp. This can be useful for string manipu-
lation and control structures, if Calc’s functionality is not enough.

If a formula starts with an apostrophe followed by an opening parenthesis, then it is
evaluated as a Lisp form. The evaluation should return either a string or a number. Just
as with calc formulas, you can specify modes and a printf format after a semicolon.

With Emacs Lisp forms, you need to be conscious about the way field references are
interpolated into the form. By default, a reference will be interpolated as a Lisp string
(in double-quotes) containing the field. If you provide the ‘N’ mode switch, all referenced
elements will be numbers (non-number fields will be zero) and interpolated as Lisp numbers,
without quotes. If you provide the ‘L’ flag, all fields will be interpolated literally, without
quotes. Le., if you want a reference to be interpreted as a string by the Lisp form, enclose the
reference operator itself in double-quotes, like "$3". Ranges are inserted as space-separated
fields, so you can embed them in list or vector syntax.

)

Here are a few examples—note how the ‘N’ mode is used when we do computations in

Lisp:

'(concat (substring $1 1 2) (substring $1 0 1) (substring $1 2))
Swap the first two characters of the content of column 1.

"(+ $1 $2);N
Add columns 1 and 2, equivalent to Calc’s $1+$2.

"(apply '+ '($1..$4));N
Compute the sum of columns 1 to 4, like Calc’s vsum($1..$4).

3.5.4 Durations and time values

If you want to compute time values use the T flag, either in Calc formulas or Elisp formulas:

| Task 1 | Task 2 | Total |
| =mmmmem dmmmmmmee 4mmmmmmee |
| 2:12 | 1:47 | 03:59:00 |
| 3:02:20 | -2:07:00 | 0.92 |

#+TBLFM: 02$3=$1+$2;T::03$3=$1+$2;t

Input duration values must be of the form HH:MM[:SS], where seconds are optional.
With the T flag, computed durations will be displayed as HH:MM:SS (see the first formula
above). With the t flag, computed durations will be displayed according to the value of the
option org-table-duration-custom-format, which defaults to 'hours and will display
the result as a fraction of hours (see the second formula in the example above).

Negative duration values can be manipulated as well, and integers will be considered as
seconds in addition and subtraction.

3.5.5 Field and range formulas

To assign a formula to a particular field, type it directly into the field, preceded by ‘:=’,
for example ‘:=vsum(@II..III)’. When you press TAB or RET or C-c C-c with the cursor
still in the field, the formula will be stored as the formula for this field, evaluated, and the
current field will be replaced with the result.

Chapter 3: Tables 30

Formulas are stored in a special line starting with ‘#+TBLFM:’ directly below the table.
If you type the equation in the 4th field of the 3rd data line in the table, the formula
will look like ‘@3$4=$1+$2’. When inserting/deleting/swapping columns and rows with the
appropriate commands, absolute references (but not relative ones) in stored formulas are
modified in order to still reference the same field. To avoid this, in particular in range
references, anchor ranges at the table borders (using @<, @, $<, $>), or at hlines using
the @I notation. Automatic adaptation of field references does of course not happen if you
edit the table structure with normal editing commands—then you must fix the equations
yourself.

Instead of typing an equation into the field, you may also use the following command

C-u C-c = org-table-eval-formula
Install a new formula for the current field. The command prompts for a formula
with default taken from the ‘#+TBLFM:’ line, applies it to the current field, and
stores it.

The left-hand side of a formula can also be a special expression in order to assign the
formula to a number of different fields. There is no keyboard shortcut to enter such range
formulas. To add them, use the formula editor (see Section 3.5.8 [Editing and debugging
formulas|, page 31) or edit the #+TBLFM: line directly.

$2= Column formula, valid for the entire column. This is so common that Org treats
these formulas in a special way, see Section 3.5.6 [Column formulas|, page 30.

@3= Row formula, applies to all fields in the specified row. @>= means the last row.

01$2..04$3=
Range formula, applies to all fields in the given rectangular range. This can
also be used to assign a formula to some but not all fields in a row.

$name= Named field, see Section 3.5.10 [Advanced features|, page 34.

3.5.6 Column formulas

When you assign a formula to a simple column reference like $3=, the same formula will be
used in all fields of that column, with the following very convenient exceptions: (i) If the
table contains horizontal separator hlines with rows above and below, everything before the
first such hline is considered part of the table header and will not be modified by column
formulas. Therefore a header is mandatory when you use column formulas and want to
add hlines to group rows, like for example to separate a total row at the bottom from the
summand rows above. (ii) Fields that already get a value from a field/range formula will
be left alone by column formulas. These conditions make column formulas very easy to use.

To assign a formula to a column, type it directly into any field in the column, preceded
by an equal sign, like ‘=$1+$2’. When you press TAB or RET or C-c C-c with the cursor
still in the field, the formula will be stored as the formula for the current column, evaluated
and the current field replaced with the result. If the field contains only ‘=", the previously
stored formula for this column is used. For each column, Org will only remember the most
recently used formula. In the ‘#+TBLFM:’ line, column formulas will look like ‘$4=$1+$2’.
The left-hand side of a column formula cannot be the name of column, it must be the
numeric column reference or $>.

Instead of typing an equation into the field, you may also use the following command:

Chapter 3: Tables 31

C-c = org-table-eval-formula
Install a new formula for the current column and replace current field with the
result of the formula. The command prompts for a formula, with default taken
from the ‘#+TBLFM’ line, applies it to the current field and stores it. With a
numeric prefix argument(e.g., C-5 C-c =) the command will apply it to that
many consecutive fields in the current column.

3.5.7 Lookup functions

Org has three predefined Emacs Lisp functions for lookups in tables.

(org-lookup-first VAL S-LIST R-LIST &optional PREDICATE)
Searches for the first element S in list S-LIST for which

(PREDICATE VAL S)

is t; returns the value from the corresponding position in list R-LIST. The
default PREDICATE is equal. Note that the parameters VAL and S are passed
to PREDICATE in the same order as the corresponding parameters are in the
call to org-lookup-first, where VAL precedes S-LIST. If R-LIST is nil, the
matching element S of S-LIST is returned.

(org-lookup-last VAL S-LIST R-LIST &optional PREDICATE)
Similar to org-lookup-first above, but searches for the last element for which
PREDICATE is t.

(org-lookup-all VAL S-LIST R-LIST &optional PREDICATE)
Similar to org-lookup-first, but searches for all elements for which
PREDICATE is t, and returns all corresponding values. This function can not
be used by itself in a formula, because it returns a list of values. However,
powerful lookups can be built when this function is combined with other
Emacs Lisp functions.

If the ranges used in these functions contain empty fields, the E mode for the formula
should usually be specified: otherwise empty fields will not be included in S-LIST and/or
R-LIST which can, for example, result in an incorrect mapping from an element of S-LIST
to the corresponding element of R-LIST.

These three functions can be used to implement associative arrays, count matching cells,
rank results, group data etc. For practical examples see this tutorial on Worg.

3.5.8 Editing and debugging formulas

You can edit individual formulas in the minibuffer or directly in the field. Org can also pre-
pare a special buffer with all active formulas of a table. When offering a formula for editing,
Org converts references to the standard format (like B3 or D&) if possible. If you prefer to
only work with the internal format (like @3$2 or $4), configure the option org-table-use-
standard-references.

