
ejabberd 14.12

Installation and Operation Guide

ejabberd Development Team

2

Contents

1 Introduction 9

1.1 Key Features . 10

1.2 Additional Features . 11

2 Installing ejabberd 13

2.1 Installing ejabberd with Binary Installer . 13

2.2 Installing ejabberd with Operating System Specific Packages 14

2.3 Installing ejabberd with CEAN . 14

2.4 Installing ejabberd from Source Code . 15

2.4.1 Requirements . 15

2.4.2 Download Source Code . 15

2.4.3 Compile . 16

2.4.4 Install . 17

2.4.5 Start . 17

2.4.6 Specific Notes for BSD . 18

2.4.7 Specific Notes for Sun Solaris . 18

2.4.8 Specific Notes for Microsoft Windows . 19

2.5 Create an XMPP Account for Administration . 20

2.6 Upgrading ejabberd . 21

3

4 Contents

3 Configuring ejabberd 23

3.1 Basic Configuration . 23

3.1.1 Legacy Configuration File . 24

3.1.2 Host Names . 24

3.1.3 Virtual Hosting . 24

3.1.4 Listening Ports . 26

3.1.5 Authentication . 38

3.1.6 Access Rules . 43

3.1.7 Shapers . 47

3.1.8 Default Language . 48

3.1.9 CAPTCHA . 48

3.1.10 STUN and TURN . 49

3.1.11 SIP . 51

3.1.12 Include Additional Configuration Files . 52

3.1.13 Option Macros in Configuration File . 53

3.2 Database and LDAP Configuration . 55

3.2.1 ODBC . 56

3.2.2 LDAP . 57

3.2.3 Riak . 62

3.3 Modules Configuration . 63

3.3.1 Modules Overview . 64

3.3.2 Common Options . 66

3.3.3 mod announce . 67

3.3.4 mod client state . 69

3.3.5 mod disco . 69

3.3.6 mod echo . 71

3.3.7 mod fail2ban . 72

3.3.8 mod http bind . 72

CONTENTS 5

3.3.9 mod http fileserver . 73

3.3.10 mod irc . 75

3.3.11 mod last . 76

3.3.12 mod muc . 77

3.3.13 mod muc log . 82

3.3.14 mod offline . 84

3.3.15 mod ping . 85

3.3.16 mod pres counter . 86

3.3.17 mod privacy . 86

3.3.18 mod private . 87

3.3.19 mod proxy65 . 88

3.3.20 mod pubsub . 89

3.3.21 mod register . 91

3.3.22 mod register web . 94

3.3.23 mod roster . 95

3.3.24 mod service log . 96

3.3.25 mod shared roster . 97

3.3.26 mod shared roster ldap . 98

3.3.27 mod sic . 105

3.3.28 mod sip . 105

3.3.29 mod stats . 107

3.3.30 mod time . 107

3.3.31 mod vcard . 108

3.3.32 mod vcard ldap . 109

3.3.33 mod vcard xupdate . 113

3.3.34 mod version . 113

6 Contents

4 Managing an ejabberd Server 115

4.1 ejabberdctl . 115

4.1.1 ejabberdctl Commands . 115

4.1.2 Erlang Runtime System . 116

4.2 ejabberd Commands . 118

4.2.1 List of ejabberd Commands . 118

4.2.2 Restrict Execution with AccessCommands 120

4.3 Web Admin . 121

4.4 Ad-hoc Commands . 123

4.5 Change Computer Hostname . 123

5 Securing ejabberd 125

5.1 Firewall Settings . 125

5.2 epmd . 125

5.3 Erlang Cookie . 126

5.4 Erlang Node Name . 126

5.5 Securing Sensitive Files . 127

6 Clustering 129

6.1 How it Works . 129

6.1.1 Router . 129

6.1.2 Local Router . 129

6.1.3 Session Manager . 130

6.1.4 s2s Manager . 130

6.2 Clustering Setup . 130

6.3 Service Load-Balancing . 131

6.3.1 Domain Load-Balancing Algorithm . 131

6.3.2 Load-Balancing Buckets . 132

CONTENTS 7

7 Debugging 133

7.1 Log Files . 133

7.2 Debug Console . 134

7.3 Watchdog Alerts . 135

A Internationalization and Localization 137

B Release Notes 139

C Acknowledgements 141

D Copyright Information 143

8 Contents

Chapter 1

Introduction

ejabberd is a free and open source instant messaging server written in Erlang/OTP1.

ejabberd is cross-platform, distributed, fault-tolerant, and based on open standards to achieve
real-time communication.

ejabberd is designed to be a rock-solid and feature rich XMPP server.

ejabberd is suitable for small deployments, whether they need to be scalable or not, as well as
extremely big deployments.

1http://www.erlang.org/

9

http://www.erlang.org/

10 1. Introduction

1.1 Key Features

ejabberd is:

• Cross-platform: ejabberd runs under Microsoft Windows and Unix derived systems such
as Linux, FreeBSD and NetBSD.

• Distributed: You can run ejabberd on a cluster of machines and all of them will serve the
same Jabber domain(s). When you need more capacity you can simply add a new cheap
node to your cluster. Accordingly, you do not need to buy an expensive high-end machine
to support tens of thousands concurrent users.

• Fault-tolerant: You can deploy an ejabberd cluster so that all the information required for
a properly working service will be replicated permanently on all nodes. This means that if
one of the nodes crashes, the others will continue working without disruption. In addition,
nodes also can be added or replaced ‘on the fly’.

• Administrator Friendly: ejabberd is built on top of the Open Source Erlang. As a result
you do not need to install an external database, an external web server, amongst others be-
cause everything is already included, and ready to run out of the box. Other administrator
benefits include:

– Comprehensive documentation.

– Straightforward installers for Linux, Mac OS X, and Windows.

– Web Administration.

– Shared Roster Groups.

– Command line administration tool.

– Can integrate with existing authentication mechanisms.

– Capability to send announce messages.

• Internationalized: ejabberd leads in internationalization. Hence it is very well suited in a
globalized world. Related features are:

– Translated to 25 languages.

– Support for IDNA2.

• Open Standards: ejabberd is the first Open Source Jabber server claiming to fully comply
to the XMPP standard.

– Fully XMPP compliant.

– XML-based protocol.

– Many protocols supported3.

2http://www.ietf.org/rfc/rfc3490.txt
3http://www.ejabberd.im/protocols

http://www.ietf.org/rfc/rfc3490.txt
http://www.ejabberd.im/protocols

1.2 Additional Features 11

1.2 Additional Features

Moreover, ejabberd comes with a wide range of other state-of-the-art features:

• Modular

– Load only the modules you want.

– Extend ejabberd with your own custom modules.

• Security

– SASL and STARTTLS for c2s and s2s connections.

– STARTTLS and Dialback s2s connections.

– Web Admin accessible via HTTPS secure access.

• Databases

– Internal database for fast deployment (Mnesia).

– Native MySQL support.

– Native PostgreSQL support.

– ODBC data storage support.

– Microsoft SQL Server support.

– Riak NoSQL database support.

• Authentication

– Internal Authentication.

– PAM, LDAP, ODBC and Riak.

– External Authentication script.

• Others

– Support for virtual hosting.

– Compressing XML streams with Stream Compression (XEP-01384).

– Statistics via Statistics Gathering (XEP-00395).

– IPv6 support both for c2s and s2s connections.

– Multi-User Chat6 module with support for clustering and HTML logging.

– Users Directory based on users vCards.

– Publish-Subscribe7 component with support for Personal Eventing via Pubsub8.

– Support for web clients: HTTP Polling9 and HTTP Binding (BOSH)10 services.

4http://xmpp.org/extensions/xep-0138.html
5http://xmpp.org/extensions/xep-0039.html
6http://xmpp.org/extensions/xep-0045.html
7http://xmpp.org/extensions/xep-0060.html
8http://xmpp.org/extensions/xep-0163.html
9http://xmpp.org/extensions/xep-0025.html

10http://xmpp.org/extensions/xep-0206.html

http://xmpp.org/extensions/xep-0138.html
http://xmpp.org/extensions/xep-0039.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0163.html
http://xmpp.org/extensions/xep-0025.html
http://xmpp.org/extensions/xep-0206.html

12 1. Introduction

– IRC transport.

– SIP support.

– Component support: interface with networks such as AIM, ICQ and MSN installing
special tranports.

Chapter 2

Installing ejabberd

2.1 Installing ejabberd with Binary Installer

Probably the easiest way to install an ejabberd instant messaging server is using the binary in-
staller published by ProcessOne. The binary installers of released ejabberd versions are available
in the ProcessOne ejabberd downloads page: http://www.process-one.net/en/ejabberd/downloads

The installer will deploy and configure a full featured ejabberd server and does not require any
extra dependencies.

In *nix systems, remember to set executable the binary installer before starting it. For example:

chmod +x ejabberd-2.0.0_1-linux-x86-installer.bin

./ejabberd-2.0.0_1-linux-x86-installer.bin

ejabberd can be started manually at any time, or automatically by the operating system at
system boot time.

To start and stop ejabberd manually, use the desktop shortcuts created by the installer. If the
machine doesn’t have a graphical system, use the scripts ’start’ and ’stop’ in the ’bin’ directory
where ejabberd is installed.

The Windows installer also adds ejabberd as a system service, and a shortcut to a debug console
for experienced administrators. If you want ejabberd to be started automatically at boot time,
go to the Windows service settings and set ejabberd to be automatically started. Note that
the Windows service is a feature still in development, and for example it doesn’t read the file
ejabberdctl.cfg.

On a *nix system, if you want ejabberd to be started as daemon at boot time, copy ejabberd.init

from the ’bin’ directory to something like /etc/init.d/ejabberd (depending on your distribu-
tion). Create a system user called ejabberd, give it write access to the directories database/

and logs/, and set that as home; the script will start the server with that user. Then you can
call /etc/inid.d/ejabberd start as root to start the server.

13

http://www.process-one.net/en/ejabberd/downloads

14 2. Installing ejabberd

When ejabberd is started, the processes that are started in the system are beam or beam.smp,
and also epmd. In Microsoft Windows, the processes are erl.exe and epmd.exe. For more
information regarding epmd consult the section 5.2.

If ejabberd doesn’t start correctly in Windows, try to start it using the shortcut in desktop
or start menu. If the window shows error 14001, the solution is to install: ”Microsoft Visual
C++ 2005 SP1 Redistributable Package”. You can download it from www.microsoft.com1. Then
uninstall ejabberd and install it again.

If ejabberd doesn’t start correctly and a crash dump is generated, there was a severe problem.
You can try starting ejabberd with the script bin/live.bat in Windows, or with the com-
mand bin/ejabberdctl live in other Operating Systems. This way you see the error message
provided by Erlang and can identify what is exactly the problem.

The ejabberdctl administration script is included in the bin directory. Please refer to the
section 4.1 for details about ejabberdctl, and configurable options to fine tune the Erlang
runtime system.

2.2 Installing ejabberd with Operating System Specific Pack-
ages

Some Operating Systems provide a specific ejabberd package adapted to the system architecture
and libraries. It usually also checks dependencies and performs basic configuration tasks like
creating the initial administrator account. Some examples are Debian and Gentoo. Consult the
resources provided by your Operating System for more information.

Usually those packages create a script like /etc/init.d/ejabberd to start and stop ejabberd

as a service at boot time.

2.3 Installing ejabberd with CEAN

CEAN2 (Comprehensive Erlang Archive Network) is a repository that hosts binary packages
from many Erlang programs, including ejabberd and all its dependencies. The binaries are
available for many different system architectures, so this is an alternative to the binary installer
and Operating System’s ejabberd packages.

You will have to create your own ejabberd start script depending of how you handle your CEAN
installation. The default ejabberdctl script is located into ejabberd’s priv directory and can
be used as an example.