C-c = or C-u C-c = org-table-eval-formula
Edit the formula associated with the current column/field in the minibuffer. See
Section 3.5.6 [Column formulas], page 30, and Section 3.5.5 [Field and range
formulas|, page 29.

http://orgmode.org/worg/org-tutorials/org-lookups.html

Chapter 3: Tables 32

C-u C-u C-c = org-table-eval-formula

C-c }

Re-insert the active formula (either a field formula, or a column formula) into
the current field, so that you can edit it directly in the field. The advantage
over editing in the minibuffer is that you can use the command C-c 7.

org-table-field-info
While editing a formula in a table field, highlight the field(s) referenced by the
reference at the cursor position in the formula.

Toggle the display of row and column numbers for a table, using overlays
(org-table-toggle-coordinate-overlays). These are updated each time the
table is aligned; you can force it with C-c C-c.

Toggle the formula debugger on and off (org-table-toggle-formula-
debugger). See below.

org-table-edit-formulas
Edit all formulas for the current table in a special buffer, where the formulas
will be displayed one per line. If the current field has an active formula, the
cursor in the formula editor will mark it. While inside the special buffer, Org
will automatically highlight any field or range reference at the cursor position.
You may edit, remove and add formulas, and use the following commands:

C-c C-¢ or C-x C-s org-table-fedit-finish
Exit the formula editor and store the modified formulas. With C-u
prefix, also apply the new formulas to the entire table.

C-c C—q org-table-fedit-abort
Exit the formula editor without installing changes.

C-c C-r org-table-fedit-toggle-ref-type
Toggle all references in the formula editor between standard (like
B3) and internal (like @3$2).

TAB org-table-fedit-lisp-indent
Pretty-print or indent Lisp formula at point. When in a line con-
taining a Lisp formula, format the formula according to Emacs Lisp
rules. Another TAB collapses the formula back again. In the open
formula, TAB re-indents just like in Emacs Lisp mode.

M-TAB lisp-complete-symbol
Complete Lisp symbols, just like in Emacs Lisp mode.

S-up/down/left/right
Shift the reference at point. For example, if the reference is B3 and
you press S-right, it will become C3. This also works for relative
references and for hline references.

M-S-up org-table-fedit-line-up

M-S-down org-table-fedit-line-down
Move the test line for column formulas in the Org buffer up and
down.

Chapter 3: Tables 33

M-up org-table-fedit-scroll-down
M-down org-table-fedit-scroll-up
Scroll the window displaying the table.

C-c } Turn the coordinate grid in the table on and off.

Making a table field blank does not remove the formula associated with the field, because
that is stored in a different line (the ‘#+TBLFM’ line)—during the next recalculation the field
will be filled again. To remove a formula from a field, you have to give an empty reply when
prompted for the formula, or to edit the ‘#+TBLFM’ line.

You may edit the ‘#+TBLFM’ directly and re-apply the changed equations with C-c C-c
in that line or with the normal recalculation commands in the table.

Using multiple #+TBLFM lines

You may apply the formula temporarily. This is useful when you switch the formula. Place
multiple ‘#+TBLFM’ lines right after the table, and then press C-c C-c on the formula to
apply. Here is an example:

21 |
#+TBLFM: $2=81x1
#+TBLFM: $2=$1%2

Pressing C-c C-c in the line of ‘#+TBLFM: $2=$1*2’ yields:

I x| vy |
R
1] 2|
21 4 |

#+TBLFM: $2=$1x1
#+TBLFM: $2=$1%2

Note: If you recalculate this table (with C-u C-c *, for example), you will get the following
result of applying only the first ‘#+TBLFM’ line.

l x| y |
R
11 1|
| 21 2 |

#+TBLFM: $2=81x1
#+TBLFM: $2=$1%2

Debugging formulas

When the evaluation of a formula leads to an error, the field content becomes the string
‘#ERROR’. If you would like see what is going on during variable substitution and calculation
in order to find a bug, turn on formula debugging in the Tb1l menu and repeat the calculation,
for example by pressing C-u C-u C-c = RET in a field. Detailed information will be displayed.

Chapter 3: Tables 34

3.5.9 Updating the table

Recalculation of a table is normally not automatic, but needs to be triggered by a command.
See Section 3.5.10 [Advanced features|, page 34, for a way to make recalculation at least
semi-automatic.

In order to recalculate a line of a table or the entire table, use the following commands:

C-c * org-table-recalculate
Recalculate the current row by first applying the stored column formulas from
left to right, and all field/range formulas in the current row.

C-u C-c *

C-u C-c C-c
Recompute the entire table, line by line. Any lines before the first hline are left
alone, assuming that these are part of the table header.

C-u C-u C-¢c * or C-u C-u C-c C-c org-table-iterate

Iterate the table by recomputing it until no further changes occur. This may be
necessary if some computed fields use the value of other fields that are computed
later in the calculation sequence.

M-x org-table-recalculate-buffer—tables RET
Recompute all tables in the current buffer.

M-x org-table-iterate-buffer-tables RET
Iterate all tables in the current buffer, in order to converge table-to-table de-
pendencies.

3.5.10 Advanced features

If you want the recalculation of fields to happen automatically, or if you want to be able to
assign names® to fields and columns, you need to reserve the first column of the table for
special marking characters.

C-# org-table-rotate-recalc-marks
A]

Rotate the calculation mark in first column through the states ¢ 7, ‘#’, ‘x’, ‘17,
‘$’. When there is an active region, change all marks in the region.

Here is an example of a table that collects exam results of students and makes use of
these features:

9 Such names must start by an alphabetic character and use only alphanumeric/underscore characters.

Chapter 3: Tables 35

| ———+———————— +—————— +————— +o————— +—————— +———— |
| | Student | Prob 1 | Prob 2 | Prob 3 | Total | Note |
| ———4————————- to—————— o ———— o to————— +o————— |
I I P1 | P2 | P3 | Tot | |
| | Maximum | 10 | 15 | 25 | 50 | 10.0 |
[~ I ml | m2 | m3 | mt | I
| -+ Fom—— Fom————— tom +om———— e |
| # | Peter | 10 | 8 | 23 | 41 | 8.2 |
| # | Sam I 2 | 4 | 3| 9] 1.8 |
| == Fo—————— tm—————— Fo—————— o o |
| | Average | | | | 25.0 | |
[~ I | I | at | |
| $ | max=50 | | | | | I
| - +——————— - to——————— +o————— +————— |

#+TBLFM: $6=vsum($P1..$P3)::$7=10*%$Tot/$max;%.1f::$at=vmean(Q@-II..0-I);%.1f

Important: please note that for these special tables, recalculating the table with C-u C-c *
will only affect rows that are marked ‘#’ or ‘*’, and fields that have a formula assigned to
the field itself. The column formulas are not applied in rows with empty first field.

The marking characters have the following meaning:

‘v The fields in this line define names for the columns, so that you may refer to a
column as ‘$Tot’ instead of ‘$6’.

This row defines names for the fields above the row. With such a definition,
any formula in the table may use ‘$m1’ to refer to the value ‘10’. Also, if you

)

assign a formula to a names field, it will be stored as ‘$name=...".
Similar to ‘7, but defines names for the fields in the row below.

‘¢’ Fields in this row can define parameters for formulas. For example, if a field in
a ‘$’ row contains ‘max=50’, then formulas in this table can refer to the value
50 using ‘$max’. Parameters work exactly like constants, only that they can be
defined on a per-table basis.

‘¢ Fields in this row are automatically recalculated when pressing TAB or RET or
S-TAB in this row. Also, this row is selected for a global recalculation with C-u
C-c *. Unmarked lines will be left alone by this command.

x Selects this line for global recalculation with C-u C-c *, but not for automatic
recalculation. Use this when automatic recalculation slows down editing too
much.

Unmarked lines are exempt from recalculation with C-u C-c *. All lines that
should be recalculated should be marked with ‘#’ or ‘*’.

A Do not export this line. Useful for lines that contain the narrowing ‘<N>’ markers
or column group markers.

Finally, just to whet your appetite for what can be done with the fantastic calc.el
package, here is a table that computes the Taylor series of degree n at location x for a
couple of functions.

Chapter 3: Tables 36

| e et BT A e e e e e |
I | Func | n | x | Result

R e ot o |
| # | exp(x) 11 x | 1+x |
| # | exp(x) 21 x | 1+x+x2/2

#	exp(x)	3	x	1+x+x2/2+x3/6
#	x"2+sqrt(x)	2	x=0	xx(0.5 / 0) + x°2 (2 - 0.25 /0) / 2
#	x"2+sqrt(x)	2	x=1	2 + 2.6 x - 2.5 + 0.875 (x - 1)72
*	tan(x)	31 x	0.0175 x + 1.77e-6 x"3	
——+———— ot o				
#+TBLFM: $5=taylor($2,$4,$3);n3

3.6 Org-Plot

Org-Plot can produce graphs of information stored in org tables, either graphically or in
ASClII-art.

Graphical plots using Gnuplot

Org-Plot produces 2D and 3D graphs using Gnuplot http://www.gnuplot.info/ and
gnuplot-mode http://xafs.org/BruceRavel/GnuplotMode. To see this in action, ensure
that you have both Gnuplot and Gnuplot mode installed on your system, then call C-c " g
or M-x org-plot/gnuplot RET on the following table.

#+PLOT: title:"Citas" ind:1 deps:(3) type:2d with:histograms set:"yrange [0:]"

| Sede | Max cites | H-index |
| ——————=———- tomm o

Chile	267.72	21.39
Leeds	165.77	19.68
Sao Paolo	71.00	11.50
Stockholm	134.19	14.33
Morelia	257.56	17.67

Notice that Org Plot is smart enough to apply the table’s headers as labels. Further
control over the labels, type, content, and appearance of plots can be exercised through the
#+PLOT: lines preceding a table. See below for a complete list of Org-plot options. The
#+PLOT: lines are optional. For more information and examples see the Org-plot tutorial
at http://orgmode.org/worg/org-tutorials/org-plot.html.

Plot Options

set Specify any gnuplot option to be set when graphing.

title Specify the title of the plot.

ind Specify which column of the table to use as the x axis.

deps Specify the columns to graph as a Lisp style list, surrounded by parentheses

and separated by spaces for example dep: (3 4) to graph the third and fourth
columns (defaults to graphing all other columns aside from the ind column).

type Specify whether the plot will be 24, 34, or grid.

http://www.gnuplot.info/
http://xafs.org/BruceRavel/GnuplotMode
http://orgmode.org/worg/org-tutorials/org-plot.html

Chapter 3:

with

file
labels

line

map

timefmt

script

Tables 37

Specify a with option to be inserted for every col being plotted (e.g., lines,
points, boxes, impulses, etc...). Defaults to lines.

If you want to plot to a file, specify "path/to/desired/output-file".

List of labels to be used for the deps (defaults to the column headers if they
exist).

Specify an entire line to be inserted in the Gnuplot script.

When plotting 3d or grid types, set this to t to graph a flat mapping rather
than a 3d slope.

Specify format of Org mode timestamps as they will be parsed by Gnuplot.
Defaults to “4Y-%m-%d-%H:%M:%S’.

If you want total control, you can specify a script file (place the file name be-
tween double-quotes) which will be used to plot. Before plotting, every instance
of $datafile in the specified script will be replaced with the path to the gen-
erated data file. Note: even if you set this option, you may still want to specify
the plot type, as that can impact the content of the data file.

ASCII bar plots

While the cursor is on a column, typing C-c " a or M-x orgtbl-ascii-plot RET create
a new column containing an ASCII-art bars plot. The plot is implemented through a
regular column formula. When the source column changes, the bar plot may be updated
by refreshing the table, for example typing C-u C-c *.

| Sede | Max cites | |
|- o o |
Chile	257.72	WWWWWWWWWWWW
Leeds	165.77	WWWWWWWh
Sao Paolo	71.00	WWW;
Stockholm	134.19	WWWWWW:
Morelia	257.56	WWWWWWWWWWWH
Rochefourchat	0.00	

#+TBLFM: $3='(orgtbl-ascii-draw $2 0.0 257.72 12)
The formula is an elisp call:
(orgtbl-ascii-draw COLUMN MIN MAX WIDTH)

COLUMN
MIN MAX

WIDTH

is a reference to the source column.

are the minimal and maximal values displayed. Sources values outside this
range are displayed as ‘too small’ or ‘too large’.

is the width in characters of the bar-plot. It defaults to ‘12’.

Chapter 4: Hyperlinks 38

4 Hyperlinks

Like HTML, Org provides links inside a file, external links to other files, Usenet articles,
emails, and much more.

4.1 Link format

Org will recognize plain URL-like links and activate them as clickable links. The general
link format, however, looks like this:

[[1ink] [description]] or alternatively [[1ink]]

Once a link in the buffer is complete (all brackets present), Org will change the display so
that ‘description’is displayed instead of ‘[[1ink] [description]]’ and ‘link’ is displayed
instead of ‘[[1ink]]’. Links will be highlighted in the face org-link, which by default is
an underlined face. You can directly edit the visible part of a link. Note that this can be
either the ‘link’ part (if there is no description) or the ‘description’ part. To edit also
the invisible ‘1ink’ part, use C-c¢ C-1 with the cursor on the link.

If you place the cursor at the beginning or just behind the end of the displayed text and
press BACKSPACE, you will remove the (invisible) bracket at that location. This makes the
link incomplete and the internals are again displayed as plain text. Inserting the missing
bracket hides the link internals again. To show the internal structure of all links, use the
menu entry Org->Hyperlinks->Literal links.

4.2 Internal links

If the link does not look like a URL, it is considered to be internal in the current file. The
most important case is a link like ‘[[#my-custom-id]]’ which will link to the entry with
the CUSTOM_ID property ‘my-custom-id’. You are responsible yourself to make sure these
custom IDs are unique in a file.

Links such as ‘[[My Target]]’ or ‘[[My Target] [Find my target]]’ lead to a text
search in the current file.

The link can be followed with C-c C-o when the cursor is on the link, or with a mouse
click (see Section 4.4 [Handling links|, page 41). Links to custom IDs will point to the
corresponding headline. The preferred match for a text link is a dedicated target: the same
string in double angular brackets, like ‘<<My Target>>’.