1http://www.microsoft.com/
2http://cean.process-one.net/

http://www.microsoft.com/
http://cean.process-one.net/

2.4 Installing ejabberd from Source Code 15

2.4 Installing ejabberd from Source Code

The canonical form for distribution of ejabberd stable releases is the source code package.
Compiling ejabberd from source code is quite easy in *nix systems, as long as your system have
all the dependencies.

2.4.1 Requirements

To compile ejabberd on a ‘Unix-like’ operating system, you need:

• GNU Make

• GCC

• Libexpat 1.95 or higher

• Erlang/OTP R15B or higher.

• Libyaml 0.1.4 or higher

• OpenSSL 0.9.8 or higher, for STARTTLS, SASL and SSL encryption.

• Zlib 1.2.3 or higher, for Stream Compression support (XEP-01383). Optional.

• PAM library. Optional. For Pluggable Authentication Modules (PAM). See section 3.1.5.

• GNU Iconv 1.8 or higher, for the IRC Transport (mod irc). Optional. Not needed on
systems with GNU Libc. See section 3.3.10.

• ImageMagick’s Convert program. Optional. For CAPTCHA challenges. See section 3.1.9.

2.4.2 Download Source Code

Released versions of ejabberd are available in the ProcessOne ejabberd downloads page: http://www.process-one.net/en/ejabberd/downloads

Alternatively, the latest development source code can be retrieved from the Git repository using
the commands:

git clone git://github.com/processone/ejabberd.git ejabberd

cd ejabberd

git checkout -b 2.1.x origin/2.1.x

3http://xmpp.org/extensions/xep-0138.html

http://www.process-one.net/en/ejabberd/downloads
http://xmpp.org/extensions/xep-0138.html

16 2. Installing ejabberd

2.4.3 Compile

To compile ejabberd execute the commands:

./configure

make

The build configuration script allows several options. To get the full list run the command:

./configure --help

Some options that you may be interested in modifying:

--prefix=/ Specify the path prefix where the files will be copied when running the make

install command.

--enable-user[=USER] Allow this normal system user to execute the ejabberdctl script (see
section 4.1), read the configuration files, read and write in the spool directory, read and
write in the log directory. The account user and group must exist in the machine before
running make install. This account doesn’t need an explicit HOME directory, because
/var/lib/ejabberd/ will be used by default.

--enable-pam Enable the PAM authentication method (see section 3.1.5).

--enable-mssql Required if you want to use an external database. See section 3.2 for more
information.

--enable-tools Enable the use of development tools.

--enable-mysql Enable MySQL support (see section 3.2.1).

--enable-pgsql Enable PostgreSQL support (see section 3.2.1).

--enable-zlib Enable Stream Compression (XEP-0138) using zlib.

--enable-iconv Enable iconv support. This is needed for mod irc (see seciont 3.3.10).

--enable-debug Compile with +debug info enabled.

--enable-full-xml Enable the use of XML based optimisations. It will for example use CDATA
to escape characters in the XMPP stream. Use this option only if you are sure your XMPP
clients include a fully compliant XML parser.

--disable-transient-supervisors Disable the use of Erlang/OTP supervision for transient
processes.

--enable-nif Replaces some critical Erlang functions with equivalents written in C to improve
performance.

2.4 Installing ejabberd from Source Code 17

2.4.4 Install

To install ejabberd in the destination directories, run the command:

make install

Note that you probably need administrative privileges in the system to install ejabberd.

The files and directories created are, by default:

/etc/ejabberd/ Configuration directory:

ejabberd.yml ejabberd configuration file

ejabberdctl.cfg Configuration file of the administration script

inetrc Network DNS configuration file

/lib/ejabberd/ ebin/ Erlang binary files (*.beam)

include/ Erlang header files (*.hrl)

priv/ Additional files required at runtime

bin/ Executable programs

lib/ Binary system libraries (*.so)

msgs/ Translation files (*.msgs)

/sbin/ejabberdctl Administration script (see section 4.1)

/share/doc/ejabberd/ Documentation of ejabberd

/var/lib/ejabberd/ Spool directory:

.erlang.cookie Erlang cookie file (see section 5.3)

acl.DCD, ... Mnesia database spool files (*.DCD, *.DCL, *.DAT)

/var/log/ejabberd/ Log directory (see section 7.1):

ejabberd.log ejabberd service log

erlang.log Erlang/OTP system log

2.4.5 Start

You can use the ejabberdctl command line administration script to start and stop ejabberd. If
you provided the configure option --enable-user=USER (see 2.4.3), you can execute ejabberdctl
with either that system account or root.

Usage example:

18 2. Installing ejabberd

ejabberdctl start

ejabberdctl status

The node ejabberd@localhost is started with status: started

ejabberd is running in that node

ejabberdctl stop

If ejabberd doesn’t start correctly and a crash dump is generated, there was a severe problem.
You can try starting ejabberd with the command ejabberdctl live to see the error message
provided by Erlang and can identify what is exactly the problem.

Please refer to the section 4.1 for details about ejabberdctl, and configurable options to fine
tune the Erlang runtime system.

If you want ejabberd to be started as daemon at boot time, copy ejabberd.init to something like
/etc/init.d/ejabberd (depending on your distribution). Create a system user called ejabberd;
it will be used by the script to start the server. Then you can call /etc/inid.d/ejabberd start

as root to start the server.

2.4.6 Specific Notes for BSD

The command to compile ejabberd in BSD systems is:

gmake

2.4.7 Specific Notes for Sun Solaris

You need to have GNU install, but it isn’t included in Solaris. It can be easily installed if your
Solaris system is set up for blastwave.org4 package repository. Make sure /opt/csw/bin is in
your PATH and run:

pkg-get -i fileutils

If that program is called ginstall, modify the ejabberd Makefile script to suit your system,
for example:

cat Makefile | sed s/install/ginstall/ > Makefile.gi

And finally install ejabberd with:

gmake -f Makefile.gi ginstall

4http://www.blastwave.org/

http://www.blastwave.org/

2.4 Installing ejabberd from Source Code 19

2.4.8 Specific Notes for Microsoft Windows

Requirements

To compile ejabberd on a Microsoft Windows system, you need:

• MS Visual C++ 6.0 Compiler

• Erlang/OTP R11B-55

• Expat 2.0.0 or higher6

• GNU Iconv 1.9.27 (optional)

• Shining Light OpenSSL 0.9.8d or higher8 (to enable SSL connections)

• Zlib 1.2.3 or higher9

Compilation

We assume that we will try to put as much library as possible into C:\sdk\ to make it easier to
track what is install for ejabberd.

1. Install Erlang emulator (for example, into C:\sdk\erl5.5.5).

2. Install Expat library into C:\sdk\Expat-2.0.0 directory.

Copy file C:\sdk\Expat-2.0.0\Libs\libexpat.dll to your Windows system directory
(for example, C:\WINNT or C:\WINNT\System32)

3. Build and install the Iconv library into the directory C:\sdk\GnuWin32.

Copy file C:\sdk\GnuWin32\bin\lib*.dll to your Windows system directory (more in-
stallation instructions can be found in the file README.woe32 in the iconv distribution).

Note: instead of copying libexpat.dll and iconv.dll to the Windows directory, you can
add the directories C:\sdk\Expat-2.0.0\Libs and C:\sdk\GnuWin32\bin to the PATH

environment variable.

4. Install OpenSSL in C:\sdk\OpenSSL and add C:\sdk\OpenSSL\lib\VC to your path or
copy the binaries to your system directory.

5. Install ZLib in C:\sdk\gnuWin32. Copy C:\sdk\GnuWin32\bin\zlib1.dll to your system
directory. If you change your path it should already be set after libiconv install.

6. Make sure the you can access Erlang binaries from your path. For example: set PATH=%PATH%;"C:\sdk\erl5.6.5\bin"

5http://www.erlang.org/download.html
6http://sourceforge.net/project/showfiles.php?group id=10127&package id=11277
7http://www.gnu.org/software/libiconv/
8http://www.slproweb.com/products/Win32OpenSSL.html
9http://www.zlib.net/

http://www.erlang.org/download.html
http://sourceforge.net/project/showfiles.php?group_id=10127&package_id=11277
http://www.gnu.org/software/libiconv/
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.zlib.net/

20 2. Installing ejabberd

7. Depending on how you end up actually installing the library you might need to check and
tweak the paths in the file configure.erl.

8. While in the directory ejabberd\src run:

configure.bat

nmake -f Makefile.win32

9. Edit the file ejabberd\src\ejabberd.yml and run

werl -s ejabberd -name ejabberd

2.5 Create an XMPP Account for Administration

You need an XMPP account and grant him administrative privileges to enter the ejabberd Web
Admin:

1. Register an XMPP account on your ejabberd server, for example admin1@example.org.
There are two ways to register an XMPP account:

(a) Using ejabberdctl (see section 4.1):

ejabberdctl register admin1 example.org FgT5bk3

(b) Using an XMPP client and In-Band Registration (see section 3.3.21).

2. Edit the ejabberd configuration file to give administration rights to the XMPP account
you created:

acl:

admin:

user:

- "admin1": "example.org"

access:

configure:

admin: allow

You can grant administrative privileges to many XMPP accounts, and also to accounts in
other XMPP servers.

3. Restart ejabberd to load the new configuration.

4. Open the Web Admin (http://server:port/admin/) in your favourite browser. Make
sure to enter the full JID as username (in this example: admin1@example.org. The reason
that you also need to enter the suffix, is because ejabberd’s virtual hosting support.

2.6 Upgrading ejabberd 21

2.6 Upgrading ejabberd

To upgrade an ejabberd installation to a new version, simply uninstall the old version, and then
install the new one. Of course, it is important that the configuration file and Mnesia database
spool directory are not removed.

ejabberd automatically updates the Mnesia table definitions at startup when needed. If you
also use an external database for storage of some modules, check if the release notes of the new
ejabberd version indicates you need to also update those tables.

22 2. Installing ejabberd

Chapter 3

Configuring ejabberd

3.1 Basic Configuration

The configuration file will be loaded the first time you start ejabberd. The configuration file
name MUST have “.yml” extension. This helps ejabberd to differentiate between the new and
legacy file formats (see section 3.1.1).

Note that ejabberd never edits the configuration file.

The configuration file is written in YAML1. However, different scalars are treated as different
types:

• unquoted or single-quoted strings. The type is called atom() in this document. Examples:
dog, ’Jupiter’, ’3.14159’, YELLOW.

• numeric literals. The type is called integer(), float() or, if both are allowed, number().
Examples: 3, -45.0, .0

• double-quoted or folded strings. The type is called string(). Examples of a double-quoted
string: "Lizzard", "orange", "3.14159". Examples of a folded string:

> Art thou not Romeo,

and a Montague?

| Neither, fair saint,

if either thee dislike.

For associative arrays (”mappings”) and lists you can use both outline indentation and
compact syntax (aka “JSON style”). For example, the following is equivalent:

{param1: ["val1", "val2"], param2: ["val3", "val4"]}

1http://en.wikipedia.org/wiki/YAML

23

http://en.wikipedia.org/wiki/YAML

24 3. Configuring ejabberd

and

param1:

- "val1"

- "val2"

param2:

- "val3"

- "val4"

Note that both styles are used in this document.

3.1.1 Legacy Configuration File

In previous ejabberd version the configuration file should be written in Erlang terms. The
format is still supported, but it is highly recommended to convert it to the new YAML format
using convert to yaml command from ejabberdctl (see 4.1 and 4.2.1 for details).

3.1.2 Host Names

The option hosts defines a list containing one or more domains that ejabberd will serve.

The syntax is:

[HostName]

Examples:

• Serving one domain:

hosts: ["example.org"]

• Serving three domains:

hosts:

- "example.net"

- "example.com"

- "jabber.somesite.org"

3.1.3 Virtual Hosting

Options can be defined separately for every virtual host using the host config option.