If no dedicated target exists, the link will then try to match the exact name of an element
within the buffer. Naming is done with the #+NAME keyword, which has to be put in the
line before the element it refers to, as in the following example

#+NAME: My Target
| a | table |
R |

| of | four cells |

If none of the above succeeds, Org will search for a headline that is exactly the link text
but may also include a TODO keyword and tags!.

I To insert a link targeting a headline, in-buffer completion can be used. Just type a star followed by a
few optional letters into the buffer and press M-TAB. All headlines in the current buffer will be offered as
completions.

Chapter 4: Hyperlinks 39

During export, internal links will be used to mark objects and assign them a number.
Marked objects will then be referenced by links pointing to them. In particular, links
without a description will appear as the number assigned to the marked object?. In the
following excerpt from an Org buffer

- one item
- <<target>>another item
Here we refer to item [[target]].

The last sentence will appear as ‘Here we refer to item 2’ when exported.

In non-Org files, the search will look for the words in the link text. In the above example
the search would be for ‘my target’.

Following a link pushes a mark onto Org’s own mark ring. You can return to the previous
position with C-c & Using this command several times in direct succession goes back to
positions recorded earlier.

4.2.1 Radio targets

Org can automatically turn any occurrences of certain target names in normal text into
a link. So without explicitly creating a link, the text connects to the target radioing its
position. Radio targets are enclosed by triple angular brackets. For example, a target ‘<<<My
Target>>>’ causes each occurrence of ‘my target’ in normal text to become activated as
a link. The Org file is scanned automatically for radio targets only when the file is first
loaded into Emacs. To update the target list during editing, press C-c C-c with the cursor
on or at a target.

4.3 External links

Org supports links to files, websites, Usenet and email messages, BBDB database entries
and links to both IRC conversations and their logs. External links are URL-like locators.
They start with a short identifying string followed by a colon. There can be no space after
the colon. The following list shows examples for each link type.

http://www.astro.uva.nl/"dominik on the web
doi:10.1000/182 DOI for an electronic resource
file:/home/dominik/images/jupiter. jpg file, absolute path
/home/dominik/images/jupiter. jpg same as above
file:papers/last.pdf file, relative path
./papers/last.pdf same as above
file:/myself@some.where:papers/last.pdf file, path on remote machine
/myself@some.where:papers/last.pdf same as above
file:sometextfile: :NNN file, jump to line number
file:projects.org another Org file
file:projects.org: :some words text search in Org file?

2 When targeting a #+NAME keyword, #+CAPTION keyword is mandatory in order to get proper numbering
(see Section 11.2 [Images and tables], page 131).
3
The actual behavior of the search will depend on the value of
the option org-link-search-must-match-exact-headline. If its value
is nil, then a fuzzy text search will be done. If it is t, then only the

Chapter 4: Hyperlinks 40

file:projects.org: :*task title heading search in Org

file*

file+sys:/path/to/file open via OS, like double-click
file+emacs:/path/to/file force opening by Emacs
docview:papers/last.pdf: :NNN open in doc-view mode at page
id:B7423F4D-2E8A-471B-8810-C40F074717E9 Link to heading by ID

News :Comp . emacs Usenet link
mailto:adent@galaxy.net Mail link

mhe:folder MH-E folder link
mhe:folder#id MH-E message link
rmail:folder RMAIL folder link
rmail:folder#id RMAIL message link

gnus : group Gnus group link
gnus:group#id Gnus article link
bbdb:R.*Stallman BBDB link (with regexp)
irc:/irc.com/#emacs/bob IRC link

info:org#External links Info node or index link
shell:1ls *.org A shell command
elisp:org-agenda Interactive Elisp command

elisp: (find-file-other-frame "Elisp.org") Elisp form to evaluate

On top of these built-in link types, some are available through the contrib/ directory
(see Section 1.2 [Installation], page 2). For example, these links to VM or Wanderlust mes-
sages are available when you load the corresponding libraries from the contrib/ directory:

vm:folder VM folder link
vm:folder#id VM message link
vm://myself@some.where.org/folder#id VM on remote machine
vm-imap:account:folder VM IMAP folder link
vm-imap:account:folder#id VM IMAP message link
wl:folder WANDERLUST folder link
wl:folder#id WANDERLUST message link

For customizing Org to add new link types Section A.3 [Adding hyperlink types],
page 237.

A link should be enclosed in double brackets and may contain a descriptive text to be
displayed instead of the URL (see Section 4.1 [Link format], page 38), for example:

[[http://www.gnu.org/software/emacs/] [GNU Emacs]]

If the description is a file name or URL that points to an image, HTML export (see
Section 12.6 [HTML export], page 149) will inline the image as a clickable button. If
there is no description at all and the link points to an image, that image will be inlined into
the exported HTML file.

exact headline will be matched, ignoring spaces and cookies. If the value is
query-to-create, then an exact headline will be searched; if it is not
found, then the user will be queried to create it.

Headline searches always match the exact headline, ignoring

spaces and cookies. If the headline is not found and the value of the option
org-link-search-must-match-exact-headline is query-to-create,

then the user will be queried to create it.

Chapter 4: Hyperlinks 41

Org also finds external links in the normal text and activates them as links. If spaces
must be part of the link (for example in ‘bbdb:Richard Stallman’), or if you need to remove
ambiguities about the end of the link, enclose them in square brackets.

4.4 Handling links

Org provides methods to create a link in the correct syntax, to insert it into an Org file,
and to follow the link.

C-c 1

org-store-link
Store a link to the current location. This is a global command (you must create
the key binding yourself) which can be used in any buffer to create a link. The
link will be stored for later insertion into an Org buffer (see below). What kind
of link will be created depends on the current buffer:

Org mode buffers

For Org files, if there is a ‘<<target>>’ at the cursor, the link points to the
target. Otherwise it points to the current headline, which will also be the
description®.

If the headline has a CUSTOM_ID property, a link to this custom ID will be stored.
In addition or alternatively (depending on the value of org-id-link-to-org-
use-id), a globally unique ID property will be created and/or used to construct
a link®. So using this command in Org buffers will potentially create two links:
a human-readable from the custom ID, and one that is globally unique and
works even if the entry is moved from file to file. Later, when inserting the link,
you need to decide which one to use.

Email/News clients: VM, Rmail, Wanderlust, MH-E, Gnus

Pretty much all Emacs mail clients are supported. The link will point to the
current article, or, in some GNUS buffers, to the group. The description is
constructed from the author and the subject.

Web browsers: W3 and W3M
Here the link will be the current URL, with the page title as description.

Contacts: BBDB
Links created in a BBDB buffer will point to the current entry.

Chat: IRC

For IRC links, if you set the option org-irc-link-to-logs to t, a ‘file:/’
style link to the relevant point in the logs for the current conversation is created.
Otherwise an ‘irc:/’ style link to the user/channel/server under the point will
be stored.

Other files

For any other files, the link will point to the file, with a search string (see
Section 4.7 [Search options|, page 45) pointing to the contents of the current line.
If there is an active region, the selected words will form the basis of the search

5 If the headline contains a timestamp, it will be removed from the link and result in a wrong link—you
should avoid putting timestamp in the headline.

6 The library org-id.el must first be loaded, either through org-customize by enabling org-id in
org-modules, or by adding (require 'org-id) in your .emacs.