The syntax is:

{HostName: [Option, ...]}

3.1 Basic Configuration 25

Examples:

• Domain example.net is using the internal authentication method while domain example.com

is using the LDAP server running on the domain localhost to perform authentication:

host_config:

"example.net"

auth_method: internal

"example.com":

auth_method: ldap

ldap_servers:

- "localhost"

ldap_uids:

- "uid"

ldap_rootdn: "dc=localdomain"

ldap_rootdn: "dc=example,dc=com"

ldap_password: ""

• Domain example.net is using ODBC to perform authentication while domain example.com

is using the LDAP servers running on the domains localhost and otherhost:

host_config:

"example.net":

auth_method: odbc

odbc_type: odbc

odbc_server: "DSN=ejabberd;UID=ejabberd;PWD=ejabberd"

"example.com":

auth_method: ldap

ldap_servers:

- "localhost"

- "otherhost"

ldap_uids:

- "uid"

ldap_rootdn: "dc=localdomain"

ldap_rootdn: "dc=example,dc=com"

ldap_password: ""

To define specific ejabberd modules in a virtual host, you can define the global modules option
with the common modules, and later add specific modules to certain virtual hosts. To accomplish
that, instead of defining each option in host config use append host config with the same
syntax.

In this example three virtual hosts have some similar modules, but there are also other different
modules for some specific virtual hosts:

This ejabberd server has three vhosts:

hosts:

- "one.example.org"

- "two.example.org"

26 3. Configuring ejabberd

- "three.example.org"

Configuration of modules that are common to all vhosts

modules:

mod_roster: {}

mod_configure: {}

mod_disco: {}

mod_private: {}

mod_time: {}

mod_last: {}

mod_version: {}

Add some modules to vhost one:

append_host_config:

"one.example.org":

modules:

mod_echo:

host: "echo-service.one.example.org"

mod_http_bind: {}

mod_logxml: {}

Add a module just to vhost two:

append_host_config:

"two.example.org":

modules:

mod_echo:

host: "mirror.two.example.org"

3.1.4 Listening Ports

The option listen defines for which ports, addresses and network protocols ejabberd will listen
and what services will be run on them. Each element of the list is an associative array with the
following elements:

• Port number. Optionally also the IP address and/or a transport protocol.

• Listening module that serves this port.

• Options for the TCP socket and for the listening module.

The option syntax is:

[Listener, ...]

Example:

3.1 Basic Configuration 27

listen:

-

port: 5222

module: ejabberd_c2s

starttls: true

certfile: "/path/to/certfile.pem"

-

port: 5269

module: ejabberd_s2s_in

transport: tcp

Port Number, IP Address and Transport Protocol

The port number defines which port to listen for incoming connections. It can be a Jabber/XMPP
standard port (see section 5.1) or any other valid port number.

The IP address can be represented as a string. The socket will listen only in that network
interface. It is possible to specify a generic address, so ejabberd will listen in all addresses.
Depending in the type of the IP address, IPv4 or IPv6 will be used. When not specified the IP
address, it will listen on all IPv4 network addresses.

Some example values for IP address:

• "0.0.0.0" to listen in all IPv4 network interfaces. This is the default value when no IP is
specified.

• "::" to listen in all IPv6 network interfaces

• "10.11.12.13" is the IPv4 address 10.11.12.13

• "::FFFF:127.0.0.1" is the IPv6 address ::FFFF:127.0.0.1/128

The transport protocol can be tcp or udp. Default is tcp.

Listening Module

The available modules, their purpose and the options allowed by each one are:

ejabberd c2s Handles c2s connections.
Options: access, certfile, ciphers, protocol options max ack queue, max fsm queue,
max stanza size, resend on timeout, resume timeout, shaper, starttls, starttls required,
stream management, tls, zlib, tls compression

ejabberd s2s in Handles incoming s2s connections.
Options: max stanza size, shaper, tls compression

28 3. Configuring ejabberd

ejabberd service Interacts with an external component2 (as defined in the Jabber Component
Protocol (XEP-01143).
Options: access, hosts, max fsm queue, service check from, shaper rule

ejabberd sip Handles SIP requests as defined in RFC 32614.
Options: certfile, tls

ejabberd stun Handles STUN/TURN requests as defined in RFC 53895 and RFC 57666.
Options: certfile, tls, use turn, turn ip, turn port range, turn max allocations,
turn max permissions, shaper, server name, auth realm, auth type

ejabberd http Handles incoming HTTP connections.
Options: captcha, certfile, default host, http bind, http poll, request handlers,
tls, tls compression, trusted proxies, web admin

ejabberd xmlrpc Handles XML-RPC requests to execute ejabberd commands (4.2).
Options: access commands, maxsessions, timeout.
You can find option explanations, example configuration in old and new format, and ex-
ample calls in several languages in the old ejabberd xmlrpc documentation7.

Options

This is a detailed description of each option allowed by the listening modules:

access: AccessName This option defines access to the port. The default value is all.

backlog: Value The backlog value defines the maximum length that the queue of pending
connections may grow to. This should be increased if the server is going to handle lots of
new incoming connections as they may be dropped if there is no space in the queue (and
ejabberd was not able to accept them immediately). Default value is 5.

captcha: true|false Simple web page that allows a user to fill a CAPTCHA challenge (see
section 3.1.9).

certfile: Path Full path to a file containing the default SSL certificate. To define a certificate
file specific for a given domain, use the global option domain certfile.

ciphers: Ciphers OpenSSL ciphers list in the same format accepted by ‘openssl ciphers’
command.

protocol options: ProtocolOpts List of general options relating to SSL/TLS. These map to
OpenSSL’s set options()8. For a full list of options available in ejabberd, see the source9.
The default entry is: "no_sslv2"

2http://www.ejabberd.im/tutorials-transports
3http://xmpp.org/extensions/xep-0114.html
4http://tools.ietf.org/html/rfc3261
5http://tools.ietf.org/html/rfc5389
6http://tools.ietf.org/html/rfc5766
7http://www.ejabberd.im/ejabberd xmlrpc
8https://www.openssl.org/docs/ssl/SSL CTX set options.html
9https://github.com/processone/tls/blob/master/c src/options.h

http://www.ejabberd.im/tutorials-transports
http://xmpp.org/extensions/xep-0114.html
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5766
http://www.ejabberd.im/ejabberd_xmlrpc
https://www.openssl.org/docs/ssl/SSL_CTX_set_options.html
https://github.com/processone/tls/blob/master/c_src/options.h

3.1 Basic Configuration 29

default host: undefined|HostName} If the HTTP request received by ejabberd contains the
HTTP header Host with an ambiguous virtual host that doesn’t match any one defined in
ejabberd (see 3.1.2), then this configured HostName is set as the request Host. The default
value of this option is: undefined.

hosts: {Hostname: [HostOption, ...]} The external Jabber component that connects to
this ejabberd service can serve one or more hostnames. As HostOption you can define
options for the component; currently the only allowed option is the password required to
the component when attempt to connect to ejabberd: password: Secret. Note that
you cannot define in a single ejabberd service components of different services: add an
ejabberd service for each service, as seen in an example below.

http bind: true|false This option enables HTTP Binding (XEP-012410 and XEP-020611)
support. HTTP Bind enables access via HTTP requests to ejabberd from behind firewalls
which do not allow outgoing sockets on port 5222.

Remember that you must also install and enable the module mod http bind.

If HTTP Bind is enabled, it will be available at http://server:port/http-bind/. Be
aware that support for HTTP Bind is also needed in the XMPP client. Remark also
that HTTP Bind can be interesting to host a web-based XMPP client such as JWChat12

(check the tutorials to install JWChat with ejabberd and an embedded local web server13

or Apache14).

http poll: true|false This option enables HTTP Polling (XEP-002515) support. HTTP
Polling enables access via HTTP requests to ejabberd from behind firewalls which do not
allow outgoing sockets on port 5222.

If HTTP Polling is enabled, it will be available at http://server:port/http-poll/. Be
aware that support for HTTP Polling is also needed in the XMPP client. Remark also that
HTTP Polling can be interesting to host a web-based XMPP client such as JWChat16.

The maximum period of time to keep a client session active without an incoming POST
request can be configured with the global option http poll timeout. The default value is
five minutes. The option can be defined in ejabberd.yml, expressing the time in seconds:
{http_poll_timeout, 300}.

max ack queue: Size This option specifies the maximum number of unacknowledged stanzas
queued for possible retransmission if stream management is enabled. When the limit is
exceeded, the client session is terminated. This option can be specified for ejabberd c2s

listeners. The allowed values are positive integers and infinity. Default value: 500.

max fsm queue: Size This option specifies the maximum number of elements in the queue of
the FSM (Finite State Machine). Roughly speaking, each message in such queues represents
one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches
the limit (because, for example, the receiver of stanzas is too slow), the FSM and the
corresponding connection (if any) will be terminated and error message will be logged.

10http://xmpp.org/extensions/xep-0124.html
11http://xmpp.org/extensions/xep-0206.html
12http://jwchat.sourceforge.net/
13http://www.ejabberd.im/jwchat-localserver
14http://www.ejabberd.im/jwchat-apache
15http://xmpp.org/extensions/xep-0025.html
16http://jwchat.sourceforge.net/

http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0206.html
http://jwchat.sourceforge.net/
http://www.ejabberd.im/jwchat-localserver
http://www.ejabberd.im/jwchat-apache
http://xmpp.org/extensions/xep-0025.html
http://jwchat.sourceforge.net/

30 3. Configuring ejabberd

The reasonable value for this option depends on your hardware configuration. However,
there is no much sense to set the size above 1000 elements. This option can be specified for
ejabberd service and ejabberd c2s listeners, or also globally for ejabberd s2s out. If
the option is not specified for ejabberd service or ejabberd c2s listeners, the globally
configured value is used. The allowed values are integers and ’undefined’. Default value:
’undefined’.

max stanza size: Size This option specifies an approximate maximum size in bytes of XML
stanzas. Approximate, because it is calculated with the precision of one block of read data.
For example {max_stanza_size, 65536}. The default value is infinity. Recommended
values are 65536 for c2s connections and 131072 for s2s connections. s2s max stanza size
must always much higher than c2s limit. Change this value with extreme care as it can
cause unwanted disconnect if set too low.

request handlers: {Path: Module} To define one or several handlers that will serve HTTP
requests. The Path is a string; so the URIs that start with that Path will be served by
Module. For example, if you want mod foo to serve the URIs that start with /a/b/, and
you also want mod http bind to serve the URIs /http-bind/, use this option:

request_handlers:

/"a"/"b": mod_foo

/"http-bind": mod_http_bind

resend on timeout: true|false|if offline If stream management is enabled and this op-
tion is set to true, any stanzas that weren’t acknowledged by the client will be resent on
session timeout. This behavior might often be desired, but could have unexpected results
under certain circumstances. For example, a message that was sent to two resources might
get resent to one of them if the other one timed out. Therefore, the default value for this
option is false, which tells ejabberd to generate an error message instead. As an alterna-
tive, the option may be set to if offline. In this case, unacknowledged stanzas are resent
only if no other resource is online when the session times out. Otherwise, error messages
are generated. The option can be specified for ejabberd c2s listeners.

resume timeout: Seconds This option configures the number of seconds until a session times
out if the connection is lost. During this period of time, a client may resume the session
if stream management is enabled. This option can be specified for ejabberd c2s listeners.
Setting it to 0 effectively disables session resumption. The default value is 300.

service check from: true|false This option can be used with ejabberd service only. XEP-
011417 requires that the domain must match the hostname of the component. If this option
is set to false, ejabberd will allow the component to send stanzas with any arbitrary do-
main in the ’from’ attribute. Only use this option if you are completely sure about it. The
default value is true, to be compliant with XEP-011418.

shaper: none|ShaperName This option defines a shaper for the port (see section 3.1.7). The
default value is none.

shaper rule: none|ShaperRule This option defines a shaper rule for the ejabberd service

(see section 3.1.7). The recommended value is fast.

17http://xmpp.org/extensions/xep-0114.html
18http://xmpp.org/extensions/xep-0114.html

http://xmpp.org/extensions/xep-0114.html
http://xmpp.org/extensions/xep-0114.html

3.1 Basic Configuration 31

starttls: true|false This option specifies that STARTTLS encryption is available on con-
nections to the port. You should also set the certfile option. You can define a certificate
file for a specific domain using the global option domain certfile.

starttls required: true|false This option specifies that STARTTLS encryption is required
on connections to the port. No unencrypted connections will be allowed. You should also
set the certfile option. You can define a certificate file for a specific domain using the
global option domain certfile.

stream management: true|false Setting this option to false disables ejabberd’s support for
Stream Management (XEP-019819). It can be specified for ejabberd c2s listeners. The
default value is true.

timeout: Integer Timeout of the connections, expressed in milliseconds. Default: 5000

tls: true|false This option specifies that traffic on the port will be encrypted using SSL
immediately after connecting. This was the traditional encryption method in the early
Jabber software, commonly on port 5223 for client-to-server communications. But this
method is nowadays deprecated and not recommended. The preferable encryption method
is STARTTLS on port 5222, as defined RFC 3920: XMPP Core20, which can be enabled in
ejabberd with the option starttls. If this option is set, you should also set the certfile

option. The option tls can also be used in ejabberd http to support HTTPS.

tls compression: true|false Whether to enable or disable TLS compression. The default
value is true.

trusted proxies: all | [IpString] Specify what proxies are trusted when an HTTP re-
quest contains the header X-Forwarded-For You can specify all to allow all proxies, or
specify a list of IPs in string format. The default value is: ["127.0.0.1"]

web admin: true|false This option enables the Web Admin for ejabberd administration
which is available at http://server:port/admin/. Login and password are the username
and password of one of the registered users who are granted access by the ‘configure’ access
rule.

zlib: true|false This option specifies that Zlib stream compression (as defined in XEP-
013821) is available on connections to the port.

There are some additional global options that can be specified in the ejabberd configuration file
(outside listen):

s2s use starttls: false|optional|required|required trusted This option defines if s2s
connections don’t use STARTTLS encryption; if STARTTLS can be used optionally; if
STARTTLS is required to establish the connection; or if STARTTLS is required and the
remote certificate must be valid and trusted. The default value is to not use STARTTLS:
false.

s2s certfile: Path Full path to a file containing a SSL certificate.

19http://xmpp.org/extensions/xep-0198.html
20http://xmpp.org/rfcs/rfc3920.html#tls
21http://xmpp.org/extensions/xep-0138.html

http://xmpp.org/extensions/xep-0198.html
http://xmpp.org/rfcs/rfc3920.html#tls
http://xmpp.org/extensions/xep-0138.html

32 3. Configuring ejabberd

domain certfile: Path Full path to the file containing the SSL certificate for a specific do-
main.

s2s ciphers: Ciphers OpenSSL ciphers list in the same format accepted by ‘openssl ciphers’
command.

s2s protocol options: ProtocolOpts List of general options relating to SSL/TLS. These
map to OpenSSL’s set options()22. For a full list of options available in ejabberd, see the
source23. The default entry is: "no_sslv2"

outgoing s2s families: [Family, ...] Specify which address families to try, in what order.
By default it first tries connecting with IPv4, if that fails it tries using IPv6.

outgoing s2s timeout: Timeout The timeout in milliseconds for outgoing S2S connection
attempts.

s2s dns timeout: Timeout The timeout in seconds for DNS resolving. The default value is
10.

s2s dns retries: Number DNS resolving retries in seconds. The default value is 2.

s2s policy: Access The policy for incoming and outgoing s2s connections to other XMPP
servers. The default value is all.

s2s max retry delay: Seconds The maximum allowed delay for retry to connect after a failed
connection attempt. Specified in seconds. The default value is 300 seconds (5 minutes).

s2s tls compression: true|false Whether to enable or disable TLS compression for s2s
connections. The default value is true.

max fsm queue: Size This option specifies the maximum number of elements in the queue of
the FSM (Finite State Machine). Roughly speaking, each message in such queues represents
one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches
the limit (because, for example, the receiver of stanzas is too slow), the FSM and the
corresponding connection (if any) will be terminated and error message will be logged.
The reasonable value for this option depends on your hardware configuration. However,
there is no much sense to set the size above 1000 elements. This option can be specified for
ejabberd service and ejabberd c2s listeners, or also globally for ejabberd s2s out. If
the option is not specified for ejabberd service or ejabberd c2s listeners, the globally
configured value is used. The allowed values are integers and ’undefined’. Default value:
’undefined’.

route subdomains: local|s2s Defines if ejabberd must route stanzas directed to subdomains
locally (compliant with RFC 3920: XMPP Core24), or to foreign server using S2S (compli-
ant with RFC 3920 bis25).

22https://www.openssl.org/docs/ssl/SSL CTX set options.html
23https://github.com/processone/tls/blob/master/c src/options.h
24http://xmpp.org/rfcs/rfc3920.html#rules.subdomain
25http://tools.ietf.org/html/draft-saintandre-rfc3920bis-09#section-11.3

https://www.openssl.org/docs/ssl/SSL_CTX_set_options.html
https://github.com/processone/tls/blob/master/c_src/options.h
http://xmpp.org/rfcs/rfc3920.html#rules.subdomain
http://tools.ietf.org/html/draft-saintandre-rfc3920bis-09#section-11.3

3.1 Basic Configuration 33

Examples

For example, the following simple configuration defines:

• There are three domains. The default certificate file is server.pem. However, the c2s and
s2s connections to the domain example.com use the file example com.pem.

• Port 5222 listens for c2s connections with STARTTLS, and also allows plain connections
for old clients.

• Port 5223 listens for c2s connections with the old SSL.

• Port 5269 listens for s2s connections with STARTTLS. The socket is set for IPv6 instead
of IPv4.

• Port 3478 listens for STUN requests over UDP.

• Port 5280 listens for HTTP requests, and serves the HTTP Poll service.

• Port 5281 listens for HTTP requests, using HTTPS to serve HTTP-Bind (BOSH) and the
Web Admin as explained in section 4.3. The socket only listens connections to the IP
address 127.0.0.1.

hosts:

- "example.com"

- "example.org"

- "example.net"

listen:

-

port: 5222

module: ejabberd_c2s

access: c2s

shaper: c2s_shaper

starttls: true

certfile: "/etc/ejabberd/server.pem"

max_stanza_size: 65536

-

port: 5223

module: ejabberd_c2s

access: c2s

shaper: c2s_shaper

tls: true

certfile: "/etc/ejabberd/server.pem"

max_stanza_size: 65536

-

port: 5269

ip: "::"

module: ejabberd_s2s_in

shaper: s2s_shaper

34 3. Configuring ejabberd

max_stanza_size: 131072

-

port: 3478

transport: udp

module: ejabberd_stun

-

port: 5280

module: ejabberd_http

http_poll: true

-

port: 5281

ip: "127.0.0.1"

module: ejabberd_http

web_admin: true

http_bind: true

tls: true

certfile: "/etc/ejabberd/server.pem"

s2s_use_starttls: optional

s2s_certfile: "/etc/ejabberd/server.pem"

host_config:

"example.com":

domain_certfile: "/etc/ejabberd/example_com.pem"

outgoing_s2s_families:

- ipv4

- ipv6

outgoing_s2s_timeout: 10000

In this example, the following configuration defines that:

• c2s connections are listened for on port 5222 (all IPv4 addresses) and on port 5223 (SSL,
IP 192.168.0.1 and fdca:8ab6:a243:75ef::1) and denied for the user called ‘bad’.

• s2s connections are listened for on port 5269 (all IPv4 addresses) with STARTTLS for
secured traffic strictly required, and the certificates are verified. Incoming and outgo-
ing connections of remote XMPP servers are denied, only two servers can connect: ”jab-
ber.example.org” and ”example.com”.

• Port 5280 is serving the Web Admin and the HTTP Polling service in all the IPv4 addresses.
Note that it is also possible to serve them on different ports. The second example in
section 4.3 shows how exactly this can be done.

• All users except for the administrators have a traffic of limit 1,000 Bytes/second

• The AIM transport26 aim.example.org is connected to port 5233 on localhost IP addresses
(127.0.0.1 and ::1) with password ‘aimsecret’.

• The ICQ transport JIT (icq.example.org and sms.example.org) is connected to port
5234 with password ‘jitsecret’.

26http://www.ejabberd.im/pyaimt

http://www.ejabberd.im/pyaimt

3.1 Basic Configuration 35

• The MSN transport27 msn.example.org is connected to port 5235 with password ‘msnsecret’.

• The Yahoo! transport28 yahoo.example.org is connected to port 5236 with password
‘yahoosecret’.

• The Gadu-Gadu transport29 gg.example.org is connected to port 5237 with password
‘ggsecret’.

• The Jabber Mail Component30 jmc.example.org is connected to port 5238 with password
‘jmcsecret’.

• The service custom has enabled the special option to avoiding checking the from attribute
in the packets send by this component. The component can send packets in behalf of any
users from the server, or even on behalf of any server.

acl:

blocked:

user: "bad"

trusted_servers:

server:

- "example.com"

- "jabber.example.org"

xmlrpc_bot:

user:

- "xmlrpc-robot": "example.org"

shaper:

normal: 1000

access:

c2s:

blocked: deny

all: allow

c2s_shaper:

admin: none

all: normal

xmlrpc_access:

xmlrpc_bot: allow

s2s:

trusted_servers: allow

all: deny

s2s_certfile: "/path/to/ssl.pem"

s2s_access: s2s

s2s_use_starttls: required_trusted

listen:

-

port: 5222

module: ejabberd_c2s

27http://www.ejabberd.im/pymsnt
28http://www.ejabberd.im/yahoo-transport-2
29http://www.ejabberd.im/jabber-gg-transport
30http://www.ejabberd.im/jmc

http://www.ejabberd.im/pymsnt
http://www.ejabberd.im/yahoo-transport-2
http://www.ejabberd.im/jabber-gg-transport
http://www.ejabberd.im/jmc

36 3. Configuring ejabberd

shaper: c2s_shaper

access: c2s

-

ip: "192.168.0.1"

port: 5223

module: ejabberd_c2s

certfile: "/path/to/ssl.pem"

tls: true

access: c2s

-

ip: "FDCA:8AB6:A243:75EF::1"

port: 5223

module: ejabberd_c2s

certfile: "/path/to/ssl.pem"

tls: true

access: c2s

-

port: 5269

module: ejabberd_s2s_in

-

port: 5280

module: ejabberd_http

web_admin: true

http_poll: true

-

port: 4560

module: ejabberd_xmlrpc

-

ip: "127.0.0.1"

port: 5233

module: ejabberd_service

hosts:

"aim.example.org":

password: "aimsecret"

-

ip: "::1"

port: 5233

module: ejabberd_service

hosts:

"aim.example.org":

password: "aimsecret"

-

port: 5234

module: ejabberd_service

hosts:

"icq.example.org":

password: "jitsecret"

"sms.example.org":

password: "jitsecret"

3.1 Basic Configuration 37

-

port: 5235

module: ejabberd_service

hosts:

"msn.example.org":

password: "msnsecret"

-

port: 5236

module: ejabberd_service

hosts:

"yahoo.example.org":

password: "yahoosecret"

-

port: 5237

module: ejabberd_service

hosts:

"gg.example.org":

password: "ggsecret"

-

port: 5238

module: ejabberd_service

hosts:

"jmc.example.org":

password: "jmcsecret"

-

port: 5239

module: ejabberd_service

service_check_from: false

hosts:

"custom.example.org":

password: "customsecret"

Note, that for services based in jabberd14 or WPJabber you have to make the transports log
and do XDB by themselves:

<!--

You have to add elogger and rlogger entries here when using ejabberd.

In this case the transport will do the logging.