Chapter 4: Hyperlinks 42

C-c C-1

string. If the automatically created link is not working correctly or accurately
enough, you can write custom functions to select the search string and to do the
search for particular file types—see Section 4.8 [Custom searches|, page 45. The
key binding C-c 1 is only a suggestion—see Section 1.2 [Installation], page 2.
Agenda view

When the cursor is in an agenda view, the created link points to the entry
referenced by the current line.

org-insert-link
Insert a link”. This prompts for a link to be inserted into the buffer. You can
just type a link, using text for an internal link, or one of the link type prefixes
mentioned in the examples above. The link will be inserted into the buffer®,
along with a descriptive text. If some text was selected when this command is
called, the selected text becomes the default description.

Inserting stored links
All links stored during the current session are part of the history for this prompt,
so you can access them with up and down (or M-p/n).

Completion support

Completion with TAB will help you to insert valid link prefixes like ‘http:’ or
‘ftp:’, including the prefixes defined through link abbreviations (see Section 4.6
[Link abbreviations|, page 44). If you press RET after inserting only the prefix,
Org will offer specific completion support for some link types® For example, if
you type file RET, file name completion (alternative access: C-u C-c C-1, see
below) will be offered, and after bbdb RET you can complete contact names.

C-u C-c C-1

C-c C-1

C-c C-o

When C-c C-1 is called with a C-u prefix argument, a link to a file will be
inserted and you may use file name completion to select the name of the file.
The path to the file is inserted relative to the directory of the current Org file, if
the linked file is in the current directory or in a sub-directory of it, or if the path
is written relative to the current directory using ‘../’. Otherwise an absolute
path is used, if possible with ‘~/’ for your home directory. You can force an
absolute path with two C-u prefixes.

(with cursor on existing link)

When the cursor is on an existing link, C-c C-1 allows you to edit the link and
description parts of the link.

org-open-at-point
Open link at point. This will launch a web browser for URLs (using

browse-url-at-point), run VM/MH-E/Wanderlust/Rmail/Gnus/BBDB for
the corresponding links, and execute the command in a shell link. When the

7 Note that you don’t have to use this command to insert a link. Links in Org are plain text, and you can
type or paste them straight into the buffer. By using this command, the links are automatically enclosed
in double brackets, and you will be asked for the optional descriptive text.

8 After insertion of a stored link, the link will be removed from the list of stored links. To keep it in the
list later use, use a triple C-u prefix argument to C-c C-1, or configure the option org-keep-stored-
link-after-insertion.

9 This works by calling a special function org-PREFIX-complete-1link.

Chapter 4: Hyperlinks 43

cursor is on an internal link, this command runs the corresponding search.
When the cursor is on a TAG list in a headline, it creates the corresponding
TAGS view. If the cursor is on a timestamp, it compiles the agenda for that
date. Furthermore, it will visit text and remote files in ‘file:’ links with
Emacs and select a suitable application for local non-text files. Classification
of files is based on file extension only. See option org-file-apps. If you want
to override the default application and visit the file with Emacs, use a C-u
prefix. If you want to avoid opening in Emacs, use a C-u C-u prefix.

If the cursor is on a headline, but not on a link, offer all links in the headline
and entry text. If you want to setup the frame configuration for following
links, customize org-link-frame-setup.

RET When org-return-follows-1link is set, RET will also follow the link at point.

mouse-2
mouse-1 On links, mouse-2 will open the link just as C-c C-o would. Under Emacs 22
and later, mouse-1 will also follow a link.

mouse-3 Like mouse-2, but force file links to be opened with Emacs, and internal links

to be displayed in another window!.

C-c Cx C-v org-toggle-inline-images
Toggle the inline display of linked images. Normally this will only inline images
that have no description part in the link, i.e., images that will also be inlined
during export. When called with a prefix argument, also display images that
do have a link description. You can ask for inline images to be displayed at
startup by configuring the variable org-startup-with-inline-images'!.

C-c % org-mark-ring-push
Push the current position onto the mark ring, to be able to return easily. Com-
mands following an internal link do this automatically.

C-c & org-mark-ring-goto
Jump back to a recorded position. A position is recorded by the commands
following internal links, and by C-c 7. Using this command several times in
direct succession moves through a ring of previously recorded positions.

C-c C-x C-n org-next-link

C-c C-x C-p org-previous-link
Move forward/backward to the next link in the buffer. At the limit of the
buffer, the search fails once, and then wraps around. The key bindings for this
are really too long; you might want to bind this also to C-n and C-p

(add-hook 'org-load-hook
(lambda O
(define-key org-mode-map "\C-n" 'org-next-link)
(define-key org-mode-map "\C-p" 'org-previous-link)))

10" See the option org-display-internal-link-with-indirect-buffer

11 with corresponding #+STARTUP keywords inlineimages and noinlineimages

Chapter 4: Hyperlinks 44

4.5 Using links outside Org

You can insert and follow links that have Org syntax not only in Org, but in any Emacs
buffer. For this, you should create two global commands, like this (please select suitable
global keys yourself):

(global-set-key "\C-c L" 'org-insert-link-global)

(global-set-key "\C-c o" 'org-open-at-point-global)

4.6 Link abbreviations

Long URLs can be cumbersome to type, and often many similar links are needed in a
document. For this you can use link abbreviations. An abbreviated link looks like this

[[1inkword:tag] [description]]

where the tag is optional. The linkword must be a word, starting with a letter, followed by
letters, numbers, ‘=’ and ‘_’. Abbreviations are resolved according to the information in
the variable org-link-abbrev-alist that relates the linkwords to replacement text. Here
is an example:

(setq org-link-abbrev-alist

"(("bugzilla" . "http://10.1.2.9/bugzilla/show_bug.cgi?id=")
("url-to-ja" . "http://translate.google.fr/translate?sl=en&tl=ja&u=%h")
("google" . "http://www.google.com/search?q=")
("gmap" . "http://maps.google.com/maps?q=%s")
("omap" . "http://nominatim.openstreetmap.org/search?q=ys&polygon=1")
("ads" . "http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?author=Ys&db_key=AST")))

If the replacement text contains the string ‘%s’, it will be replaced with the tag. Using
‘%h’ instead of ‘%s’ will url-encode the tag (see the example above, where we need to encode
the URL parameter.) Using ‘% (my-function)’ will pass the tag to a custom function, and
replace it by the resulting string.

If the replacement text doesn’t contain any specifier, it will simply be appended to the
string in order to create the link.

Instead of a string, you may also specify a function that will be called with the tag as
the only argument to create the link.

With the above setting, you could link to a specific bug with [[bugzilla:129]],
search the web for ‘OrgMode’ with [[google:0rgModel], show the map location of the
Free Software Foundation [[gmap:51 Franklin Street, Boston]] or of Carsten office
[[omap:Science Park 904, Amsterdam, The Netherlands]] and find out what the Org
author is doing besides Emacs hacking with [[ads:Dominik,C]].

If you need special abbreviations just for a single Org buffer, you can define them in the
file with

#+LINK: bugzilla http://10.1.2.9/bugzilla/show_bug.cgi?id=
#+LINK: google http://www.google.com/search?q=%s

In-buffer completion (see Section 15.1 [Completion|, page 224) can be used after ‘[’ to
complete link abbreviations. You may also define a function org-PREFIX-complete-link
that implements special (e.g., completion) support for inserting such a link with C-c C-1.
Such a function should not accept any arguments, and return the full link with prefix.