-->

<log id=’logger’>

<host/>

<logtype/>

<format>%d: [%t] (%h): %s</format>

<file>/var/log/jabber/service.log</file>

</log>

<!--

38 3. Configuring ejabberd

Some XMPP server implementations do not provide

XDB services (for example, jabberd2 and ejabberd).

xdb_file.so is loaded in to handle all XDB requests.

-->

<xdb id="xdb">

<host/>

<load>

<!-- this is a lib of wpjabber or jabberd14 -->

<xdb_file>/usr/lib/jabber/xdb_file.so</xdb_file>

</load>

<xdb_file xmlns="jabber:config:xdb_file">

<spool><jabberd:cmdline flag=’s’>/var/spool/jabber</jabberd:cmdline></spool>

</xdb_file>

</xdb>

3.1.5 Authentication

The option auth method defines the authentication methods that are used for user authentication.
The syntax is:

[Method, ...]

The following authentication methods are supported by ejabberd:

• internal (default) — See section 3.1.5.

• external — See section 3.1.5.

• ldap — See section 3.2.2.

• odbc — See section 3.2.1.

• anonymous — See section 3.1.5.

• pam — See section 3.1.5.

Account creation is only supported by internal, external and odbc methods.

The option resource conflict defines the action when a client attempts to login to an account
with a resource that is already connected. The option syntax is:

resource conflict: setresource|closenew|closeold

The possible values match exactly the three possibilities described in XMPP Core: section
7.7.2.231. The default value is closeold. If the client uses old Jabber Non-SASL authentication
(XEP-007832), then this option is not respected, and the action performed is closeold.

31http://tools.ietf.org/html/rfc6120#section-7.7.2.2
32http://xmpp.org/extensions/xep-0078.html

http://tools.ietf.org/html/rfc6120#section-7.7.2.2
http://xmpp.org/extensions/xep-0078.html

3.1 Basic Configuration 39

The option fqdn allows you to define the Fully Qualified Domain Name of the machine, in case
it isn’t detected automatically. The FQDN is used to authenticate some clients that use the
DIGEST-MD5 SASL mechanism. The option syntax is:

fqdn: undefined|FqdnString|[FqdnString]

The option disable sasl mechanisms specifies a list of SASL mechanisms that should not be
offered to the client. The mechanisms can be listed as lowercase or uppercase strings. The option
syntax is:

disable sasl mechanisms: [Mechanism, ...]

Internal

ejabberd uses its internal Mnesia database as the default authentication method. The value
internal will enable the internal authentication method.

The option auth password format: plain|scram defines in what format the users passwords
are stored:

plain The password is stored as plain text in the database. This is risky because the passwords
can be read if your database gets compromised. This is the default value. This format
allows clients to authenticate using: the old Jabber Non-SASL (XEP-007833), SASL PLAIN,
SASL DIGEST-MD5, and SASL SCRAM-SHA-1.

scram The password is not stored, only some information that allows to verify the hash provided
by the client. It is impossible to obtain the original plain password from the stored informa-
tion; for this reason, when this value is configured it cannot be changed to plain anymore.
This format allows clients to authenticate using: SASL PLAIN and SASL SCRAM-SHA-1.

Examples:

• To use internal authentication on example.org and LDAP authentication on example.net:

host_config:

"example.org":

auth_method: [internal]

"example.net":

auth_method: [ldap]

• To use internal authentication with hashed passwords on all virtual hosts:

auth_method: internal

auth_password_format: scram

33http://xmpp.org/extensions/xep-0078.html

http://xmpp.org/extensions/xep-0078.html

40 3. Configuring ejabberd

External Script

In this authentication method, when ejabberd starts, it start a script, and calls it to perform
authentication tasks.

The server administrator can write the external authentication script in any language. The details
on the interface between ejabberd and the script are described in the ejabberd Developers

Guide. There are also several example authentication scripts34.

These are the specific options:

extauth program: PathToScript Indicate in this option the full path to the external authen-
tication script. The script must be executable by ejabberd.

extauth instances: Integer Indicate how many instances of the script to run simultaneously
to serve authentication in the virtual host. The default value is the minimum number: 1.

extauth cache: false|CacheTimeInteger The value false disables the caching feature, this
is the default. The integer 0 (zero) enables caching for statistics, but doesn’t use that cached
information to authenticate users. If another integer value is set, caching is enabled both
for statistics and for authentication: the CacheTimeInteger indicates the number of seconds
that ejabberd can reuse the authentication information since the user last disconnected,
to verify again the user authentication without querying again the extauth script. Note:
caching should not be enabled in a host if internal auth is also enabled. If caching is
enabled, mod last must be enabled also in that vhost.

This example sets external authentication, the extauth script, enables caching for 10 minutes,
and starts three instances of the script for each virtual host defined in ejabberd:

auth_method: [external]

extauth_program: "/etc/ejabberd/JabberAuth.class.php"

extauth_cache: 600

extauth_instances: 3

Anonymous Login and SASL Anonymous

The anonymous authentication method enables two modes for anonymous authentication:

Anonymous login: This is a standard login, that use the classical login and password mecha-
nisms, but where password is accepted or preconfigured for all anonymous users. This login
is compliant with SASL authentication, password and digest non-SASL authentication, so
this option will work with almost all XMPP clients

SASL Anonymous: This is a special SASL authentication mechanism that allows to login without
providing username or password (see XEP-017535). The main advantage of SASL Anony-
mous is that the protocol was designed to give the user a login. This is useful to avoid in

34http://www.ejabberd.im/extauth
35http://xmpp.org/extensions/xep-0175.html

http://www.ejabberd.im/extauth
http://xmpp.org/extensions/xep-0175.html

3.1 Basic Configuration 41

some case, where the server has many users already logged or registered and when it is hard
to find a free username. The main disavantage is that you need a client that specifically
supports the SASL Anonymous protocol.

The anonymous authentication method can be configured with the following options. Remember
that you can use the host config option to set virtual host specific options (see section 3.1.3).

allow multiple connections: false|true This option is only used when the anonymous
mode is enabled. Setting it to true means that the same username can be taken multiple
times in anonymous login mode if different resource are used to connect. This option is
only useful in very special occasions. The default value is false.

anonymous protocol: login anon | sasl anon | both login anon means that the anony-
mous login method will be used. sasl anon means that the SASL Anonymous method will
be used. both means that SASL Anonymous and login anonymous are both enabled.

Those options are defined for each virtual host with the host config parameter (see sec-
tion 3.1.3).

Examples:

• To enable anonymous login on all virtual hosts:

auth_method: [anonymous]

anonymous_protocol: login_anon

• Similar as previous example, but limited to public.example.org:

host_config:

"public.example.org":

auth_method: [anonymous]

anonymous_protoco: login_anon

• To enable anonymous login and internal authentication on a virtual host:

host_config:

"public.example.org":

auth_method:

- internal

- anonymous

anonymous_protocol: login_anon

• To enable SASL Anonymous on a virtual host:

host_config:

"public.example.org":

auth_method: [anonymous]

anonymous_protocol: sasl_anon

42 3. Configuring ejabberd

• To enable SASL Anonymous and anonymous login on a virtual host:

host_config:

"public.example.org":

auth_method: [anonymous]

anonymous_protocol: both

• To enable SASL Anonymous, anonymous login, and internal authentication on a virtual
host:

host_config:

"public.example.org":

auth_method:

- internal

- anonymous

anonymous_protocol: both

There are more configuration examples and XMPP client example stanzas in Anonymous users
support36.

PAM Authentication

ejabberd supports authentication via Pluggable Authentication Modules (PAM). PAM is cur-
rently supported in AIX, FreeBSD, HP-UX, Linux, Mac OS X, NetBSD and Solaris. PAM
authentication is disabled by default, so you have to configure and compile ejabberd with PAM
support enabled:

./configure --enable-pam && make install

Options:

pam service: Name This option defines the PAM service name. Default is "ejabberd". Refer
to the PAM documentation of your operation system for more information.

pam userinfotype: username|jid This option defines what type of information about the
user ejabberd provides to the PAM service: only the username, or the user JID. Default is
username.

Example:

auth_method: [pam]

pam_service: "ejabberd"

Though it is quite easy to set up PAM support in ejabberd, PAM itself introduces some security
issues:

36http://www.ejabberd.im/Anonymous-users-support

http://www.ejabberd.im/Anonymous-users-support

3.1 Basic Configuration 43

• To perform PAM authentication ejabberd uses external C-program called epam. By de-
fault, it is located in /var/lib/ejabberd/priv/bin/ directory. You have to set it root
on execution in the case when your PAM module requires root privileges (pam unix.so for
example). Also you have to grant access for ejabberd to this file and remove all other
permissions from it. Execute with root privileges:

chown root:ejabberd /var/lib/ejabberd/priv/bin/epam

chmod 4750 /var/lib/ejabberd/priv/bin/epam

• Make sure you have the latest version of PAM installed on your system. Some old versions
of PAM modules cause memory leaks. If you are not able to use the latest version, you
can kill(1) epam process periodically to reduce its memory consumption: ejabberd will
restart this process immediately.

• epam program tries to turn off delays on authentication failures. However, some PAM
modules ignore this behavior and rely on their own configuration options. You can create a
configuration file ejabberd.pam. This example shows how to turn off delays in pam unix.so

module:

#%PAM-1.0

auth sufficient pam_unix.so likeauth nullok nodelay

account sufficient pam_unix.so

That is not a ready to use configuration file: you must use it as a hint when building your
own PAM configuration instead. Note that if you want to disable delays on authentication
failures in the PAM configuration file, you have to restrict access to this file, so a malicious
user can’t use your configuration to perform brute-force attacks.

• You may want to allow login access only for certain users. pam listfile.so module
provides such functionality.

• If you use pam winbind to authorise against a Windows Active Directory, then /etc/nsswitch.conf

must be configured to use winbind as well.

3.1.6 Access Rules

ACL Definition

Access control in ejabberd is performed via Access Control Lists (ACLs). The declarations of
ACLs in the configuration file have the following syntax:

acl: {ACLName: {ACLType: ACLValue }}

ACLType: ACLValue can be one of the following:

all Matches all JIDs. Example:

44 3. Configuring ejabberd

acl:

world: all

user: Username Matches the user with the name Username at the first virtual host. Example:

acl:

admin:

user: "yozhik"

user: {Username: Server} Matches the user with the JID Username@Server and any re-
source. Example:

acl:

admin:

user:

"yozhik": "example.org"

server: Server Matches any JID from server Server. Example:

acl:

exampleorg:

server: "example.org"

resource: Resource Matches any JID with a resource Resource. Example:

acl:

mucklres:

resource: "muckl"

shared group: Groupname Matches any member of a Shared Roster Group with name Groupname
in the virtual host. Example:

acl:

techgroupmembers:

shared_group: "techteam"

shared group: {Groupname: Server} Matches any member of a Shared Roster Group with
name Groupname in the virtual host Server. Example:

acl:

techgroupmembers:

shared_group:

"techteam": "example.org"

ip: Network Matches any IP address from the Network. Example:

acl:

loopback:

ip:

- "127.0.0.0/8"

- "::"

3.1 Basic Configuration 45

user regexp: Regexp Matches any local user with a name that matches Regexp on local virtual
hosts. Example:

acl:

tests:

user_regexp: "^test[0-9]*$"

user regexp: {Regexp: Server} Matches any user with a name that matches Regexp at
server Server. Example:

acl:

tests:

user_regexp:

"^test": "example.org"

server regexp: Regexp Matches any JID from the server that matches Regexp. Example:

acl:

icq:

server_regexp: "^icq\\."

resource regexp: Regexp Matches any JID with a resource that matches Regexp. Example:

acl:

icq:

resource_regexp: "^laptop\\."

node regexp: {UserRegexp: ServerRegexp} Matches any user with a name that matches
UserRegexp at any server that matches ServerRegexp. Example:

acl:

yozhik:

node_regexp:

"^yozhik$": "^example.(com|org)$"

user glob: Glob}

user glob: {Glob: Server}

server glob: Glob

resource glob: Glob

node glob: {UserGlob: ServerGlob} This is the same as above. However, it uses shell glob
patterns instead of regexp. These patterns can have the following special characters:

* matches any string including the null string.

? matches any single character.

[...] matches any of the enclosed characters. Character ranges are specified by a pair of
characters separated by a ‘-’. If the first character after ‘[’ is a ‘!’, any character
not enclosed is matched.

46 3. Configuring ejabberd

The following ACLName are pre-defined:

all Matches any JID.

none Matches no JID.

Access Rights

An entry allowing or denying access to different services. The syntax is:

access: {AccessName: {ACLName: allow|deny }}

When a JID is checked to have access to Accessname, the server sequentially checks if that JID
matches any of the ACLs that are named in the first elements of the tuples in the list. If it
matches, the second element of the first matched tuple is returned, otherwise the value ‘deny’ is
returned.

If you define specific Access rights in a virtual host, remember that the globally defined Access
rights have precedence over those. This means that, in case of conflict, the Access granted or
denied in the global server is used and the Access of a virtual host doesn’t have effect.

Example:

access:

configure:

admin: allow

something

badmans: deny

all: allow

The following AccessName are pre-defined:

all Always returns the value ‘allow’.

none Always returns the value ‘deny’.

Limiting Opened Sessions with ACL

The special access max user sessions specifies the maximum number of sessions (authenticated
connections) per user. If a user tries to open more sessions by using different resources, the
first opened session will be disconnected. The error session replaced will be sent to the
disconnected session. The value for this option can be either a number, or infinity. The
default value is infinity.

The syntax is:

3.1 Basic Configuration 47

{max user sessions: {ACLName: MaxNumber }}

This example limits the number of sessions per user to 5 for all users, and to 10 for admins:

access:

max_user_sessions:

admin: 10

all: 5

Several connections to a remote XMPP server with ACL

The special access max s2s connections specifies how many simultaneous S2S connections can
be established to a specific remote XMPP server. The default value is 1. There’s also available
the access max s2s connections per node.

The syntax is:

{max s2s connections: {ACLName: MaxNumber }}

Examples:

• Allow up to 3 connections with each remote server:

access:

max_s2s_connections:

all: 3

3.1.7 Shapers

Shapers enable you to limit connection traffic. The syntax is:

shaper: {ShaperName: Rate }

where Rate stands for the maximum allowed incoming rate in bytes per second. When a connec-
tion exceeds this limit, ejabberd stops reading from the socket until the average rate is again
below the allowed maximum.

Examples:

• To define a shaper named ‘normal’ with traffic speed limited to 1,000 bytes/second:

shaper:

normal: 1000

• To define a shaper named ‘fast’ with traffic speed limited to 50,000 bytes/second:

shaper:

fast: 50000

48 3. Configuring ejabberd

3.1.8 Default Language

The option language defines the default language of server strings that can be seen by XMPP
clients. If a XMPP client does not support xml:lang, the specified language is used.

The option syntax is:

language: Language

The default value is en. In order to take effect there must be a translation file Language.msg in
ejabberd’s msgs directory.

For example, to set Russian as default language:

language: "ru"

Appendix A provides more details about internationalization and localization.

3.1.9 CAPTCHA

Some ejabberd modules can be configured to require a CAPTCHA challenge on certain actions.
If the client does not support CAPTCHA Forms (XEP-015837), a web link is provided so the
user can fill the challenge in a web browser.

An example script is provided that generates the image using ImageMagick’s Convert program.

The configurable options are:

captcha cmd: Path Full path to a script that generates the image. The default value disables
the feature: undefined

captcha host: ProtocolHostPort ProtocolHostPort is a string with the host, and optionally
the Protocol and Port number. It must identify where ejabberd listens for CAPTCHA
requests. The URL sent to the user is formed by: Protocol://Host:Port/captcha/ The
default value is: protocol http, the first hostname configured, and port 80. If you specify
a port number that does not match exactly an ejabberd listener (because you are using a
reverse proxy or other port-forwarding tool), then you must specify the transfer protocol,
as seen in the example below.

Additionally, an ejabberd http listener must be enabled with the captcha option. See section
3.1.4.

Example configuration:

37http://xmpp.org/extensions/xep-0158.html

http://xmpp.org/extensions/xep-0158.html

3.1 Basic Configuration 49

hosts: ["example.org"]

captcha_cmd: "/lib/ejabberd/priv/bin/captcha.sh"

captcha_host: "example.org:5280"

captcha_host: "https://example.org:443"

captcha_host: "http://example.com"

listen:

...

-

port: 5280

module: ejabberd_http

captcha: true

...

3.1.10 STUN and TURN

ejabberd is able to act as a stand-alone STUN/TURN server (RFC 538938/RFC 576639). In
that role ejabberd helps clients with ICE (RFC 524540) or Jingle ICE (XEP-017641) support
to discover their external addresses and ports and to relay media traffic when it is impossible to
establish direct peer-to-peer connection.

You should configure ejabberd stun listening module as described in 3.1.4 section. The specific
configurable options are:

tls: true|false If enabled, certfile option must be set, otherwise ejabberd will not be
able to accept TLS connections. Obviously, this option makes sense for tcp transport only.
The default is false.

certfile: Path Path to the certificate file. Only makes sense when tls is set.

use turn: true|false Enables/disables TURN (media relay) functionality. The default is
false.

turn ip: String The IPv4 address advertised by your TURN server. The address should not
be NAT’ed or firewalled. There is not default, so you should set this option explicitly.
Implies use turn.

turn min port: Integer Together with turn max port forms port range to allocate from. The
default is 49152. Implies use turn.

turn max port: Integer Together with turn min port forms port range to allocate from. The
default is 65535. Implies use turn.

turn max allocations: Integer|infinity Maximum number of TURN allocations available
from the particular IP address. The default value is 10. Implies use turn.

38http://tools.ietf.org/html/rfc5389
39http://tools.ietf.org/html/rfc5766
40http://tools.ietf.org/html/rfc5245
41http://xmpp.org/extensions/xep-0176.html

http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc5245
http://xmpp.org/extensions/xep-0176.html

50 3. Configuring ejabberd

turn max permissions: Integer|infinity Maximum number of TURN permissions avail-
able from the particular IP address. The default value is 10. Implies use turn.

auth type: user|anonymous Which authentication type to use for TURN allocation requests.
When type user is set, ejabberd authentication backend is used. For anonymous type no
authentication is performed (not recommended for public services). The default is user.
Implies use turn.

auth realm: String When auth type is set to user and you have several virtual hosts con-
figured you should set this option explicitly to the virtual host you want to serve on this
particular listening port. Implies use turn.

shaper: Atom For tcp transports defines shaper to use. The default is none.

server name: String Defines software version to return with every response. The default is
the STUN library version.

Example configuration with disabled TURN functionality (STUN only):

listen:

...

-

port: 3478

transport: udp

module: ejabberd_stun

-

port: 3478

module: ejabberd_stun

-

port: 5349

module: ejabberd_stun

certfile: "/etc/ejabberd/server.pem"

...

Example configuration with TURN functionality. Note that STUN is always enabled if TURN
is enabled. Here, only UDP section is shown:

listen:

...

-

port: 3478

transport: udp

use_turn: true

turn_ip: 10.20.30.1

module: ejabberd_stun

...

3.1 Basic Configuration 51

You also need to configure DNS SRV records properly so clients can easily discover a STUN/TURN
server serving your XMPP domain. Refer to section DNS Discovery of a Server42 of RFC 538943

and section Creating an Allocation44 of RFC 576645 for details.

Example DNS SRV configuration for STUN only:

_stun._udp IN SRV 0 0 3478 stun.example.com.

_stun._tcp IN SRV 0 0 3478 stun.example.com.

_stuns._tcp IN SRV 0 0 5349 stun.example.com.

And you should also add these in the case if TURN is enabled:

_turn._udp IN SRV 0 0 3478 turn.example.com.

_turn._tcp IN SRV 0 0 3478 turn.example.com.

_turns._tcp IN SRV 0 0 5349 turn.example.com.

3.1.11 SIP

ejabberd has built-in SIP support. In order to activate it you need to add listeners for it,
configure DNS properly and enable mod sip for the desired virtual host.

To add a listener you should configure ejabberd sip listening module as described in 3.1.4
section. If option tls is specified, option certfile must be specified as well, otherwise incoming
TLS connections would fail.

Example configuration with standard ports (as per RFC 326146):

listen:

...

-

port: 5060

transport: udp

module: ejabberd_sip

-

port: 5060

module: ejabberd_sip

-

port: 5061

module: ejabberd_sip

tls: true

certfile: "/etc/ejabberd/server.pem"

...

42http://tools.ietf.org/html/rfc5389#section-9
43http://tools.ietf.org/html/rfc5389
44http://tools.ietf.org/html/rfc5766#section-6
45http://tools.ietf.org/html/rfc5766
46http://tools.ietf.org/html/rfc3261

http://tools.ietf.org/html/rfc5389#section-9
http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5766#section-6
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc3261

52 3. Configuring ejabberd

Note that there is no StartTLS support in SIP and SNI47 support is somewhat tricky, so for TLS
you have to configure different virtual hosts on different ports if you have different certificate
files for them.

Next you need to configure DNS SIP records for your virtual domains. Refer to RFC 326348

for the detailed explanation. Simply put, you should add NAPTR and SRV records for your
domains. Skip NAPTR configuration if your DNS provider doesn’t support this type of records.
It’s not fatal, however, highly recommended.

Example configuration of NAPTR records:

example.com IN NAPTR 10 0 "s" "SIPS+D2T" "" _sips._tcp.example.com.

example.com IN NAPTR 20 0 "s" "SIP+D2T" "" _sip._tcp.example.com.

example.com IN NAPTR 30 0 "s" "SIP+D2U" "" _sip._udp.example.com.

Example configuration of SRV records with standard ports (as per RFC 326149):

_sip._udp IN SRV 0 0 5060 sip.example.com.

_sip._tcp IN SRV 0 0 5060 sip.example.com.

_sips._tcp IN SRV 0 0 5061 sip.example.com.

3.1.12 Include Additional Configuration Files

The option include config file in a configuration file instructs ejabberd to include other
configuration files immediately.

The basic syntax is:

include config file: [Filename]

It is possible to specify suboptions using the full syntax:

include config file: {Filename: [Suboption, ...] }

The filename can be indicated either as an absolute path, or relative to the main ejabberd

configuration file. It isn’t possible to use wildcards. The file must exist and be readable.

The allowed suboptions are:

disallow: [Optionname, ...] Disallows the usage of those options in the included configu-
ration file. The options that match this criteria are not accepted. The default value is an
empty list: []

47http://en.wikipedia.org/wiki/Server Name Indication
48http://tools.ietf.org/html/rfc3263
49http://tools.ietf.org/html/rfc3261

http://en.wikipedia.org/wiki/Server_Name_Indication
http://tools.ietf.org/html/rfc3263
http://tools.ietf.org/html/rfc3261

3.1 Basic Configuration 53

allow only: [Optionname, ...] Allows only the usage of those options in the included con-
figuration file. The options that do not match this criteria are not accepted. The default
value is: all

This is a basic example:

include_config_file: "/etc/ejabberd/additional.yml"

In this example, the included file is not allowed to contain a listen option. If such an option
is present, the option will not be accepted. The file is in a subdirectory from where the main
configuration file is.

include_config_file:

"./example.org/additional_not_listen.yml":

disallow: [listen]

In this example, ejabberd.yml defines some ACL and Access rules, and later includes another
file with additional rules:

acl:

admin:

user:

- "admin": "localhost"

access:

announce:

admin: allow

include_config_file:

"/etc/ejabberd/acl_and_access.yml":

allow_only:

- acl

- access

and content of the file acl and access.yml can be, for example:

acl:

admin:

user:

- "bob": "localhost"

- "jan": "localhost"

3.1.13 Option Macros in Configuration File

In the ejabberd configuration file, it is possible to define a macro for a value and later use this
macro when defining an option.