Chapter 4: Hyperlinks 45

4.7 Search options in file links

File links can contain additional information to make Emacs jump to a particular location in
the file when following a link. This can be a line number or a search option after a double'?
colon. For example, when the command C-c 1 creates a link (see Section 4.4 [Handling
links|, page 41) to a file, it encodes the words in the current line as a search string that can
be used to find this line back later when following the link with C-c C-o.

Here is the syntax of the different ways to attach a search to a file link, together with
an explanation:
[[file:"/code/main.c::255]]
[[file:"/xx.org: :My Target]]
[[file:"/xx.org::*My Target]]
[[file:"/xx.org: :#my-custom-id]]
[[file:"/xx.org::/regexp/]]

255 Jump to line 255.

My Target Search for a link target ‘<<My Target>>’, or do a text search for ‘my target’,
similar to the search in internal links, see Section 4.2 [Internal links|, page 38. In
HTML export (see Section 12.6 [HTML export], page 149), such a file link will
become an HTML reference to the corresponding named anchor in the linked
file.

*My Target
In an Org file, restrict search to headlines.
#my-custom-id
Link to a heading with a CUSTOM_ID property
/regexp/ Do a regular expression search for regexp. This uses the Emacs command

occur to list all matches in a separate window. If the target file is in Org
mode, org-occur is used to create a sparse tree with the matches.

As a degenerate case, a file link with an empty file name can be used to search the
current file. For example, [[file:::find me]] does a search for ‘find me’ in the current
file, just as ‘[[find me]]’ would.

4.8 Custom Searches

The default mechanism for creating search strings and for doing the actual search related
to a file link may not work correctly in all cases. For example, BibTEX database files have
many entries like ‘year="1993"" which would not result in good search strings, because the
only unique identification for a BibTEX entry is the citation key.

If you come across such a problem, you can write custom functions to set the right
search string for a particular file type, and to do the search for the string in the file.
Using add-hook, these functions need to be added to the hook variables org-create-
file-search-functions and org-execute-file-search-functions. See the docstring
for these variables for more information. Org actually uses this mechanism for BibTEX
database files, and you can use the corresponding code as an implementation example. See
the file org-bibtex.el.

12 For backward compatibility, line numbers can also follow a single colon.

Chapter 5: TODO items 46

5 TODO items

Org mode does not maintain TODO lists as separate documents'. Instead, TODO items
are an integral part of the notes file, because TODO items usually come up while taking
notes! With Org mode, simply mark any entry in a tree as being a TODO item. In this way,
information is not duplicated, and the entire context from which the TODO item emerged
is always present.

Of course, this technique for managing TODO items scatters them throughout your
notes file. Org mode compensates for this by providing methods to give you an overview of
all the things that you have to do.

5.1 Basic TODO functionality

Any headline becomes a TODO item when it starts with the word ‘TODQ’, for example:
*x*x TODO Write letter to Sam Fortune

The most important commands to work with TODO entries are:

C-c C-t org-todo
Rotate the TODO state of the current item among
,—> (unmarked) -> TODO -> DONE --.

If TODO keywords have fast access keys (see Section 5.2.4 [Fast access to TODO
states], page 49), you will be prompted for a TODO keyword through the
fast selection interface; this is the default behavior when org-use-fast-todo-
selection is non-nil.

The same rotation can also be done “remotely” from the timeline and agenda
buffers with the t command key (see Section 10.5 [Agenda commands],
page 113).

C-u C-c C-t
When TODO keywords have no selection keys, select a specific keyword using
completion; otherwise force cycling through TODO states with no prompt.
When org-use-fast-todo-selection is set to prefix, use the fast selection
interface.

S-right / S-left
Select the following /preceding TODO state, similar to cycling. Useful mostly if
more than two TODO states are possible (see Section 5.2 [TODO extensions],
page 47). See also Section 15.10.2 [Conflicts]|, page 234, for a discussion of the
interaction with shift-selection-mode. See also the variable org-treat-S-
cursor-todo-selection-as—-state-change.

C-c/t org-show-todo-tree
View TODO items in a sparse tree (see Section 2.6 [Sparse trees|, page 11).
Folds the entire buffer, but shows all TODO items (with not-DONE state) and

L Of course, you can make a document that contains only long lists of TODO items, but this is not
required.

Chapter 5: TODO items 47

the headings hierarchy above them. With a prefix argument (or by using C-c
/ T), search for a specific TODO. You will be prompted for the keyword, and
you can also give a list of keywords like KWD1|KWD2]| ... to list entries that
match any one of these keywords. With a numeric prefix argument N, show the
tree for the Nth keyword in the option org-todo-keywords. With two prefix
arguments, find all TODO states, both un-done and done.

C-cat org-todo-list
Show the global TODO list. Collects the TODO items (with not-DONE
states) from all agenda files (see Chapter 10 [Agenda views|, page 100) into
a single buffer. The new buffer will be in agenda-mode, which provides
commands to examine and manipulate the TODO entries from the new buffer
(see Section 10.5 [Agenda commands], page 113). See Section 10.3.2 [Global
TODO list], page 104, for more information.

S-M-RET org-insert-todo-heading
Insert a new TODO entry below the current one.

Changing a TODO state can also trigger tag changes. See the docstring of the option
org-todo-state-tags-triggers for details.

5.2 Extended use of TODO keywords

By default, marked TODO entries have one of only two states: TODO and DONE. Org
mode allows you to classify TODO items in more complex ways with TODO keywords
(stored in org-todo-keywords). With special setup, the TODO keyword system can work
differently in different files.

Note that tags are another way to classify headlines in general and TODO items in
particular (see Chapter 6 [Tags|, page 59).

5.2.1 TODO keywords as workflow states

You can use TODO keywords to indicate different sequential states in the process of working
on an item, for example?:

(setq org-todo-keywords
'((sequence "TODO" "FEEDBACK" "VERIFY" "|" "DONE" "DELEGATED")))

The vertical bar separates the TODO keywords (states that need action) from the DONE
states (which need no further action). If you don’t provide the separator bar, the last state
is used as the DONE state. With this setup, the command C-c C-t will cycle an entry
from TODO to FEEDBACK, then to VERIFY, and finally to DONE and DELEGATED.
You may also use a numeric prefix argument to quickly select a specific state. For example
C-3 C-c C-t will change the state immediately to VERIFY. Or you can use S-left to
go backward through the sequence. If you define many keywords, you can use in-buffer
completion (see Section 15.1 [Completion], page 224) or even a special one-key selection
scheme (see Section 5.2.4 [Fast access to TODO states|, page 49) to insert these words into
the buffer. Changing a TODO state can be logged with a timestamp, see Section 5.3.2
[Tracking TODO state changes|, page 52, for more information.