A macro is defined with this syntax:

54 3. Configuring ejabberd

define macro: {’MACRO’: Value }

The MACRO must be surrounded by single quotation marks, and all letters in uppercase; check
the examples bellow. The value can be any valid arbitrary Erlang term.

The first definition of a macro is preserved, and additional definitions of the same macro are
forgotten.

Macros are processed after additional configuration files have been included, so it is possible to
use macros that are defined in configuration files included before the usage.

It isn’t possible to use a macro in the definition of another macro.

This example shows the basic usage of a macro:

define_macro:

’LOG_LEVEL_NUMBER’: 5

loglevel: ’LOG_LEVEL_NUMBER’

The resulting option interpreted by ejabberd is: loglevel: 5.

This example shows that values can be any arbitrary Erlang term:

define_macro:

’USERBOB’:

user:

- "bob": "localhost"

acl:

admin: ’USERBOB’

The resulting option interpreted by ejabberd is:

acl:

admin:

user:

- "bob": "localhost"

This complex example:

define_macro:

’NUMBER_PORT_C2S’: 5222

’NUMBER_PORT_HTTP’: 5280

listen:

-

port: ’NUMBER_PORT_C2S’

module: ejabberd_c2s

-

port: ’NUMBER_PORT_HTTP’

module: ejabberd_http

3.2 Database and LDAP Configuration 55

produces this result after being interpreted:

listen:

-

port: 5222

module: ejabberd_c2s

-

port: 5280

module: ejabberd_http

3.2 Database and LDAP Configuration

ejabberd uses its internal Mnesia database by default. However, it is possible to use a relational
database, key-value storage or an LDAP server to store persistent, long-living data. ejabberd is
very flexible: you can configure different authentication methods for different virtual hosts, you
can configure different authentication mechanisms for the same virtual host (fallback), you can
set different storage systems for modules, and so forth.

The following databases are supported by ejabberd:

• Mnesia50

• MySQL51

• Any ODBC compatible database52

• PostgreSQL53

• Riak54

The following LDAP servers are tested with ejabberd:

• Active Directory55 (see section 3.2.2)

• OpenLDAP56

• CommuniGate Pro57

• Normally any LDAP compatible server should work; inform us about your success with a
not-listed server so that we can list it here.

50http://www.erlang.org/doc/apps/mnesia/index.html
51http://www.mysql.com/
52http://en.wikipedia.org/wiki/Open Database Connectivity
53http://www.postgresql.org/
54http://basho.com/riak/
55http://www.microsoft.com/activedirectory/
56http://www.openldap.org/
57http://www.communigate.com/

http://www.erlang.org/doc/apps/mnesia/index.html
http://www.mysql.com/
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://www.postgresql.org/
http://basho.com/riak/
http://www.microsoft.com/activedirectory/
http://www.openldap.org/
http://www.communigate.com/

56 3. Configuring ejabberd

Important note about virtual hosting: if you define several domains in ejabberd.yml (see sec-
tion 3.1.2), you probably want that each virtual host uses a different configuration of database,
authentication and storage, so that usernames do not conflict and mix between different vir-
tual hosts. For that purpose, the options described in the next sections must be set inside a
host config for each vhost (see section 3.1.3). For example:

host_config:

"public.example.org":

odbc_type: pgsql

odbc_server: "localhost"

odbc_database: "database-public-example-org"

odbc_username: "ejabberd"

odbc_password: "password"

auth_method: [odbc]

3.2.1 ODBC

The actual database access is defined in the options with odbc prefix. The values are used
to define if we want to use ODBC, or one of the two native interface available, PostgreSQL or
MySQL.

The following paramaters are available:

odbc type: mysql | pgsql | odbc The type of an ODBC connection. The default is odbc.

odbc server: String A hostname of the ODBC server. The default is ‘‘localhost’’.

odbc port: Port The port where the ODBC server is accepting connections. The option is
only valid for mysql and pgsql. The default is 3306 and 5432 respectively.

odbc database: String The database name. The default is ‘‘ejabberd’’. The option is
only valid for mysql and pgsql.

odbc username: String The username. The default is ‘‘ejabberd’’. The option is only
valid for mysql and pgsql.

odbc password: String The password. The default is empty string. The option is only valid
for mysql and pgsql.

odbc pool size: N By default ejabberd opens 10 connections to the database for each virtual
host. You can change this number by using this option.

odbc keepalive interval: N You can configure an interval to make a dummy SQL request to
keep alive the connections to the database. The default value is ’undefined’, so no keepalive
requests are made. Specify in seconds: for example 28800 means 8 hours.

odbc start interval: N If the connection to the database fails, ejabberd waits 30 seconds
before retrying. You can modify this interval with this option.

Example of plain ODBC connection:

3.2 Database and LDAP Configuration 57

odbc_server: "DSN=database;UID=ejabberd;PWD=password"

Example of MySQL connection:

odbc_type: mysql

odbc_server: "server.company.com"

odbc_port: 3306 # the default

odbc_database: "mydb"

odbc_username: "user1"

odbc_password: "**********"

odbc_pool_size: 5

Storage

An ODBC compatible database also can be used to store information into from several ejabberd
modules. See section 3.3.1 to see which modules can be used with relational databases like
MySQL. To enable storage to your database, just make sure that your database is running well
(see previous sections), and add the module option db type: odbc.

3.2.2 LDAP

ejabberd has built-in LDAP support. You can authenticate users against LDAP server and use
LDAP directory as vCard storage.

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not
possible to create accounts or edit vCard that is stored in LDAP. However, it is possible to
change passwords if mod register module is enabled and LDAP server supports RFC 306258.

Connection

Two connections are established to the LDAP server per vhost, one for authentication and other
for regular calls.

Parameters:

ldap servers: [Servers, ...] List of IP addresses or DNS names of your LDAP servers.
This option is required.

ldap encrypt: none|tls Type of connection encryption to the LDAP server. Allowed values
are: none, tls. The value tls enables encryption by using LDAP over SSL. Note that
STARTTLS encryption is not supported. The default value is: none.

58http://tools.ietf.org/html/rfc3062

http://tools.ietf.org/html/rfc3062

58 3. Configuring ejabberd

ldap tls verify: false|soft|hard This option specifies whether to verify LDAP server cer-
tificate or not when TLS is enabled. When hard is enabled ejabberd doesn’t proceed if
a certificate is invalid. When soft is enabled ejabberd proceeds even if check fails. The
default is false which means no checks are performed.

ldap tls cacertfile: Path Path to file containing PEM encoded CA certificates. This option
is needed (and required) when TLS verification is enabled.

ldap tls depth: Number Specifies the maximum verification depth when TLS verification is
enabled, i.e. how far in a chain of certificates the verification process can proceed before
the verification is considered to fail. Peer certificate = 0, CA certificate = 1, higher level
CA certificate = 2, etc. The value 2 thus means that a chain can at most contain peer
cert, CA cert, next CA cert, and an additional CA cert. The default value is 1.

ldap port: Number Port to connect to your LDAP server. The default port is 389 if encryption
is disabled; and 636 if encryption is enabled. If you configure a value, it is stored in
ejabberd’s database. Then, if you remove that value from the configuration file, the value
previously stored in the database will be used instead of the default port.

ldap rootdn: RootDN Bind DN. The default value is "" which means ‘anonymous connection’.

ldap password: Password Bind password. The default value is "".

ldap deref aliases: never|always|finding|searching Whether or not to dereference aliases.
The default is never.

Example:

auth_method: [ldap]

ldap_servers:

- "ldap1.example.org"

ldap_port: 389

ldap_rootdn: "cn=Manager,dc=domain,dc=org"

ldap_password: "**********"

Authentication

You can authenticate users against an LDAP directory. Note that current LDAP implementation
does not support SASL authentication.

Available options are:

ldap base: Base LDAP base directory which stores users accounts. This option is required.

ldap uids: [ldap uidattr | {ldap uidattr: ldap uidattr format}] LDAP attribute which
holds a list of attributes to use as alternatives for getting the JID. The default attributes are
[{"uid", "%u"}]. The attributes are of the form: [{ldap uidattr}] or [{ldap uidattr,

ldap uidattr format}]. You can use as many comma separated attributes as needed. The
values for ldap uidattr and ldap uidattr format are described as follow:

3.2 Database and LDAP Configuration 59

ldap uidattr LDAP attribute which holds the user’s part of a JID. The default value is
"uid".

ldap uidattr format Format of the ldap uidattr variable. The format must contain
one and only one pattern variable "%u" which will be replaced by the user’s part of a
JID. For example, "%u@example.org". The default value is "%u".

ldap filter: Filter RFC 451559 LDAP filter. The default Filter value is: undefined. Ex-
ample: "(&(objectClass=shadowAccount)(memberOf=Jabber Users))". Please, do not
forget to close brackets and do not use superfluous whitespaces. Also you must not use
ldap uidattr attribute in filter because this attribute will be substituted in LDAP filter
automatically.

ldap dn filter: {Filter: FilterAttrs } This filter is applied on the results returned by
the main filter. This filter performs additional LDAP lookup to make the complete re-
sult. This is useful when you are unable to define all filter rules in ldap filter. You
can define "%u", "%d", "%s" and "%D" pattern variables in Filter: "%u" is replaced by a
user’s part of a JID, "%d" is replaced by the corresponding domain (virtual host), all "%s"
variables are consecutively replaced by values of FilterAttrs attributes and "%D" is replaced
by Distinguished Name. By default ldap dn filter is undefined. Example:

ldap_dn_filter:

"(&(name=%s)(owner=%D)(user=%u@%d))": ["sn"]

Since this filter makes additional LDAP lookups, use it only in the last resort: try to define
all filter rules in ldap filter if possible.

{ldap local filter, Filter} If you can’t use ldap filter due to performance reasons (the
LDAP server has many users registered), you can use this local filter. The local filter checks
an attribute in ejabberd, not in LDAP, so this limits the load on the LDAP directory. The
default filter is: undefined. Example values:

{ldap_local_filter, {notequal, {"accountStatus",["disabled"]}}}.

{ldap_local_filter, {equal, {"accountStatus",["enabled"]}}}.

{ldap_local_filter, undefined}.

Examples

Common example Let’s say ldap.example.org is the name of our LDAP server. We have
users with their passwords in "ou=Users,dc=example,dc=org" directory. Also we have address-
book, which contains users emails and their additional infos in "ou=AddressBook,dc=example,dc=org"

directory. The connection to the LDAP server is encrypted using TLS, and using the custom
port 6123. Corresponding authentication section should looks like this:

Authentication method

auth_method: [ldap]

DNS name of our LDAP server

ldap_servers: ["ldap.example.org"]

59http://tools.ietf.org/html/rfc4515

http://tools.ietf.org/html/rfc4515

60 3. Configuring ejabberd

Bind to LDAP server as "cn=Manager,dc=example,dc=org" with password "secret"

ldap_rootdn: "cn=Manager,dc=example,dc=org"

ldap_password: "secret"

ldap_encrypt: tls

ldap_port: 6123

Define the user’s base

ldap_base: "ou=Users,dc=example,dc=org"

We want to authorize users from ’shadowAccount’ object class only

ldap_filter: "(objectClass=shadowAccount)"

Now we want to use users LDAP-info as their vCards. We have four attributes defined in our
LDAP schema: "mail" — email address, "givenName" — first name, "sn" — second name,
"birthDay" — birthday. Also we want users to search each other. Let’s see how we can set it
up:

modules:

...

mod_vcard_ldap:

We use the same server and port, but want to bind anonymously because

our LDAP server accepts anonymous requests to

"ou=AddressBook,dc=example,dc=org" subtree.

ldap_rootdn: ""

ldap_password: ""

define the addressbook’s base

ldap_base: "ou=AddressBook,dc=example,dc=org"

uidattr: user’s part of JID is located in the "mail" attribute

uidattr_format: common format for our emails

ldap_uids:

"mail": "%u@mail.example.org"

We have to define empty filter here, because entries in addressbook does not

belong to shadowAccount object class

ldap_filter: ""

Now we want to define vCard pattern

ldap_vcard_map:

"NICKNAME": {"%u": []} # just use user’s part of JID as his nickname

"GIVEN": {"%s": ["givenName"]}

"FAMILY": {"%s": ["sn"]}

"FN": {"%s, %s": ["sn", "givenName"]}, # example: "Smith, John"

"EMAIL": {"%s": ["mail"]}

"BDAY": {"%s": ["birthDay"]}]}

Search form

ldap_search_fields:

"User": "%u"

"Name": "givenName"

"Family Name": "sn"

"Email": "mail"

"Birthday": "birthDay"

vCard fields to be reported

3.2 Database and LDAP Configuration 61

Note that JID is always returned with search results

ldap_search_reported:

"Full Name": "FN"

"Nickname": "NICKNAME"

"Birthday": "BDAY"

...