2 Changing this variable only becomes effective after restarting Org mode in a buffer.

Chapter 5: TODO items 48

5.2.2 TODO keywords as types

The second possibility is to use TODO keywords to indicate different types of action items.
For example, you might want to indicate that items are for “work” or “home”. Or, when
you work with several people on a single project, you might want to assign action items
directly to persons, by using their names as TODO keywords. This would be set up like
this:

(setq org-todo-keywords '((type "Fred" "Sara" "Lucy" "|" "DONE")))

In this case, different keywords do not indicate a sequence, but rather different types.
So the normal work flow would be to assign a task to a person, and later to mark it DONE.
Org mode supports this style by adapting the workings of the command C-c C-t*. When
used several times in succession, it will still cycle through all names, in order to first select
the right type for a task. But when you return to the item after some time and execute
C-c C-t again, it will switch from any name directly to DONE. Use prefix arguments or
completion to quickly select a specific name. You can also review the items of a specific
TODO type in a sparse tree by using a numeric prefix to C-c / t. For example, to see all
things Lucy has to do, you would use C-3 C-c / t. To collect Lucy’s items from all agenda
files into a single buffer, you would use the numeric prefix argument as well when creating
the global TODO list: €C-3 C-c a t.

5.2.3 Multiple keyword sets in one file

Sometimes you may want to use different sets of TODO keywords in parallel. For example,
you may want to have the basic TODO/DONE, but also a workflow for bug fixing, and a
separate state indicating that an item has been canceled (so it is not DONE, but also does
not require action). Your setup would then look like this:

(setq org-todo-keywords

' ((sequence "TODO" "|" "DONE")
(sequence "REPORT" "BUG" "KNOWNCAUSE" "|" "FIXED")
(sequence "|" "CANCELED")))

The keywords should all be different, this helps Org mode to keep track of which sub-
sequence should be used for a given entry. In this setup, C-c C-t only operates within a
subsequence, so it switches from DONE to (nothing) to TODO, and from FIXED to (nothing)
to REPORT. Therefore you need a mechanism to initially select the correct sequence. Be-
sides the obvious ways like typing a keyword or using completion, you may also apply the
following commands:

C-u C-u C-c C-t

C-S-right

C-S-left These keys jump from one TODO subset to the next. In the above example,
C-u C-u C-c C-t or C-S-right would jump from TODO or DONE to REPORT, and
any of the words in the second row to CANCELED. Note that the C-S- key
binding conflict with shift-selection-mode (see Section 15.10.2 [Conflicts],
page 234).

3 This is also true for the t command in the timeline and agenda buffers.

Chapter 5: TODO items 49

S-right

S-left S-left and S-right and walk through all keywords from all sets, so for example
S-right would switch from DONE to REPORT in the example above. See also
Section 15.10.2 [Conflicts], page 234, for a discussion of the interaction with
shift-selection-mode.

5.2.4 Fast access to TODO states

If you would like to quickly change an entry to an arbitrary TODO state instead of cycling
through the states, you can set up keys for single-letter access to the states. This is done
by adding the selection character after each keyword, in parentheses*. For example:

(setq org-todo-keywords

' ((sequence "TODO(t)" "|" "DONE(d)")
(sequence "REPORT(r)" "BUG(b)" "KNOWNCAUSE(k)" "|" "FIXED(f)")
(sequence "|" "CANCELED(c)")))

If you then press C-c C-t followed by the selection key, the entry will be switched to
this state. SPC can be used to remove any TODO keyword from an entry.’

5.2.5 Setting up keywords for individual files

It can be very useful to use different aspects of the TODO mechanism in different files.
For file-local settings, you need to add special lines to the file which set the keywords and
interpretation for that file only. For example, to set one of the two examples discussed
above, you need one of the following lines anywhere in the file:

#+TODO: TODO FEEDBACK VERIFY | DONE CANCELED

(you may also write #+SEQ_TODO to be explicit about the interpretation, but it means the
same as #+T0D0), or

#+TYP_TODO: Fred Sara Lucy Mike | DONE
A setup for using several sets in parallel would be:

#+TODO: TODO | DONE
#+TODO: REPORT BUG KNOWNCAUSE | FIXED
#+TODO: | CANCELED

To make sure you are using the correct keyword, type ‘#+’ into the buffer and then use
M-TAB completion.

Remember that the keywords after the vertical bar (or the last keyword if no bar is
there) must always mean that the item is DONE (although you may use a different word).
After changing one of these lines, use C-c C-c with the cursor still in the line to make the
changes known to Org mode®.

4" All characters are allowed except @ !, which have a special meaning here.

5 Check also the option org-fast-tag-selection-include-todo, it allows you to change the TODO state
through the tags interface (see Section 6.2 [Setting tags|, page 59), in case you like to mingle the two
concepts. Note that this means you need to come up with unique keys across both sets of keywords.

6 Org mode parses these lines only when Org mode is activated after visiting a file. C-c C-c with the

cursor in a line starting with ‘#+’ is simply restarting Org mode for the current buffer.

Chapter 5: TODO items 50

5.2.6 Faces for TODO keywords

Org mode highlights TODO keywords with special faces: org-todo for keywords indicating
that an item still has to be acted upon, and org-done for keywords indicating that an item
is finished. If you are using more than 2 different states, you might want to use special
faces for some of them. This can be done using the option org-todo-keyword-faces. For
example:

(setq org-todo-keyword-faces
'(("TODO" . org-warning) ("STARTED" . "yellow")
("CANCELED" . (:foreground "blue" :weight bold))))

While using a list with face properties as shown for CANCELED should work, this does
not always seem to be the case. If necessary, define a special face and use that. A string is
interpreted as a color. The option org-faces-easy-properties determines if that color is
interpreted as a foreground or a background color.

5.2.7 TODO dependencies

The structure of Org files (hierarchy and lists) makes it easy to define TODO dependencies.
Usually, a parent TODO task should not be marked DONE until all subtasks (defined as
children tasks) are marked as DONE. And sometimes there is a logical sequence to a number
of (sub)tasks, so that one task cannot be acted upon before all siblings above it are done.
If you customize the option org-enforce-todo-dependencies, Org will block entries from
changing state to DONE while they have children that are not DONE. Furthermore, if an
entry has a property ORDERED, each of its children will be blocked until all earlier siblings
are marked DONE. Here is an example:

* TODO Blocked until (two) is done

**x DONE one

*x TODO two

* Parent
:PROPERTIES:
:0ORDERED: t
:END:

**x TODO a

**x TODO b, needs to wait for (a)
*x TODO c, needs to wait for (a) and (b)

You can ensure an entry is never blocked by using the NOBLOCKING property:

* This entry is never blocked
:PROPERTIES:
:NOBLOCKING: t
:END:

C-c C-x o org-toggle-ordered-property
Toggle the ORDERED property of the current entry. A property is used for this
behavior because this should be local to the current entry, not inherited like
a tag. However, if you would like to track the value of this property with a
tag for better visibility, customize the option org-track-ordered-property-
with-tag.

Chapter 5: TODO items 51

C-u C-u C-u C-c C-t
Change TODO state, circumventing any state blocking.

If you set the option org-agenda-dim-blocked-tasks, TODO entries that cannot be
closed because of such dependencies will be shown in a dimmed font or even made invisible
in agenda views (see Chapter 10 [Agenda views], page 100).

You can also block changes of TODO states by looking at checkboxes (see Section 5.6
[Checkboxes|, page 56). If you set the option org-enforce-todo-checkbox-dependencies,
an entry that has unchecked checkboxes will be blocked from switching to DONE.

If you need more complex dependency structures, for example dependencies between
entries in different trees or files, check out the contributed module org-depend.el.

Chapter 5: TODO items 52

5.3 Progress logging

Org mode can automatically record a timestamp and possibly a note when you mark a
TODO item as DONE, or even each time you change the state of a TODO item. This
system is highly configurable; settings can be on a per-keyword basis and can be localized
to a file or even a subtree. For information on how to clock working time for a task, see
Section 8.4 [Clocking work time|, page 80.

)

5.3.1 Closing items

The most basic logging is to keep track of when a certain TODO item was finished. This is
achieved with®
(setq org-log-done 'time)

Then each time you turn an entry from a TODO (not-done) state into any of the DONE
states, a line ‘CLOSED: [timestamp]’ will be inserted just after the headline. If you turn the
entry back into a TODO item through further state cycling, that line will be removed again.
If you turn the entry back to a non-TODO state (by pressing C-c C-t SPC for example),
that line will also be removed, unless you set org-closed-keep-when-no-todo to non-nil.
If you want to record a note along with the timestamp, use?

(setq org-log-done 'note)

You will then be prompted for a note, and that note will be stored below the entry with a
‘Closing Note’ heading.

In the timeline (see Section 10.3.4 [Timeline|, page 107) and in the agenda (see
Section 10.3.1 [Weekly /daily agendal, page 102), you can then use the 1 key to display the
TODO items with a ‘CLOSED’ timestamp on each day, giving you an overview of what has
been done.

5.3.2 Tracking TODO state changes

When TODO keywords are used as workflow states (see Section 5.2.1 [Workflow states],
page 47), you might want to keep track of when a state change occurred and maybe take
a note about this change. You can either record just a timestamp, or a time-stamped note
for a change. These records will be inserted after the headline as an itemized list, newest
first®. When taking a lot of notes, you might want to get the notes out of the way into a
drawer (see Section 2.8 [Drawers|, page 15). Customize org-log-into-drawer to get this
behavior—the recommended drawer for this is called LOGBOOK?. You can also overrule the
setting of this variable for a subtree by setting a LOG_INTO_DRAWER property.

Since it is normally too much to record a note for every state, Org mode expects con-
figuration on a per-keyword basis for this. This is achieved by adding special markers ‘!’
(for a timestamp) or ‘@’ (for a note with timestamp) in parentheses after each keyword. For
example, with the setting

(setq org-todo-keywords

The corresponding in-buffer setting is: #+STARTUP: logdone
The corresponding in-buffer setting is: #+STARTUP: lognotedone.
See the option org-log-states-order-reversed

=W N =

Note that the LOGBOOK drawer is unfolded when pressing SPC in the agenda to show an entry—use C-u
SPC to keep it folded here

Chapter 5: TODO items 53

'((sequence "TODO(t)" "WAIT(w@/!)" "|" "DONE(d!)" "CANCELED(c®)")))

To record a timestamp without a note for TODO keywords configured with ‘@’, just type
C-c C-c to enter a blank note when prompted.

You not only define global TODO keywords and fast access keys, but also request that a
time is recorded when the entry is set to DONE®, and that a note is recorded when switching
to WAIT or CANCELED. The setting for WAIT is even more special: the ‘!’ after the
slash means that in addition to the note taken when entering the state, a timestamp should
be recorded when leaving the WAIT state, if and only if the target state does not configure
logging for entering it. So it has no effect when switching from WAIT to DONE, because
DONE is configured to record a timestamp only. But when switching from WAIT back to
TODO, the ¢//!’ in the WAIT setting now triggers a timestamp even though TODO has no
logging configured.

You can use the exact same syntax for setting logging preferences local to a buffer:
#+TODO: TODO(t) WAIT(w@/!) | DONE(d!) CANCELED(c@)

In order to define logging settings that are local to a subtree or a single item, define a
LOGGING property in this entry. Any non-empty LOGGING property resets all logging
settings to nil. You may then turn on logging for this specific tree using STARTUP
keywords like lognotedone or logrepeat, as well as adding state specific settings like
TODO(!). For example

* TODO Log each state with only a time
:PROPERTIES:
:LOGGING: TODO(!) WAIT(!) DONE(!) CANCELED(!)
:END:

* TODO Only log when switching to WAIT, and when repeating
:PROPERTIES:
:LOGGING: WAIT(Q@) logrepeat
:END:

* TODO No logging at all
:PROPERTIES:
:LOGGING: nil
:END:

5.3.3 Tracking your habits

Org has the ability to track the consistency of a special category of TODOs, called “habits”.
A habit has the following properties:

You have enabled the habits module by customizing org-modules.
The habit is a TODO item, with a TODO keyword representing an open state.
The property STYLE is set to the value habit.

Ll

The TODO has a scheduled date, usually with a .+ style repeat interval. A ++ style
may be appropriate for habits with time constraints, e.g., must be done on weekends,
or a + style for an unusual habit that can have a backlog, e.g., weekly reports.

5 Tt is possible that Org mode will record two timestamps when you are using both org-log-done and
state change logging. However, it will never prompt for two notes—if you have configured both, the state
change recording note will take precedence and cancel the ‘Closing Note’.

Chapter 5: TODO items

54

5. The TODO may also have minimum and maximum ranges specified by using the syntax
‘.+2d/3d’, which says that you want to do the task at least every three days, but at
most every two days.

6. You must also have state logging for the DONE state enabled (see Section 5.3.2 [Tracking
TODO state changes|, page 52), in order for historical data to be represented in the
consistency graph. If it is not enabled it is not an error, but the consistency graphs
will be largely meaningless.

To give you an idea of what the above rules look like in action, here’s an actual habit

with some history:

*x*x TODO Shave
SCHEDULED: <2009-10-17 Sat .+2d/4d>

:PROPERTIES:
:STYLE: hab
:LAST_REPEAT:
:END:

- State "DONE"
- State "DONE"
- State "DONE"
- State "DONE"
- State "DONE"
- State "DONE"
- State "DONE"
- State "DONE"
- State "DONE"
- State "DONE"

What this habit says is

overdue on Oct 19, after four days have elapsed.

it
[2009-10-19

from
from
from
from
from
from
from
from
from
from

Mon 00:

"TODO"
"TODO"
"TODO"
"TODO"
"TODO"
"TODO"
"TODO"
"TODO"
"TODO"
"TODO"

36]

[2009-10-15
[2009-10-12
[2009-10-10
[2009-10-04
[2009-10-02
[2009-09-29
[2009-09-25
[2009-09-19
[2009-09-16
[2009-09-12

Thu]
Mon]
Sat]
Sun]
Fri]
Tuel
Fri]
Sat]
Wed]
Sat]

: I want to shave at most every 2 days (given by the SCHEDULED
date and repeat interval) and at least every 4 days. If today is the 15th, then the habit first
appears in the agenda on Oct 17, after the minimum of 2 days has elapsed, and will appear

What’s really useful about habits is that they are displayed along with a consistency
graph, to show how consistent you've been at getting that task done in the past. This
graph shows every day that the task was done over the past three weeks, with colors for
each day. The colors used are:

Blue If the task wasn’t to be done yet on that day.

Green If the task could have been done on that day.

Yellow If the task was going to be overdue the next day.

Red If the task was overdue on that day.

In addition to coloring each day, the day is also marked with an asterisk if the task was
actually done that day, and an ex