Note that mod vcard ldap module checks for the existence of the user before searching in his
information in LDAP.

Active Directory Active Directory is just an LDAP-server with predefined attributes. A
sample configuration is shown below:

auth_method: [ldap]

ldap_servers: ["office.org"] # List of LDAP servers

ldap_base: "DC=office,DC=org" # Search base of LDAP directory

ldap_rootdn: "CN=Administrator,CN=Users,DC=office,DC=org" # LDAP manager

ldap_password: "*******" # Password to LDAP manager

ldap_uids: ["sAMAccountName"]

ldap_filter: "(memberOf=*)"

modules:

...

mod_vcard_ldap:

ldap_vcard_map:

"NICKNAME": {"%u", []}

"GIVEN": {"%s", ["givenName"]}

"MIDDLE": {"%s", ["initials"]}

"FAMILY": {"%s", ["sn"]}

"FN": {"%s", ["displayName"]}

"EMAIL": {"%s", ["mail"]}

"ORGNAME": {"%s", ["company"]}

"ORGUNIT": {"%s", ["department"]}

"CTRY": {"%s", ["c"]}

"LOCALITY": {"%s", ["l"]}

"STREET": {"%s", ["streetAddress"]}

"REGION": {"%s", ["st"]}

"PCODE": {"%s", ["postalCode"]}

"TITLE": {"%s", ["title"]}

"URL": {"%s", ["wWWHomePage"]}

"DESC": {"%s", ["description"]}

"TEL": {"%s", ["telephoneNumber"]}]}

ldap_search_fields:

"User": "%u"

"Name": "givenName"

"Family Name": "sn"

"Email": "mail"

62 3. Configuring ejabberd

"Company": "company"

"Department": "department"

"Role": "title"

"Description": "description"

"Phone": "telephoneNumber"

ldap_search_reported:

"Full Name": "FN"

"Nickname": "NICKNAME"

"Email": "EMAIL"

...

3.2.3 Riak

Riak60 is a distributed NoSQL key-value data store. The actual database access is defined in the
options with riak prefix.

Connection

The following paramaters are available:

riak server: String A hostname of the Riak server. The default is ‘‘localhost’’.

riak port: Port The port where the Riak server is accepting connections. The defalt is 8087.

riak pool size: N By default ejabberd opens 10 connections to the Riak server. You can
change this number by using this option.

riak start interval: N If the connection to the Riak server fails, ejabberd waits 30 seconds
before retrying. You can modify this interval with this option.

Example configuration:

riak_server: "riak.server.com"

riak_port: 9097

Storage

Several ejabberd modules can be used to store information in Riak database. Refer to the
corresponding module documentation to see if it supports such ability. To enable storage to
Riak database, just make sure that your database is running well (see the next section), and add
the module option db type: riak.

60http://basho.com/riak/

http://basho.com/riak/

3.3 Modules Configuration 63

Riak Configuration

First, you need to configure Riak to use LevelDB61 as a database backend.

If you are using Riak 2.x and higher, configure storage backend option of /etc/riak/riak.conf
as follows:

...

storage_backend = leveldb

...

If you are using Riak 1.4.x and older, configure storage backend option of /etc/riak/app.config
in the section riak kv as follows:

...

{riak_kv, [

...

{storage_backend, riak_kv_eleveldb_backend},

...

Second, Riak should be pointed to ejabberd Erlang binary files (*.beam). As described in 2.4.4,
by default those are located in /lib/ejabberd/ebin directory. So you should add the following
to /etc/riak/vm.args:

...

Path to ejabberd beams in order to make map/reduce

-pz /lib/ejabberd/ebin

...

Important notice: make sure Riak has at least read access to that directory. Otherwise its startup
will likely fail.

3.3 Modules Configuration

The option modules defines the list of modules that will be loaded after ejabberd’s startup.
Each entry in the list is a tuple in which the first element is the name of a module and the
second is a list of options for that module.

The syntax is:

modules: {ModuleName: ModuleOptions }

Examples:

61http://en.wikipedia.org/wiki/LevelDB

http://en.wikipedia.org/wiki/LevelDB

64 3. Configuring ejabberd

• In this example only the module mod echo is loaded and no module options are specified
between the square brackets:

modules:

mod_echo: {}

• In the second example the modules mod echo, mod time, and mod version are loaded
without options.

modules:

mod_echo: {}

mod_time: {}

mod_version: {}

3.3.1 Modules Overview

The following table lists all modules included in ejabberd.

3.3 Modules Configuration 65

Module Feature Dependencies

mod adhoc Ad-Hoc Commands (XEP-005062)
mod announce Manage announcements recommends mod adhoc

mod blocking Simple Communications Blocking (XEP-019163) mod privacy

mod caps Entity Capabilities (XEP-011564)
mod carboncopy Message Carbons (XEP-028065)
mod client state Filter stanzas for inactive clients
mod configure Server configuration using Ad-Hoc mod adhoc

mod disco Service Discovery (XEP-003066)
mod echo Echoes XMPP stanzas
mod fail2ban Bans IPs that show the malicious signs
mod http bind XMPP over Bosh service (HTTP Binding)
mod http fileserver Small HTTP file server
mod irc IRC transport
mod last Last Activity (XEP-001267)
mod muc Multi-User Chat (XEP-004568)
mod muc log Multi-User Chat room logging mod muc

mod offline Offline message storage (XEP-016069)
mod ping XMPP Ping and periodic keepalives (XEP-019970)
mod pres counter Detect presence subscription flood
mod privacy Blocking Communication (XEP-001671)
mod private Private XML Storage (XEP-004972)
mod proxy65 SOCKS5 Bytestreams (XEP-006573)
mod pubsub Pub-Sub (XEP-006074), PEP (XEP-016375) mod caps

mod pubsub odbc Pub-Sub (XEP-006076), PEP (XEP-016377) supported DB (*) and mod caps

mod register In-Band Registration (XEP-007778)
mod register web Web for Account Registrations
mod roster Roster management (XMPP IM)
mod service log Copy user messages to logger service
mod shared roster Shared roster management mod roster

mod shared roster ldap LDAP Shared roster management mod roster

mod sic Server IP Check (XEP-027979)
mod sip SIP Registrar/Proxy (RFC 326180) ejabberd sip

mod stats Statistics Gathering (XEP-003981)
mod time Entity Time (XEP-020282)
mod vcard vcard-temp (XEP-005483)
mod vcard ldap vcard-temp (XEP-005484) LDAP server
mod vcard xupdate vCard-Based Avatars (XEP-015385) mod vcard

mod version Software Version (XEP-009286)

• (*) This module requires a supported database. For a list of supported databases, see
section 3.2.

You can see which database backend each module needs by looking at the suffix:

• No suffix, this means that the module uses Erlang’s built-in database Mnesia as backend,
Riak key-value store or ODBC database (see 3.2).

66 3. Configuring ejabberd

• ‘ ldap’, this means that the module needs an LDAP server as backend.

You can find more contributed modules87 on the ejabberd website. Please remember that these
contributions might not work or that they can contain severe bugs and security leaks. Therefore,
use them at your own risk!

3.3.2 Common Options

The following options are used by many modules. Therefore, they are described in this separate
section.

iqdisc

Many modules define handlers for processing IQ queries of different namespaces to this server
or to a user (e. g. to example.org or to user@example.org). This option defines processing
discipline for these queries.

The syntax is:

iqdisc: Value

Possible Value are:

no queue All queries of a namespace with this processing discipline are processed directly. This
means that the XMPP connection that sends this IQ query gets blocked: no other packets
can be processed until this one has been completely processed. Hence this discipline is not
recommended if the processing of a query can take a relatively long time.

one queue In this case a separate queue is created for the processing of IQ queries of a namespace
with this discipline. In addition, the processing of this queue is done in parallel with that
of other packets. This discipline is most recommended.

N N separate queues are created to process the queries. The queries are thus processed in parallel,
but in a controlled way.

parallel For every packet with this discipline a separate Erlang process is spawned. Conse-
quently, all these packets are processed in parallel. Although spawning of Erlang process
has a relatively low cost, this can break the server’s normal work, because the Erlang
emulator has a limit on the number of processes (32000 by default).

Example:

modules:

...

mod_time:

iqdisc: no_queue

...
87http://www.ejabberd.im/contributions

http://www.ejabberd.im/contributions

3.3 Modules Configuration 67

host

This option defines the Jabber ID of a service provided by an ejabberd module.

The syntax is:

host: HostName

If you include the keyword ”@HOST@” in the HostName, it is replaced at start time with the
real virtual host string.

This example configures the echo module to provide its echoing service in the Jabber ID mirror.example.org:

modules:

...

mod_echo:

host: "mirror.example.org"

...

However, if there are several virtual hosts and this module is enabled in all of them, the
”@HOST@” keyword must be used:

modules:

...

mod_echo:

host: "mirror.@HOST@"

...

3.3.3 mod announce

This module enables configured users to broadcast announcements and to set the message of
the day (MOTD). Configured users can perform these actions with a XMPP client either using
Ad-hoc commands or sending messages to specific JIDs.

The Ad-hoc commands are listed in the Server Discovery. For this feature to work, mod adhoc

must be enabled.

The specific JIDs where messages can be sent are listed bellow. The first JID in each entry will
apply only to the specified virtual host example.org, while the JID between brackets will apply
to all virtual hosts in ejabberd.

example.org/announce/all (example.org/announce/all-hosts/all) The message is sent to
all registered users. If the user is online and connected to several resources, only the resource
with the highest priority will receive the message. If the registered user is not connected,
the message will be stored offline in assumption that offline storage (see section 3.3.14) is
enabled.

68 3. Configuring ejabberd

example.org/announce/online (example.org/announce/all-hosts/online) The message is
sent to all connected users. If the user is online and connected to several resources, all re-
sources will receive the message.

example.org/announce/motd (example.org/announce/all-hosts/motd) The message is set
as the message of the day (MOTD) and is sent to users when they login. In addition the
message is sent to all connected users (similar to announce/online).

example.org/announce/motd/update (example.org/announce/all-hosts/motd/update) The
message is set as message of the day (MOTD) and is sent to users when they login. The
message is not sent to any currently connected user.

example.org/announce/motd/delete (example.org/announce/all-hosts/motd/delete) Any
message sent to this JID removes the existing message of the day (MOTD).

Options:

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

access: AccessName This option specifies who is allowed to send announcements and to set
the message of the day (by default, nobody is able to send such messages).

Examples:

• Only administrators can send announcements:

access:

announce:

admin: allow

modules:

...

mod_adhoc: {}

mod_announce:

access: announce

...

• Administrators as well as the direction can send announcements:

acl:

direction:

user:

"big_boss": "example.org"

"assistant": "example.org"

admin:

user:

"admin": "example.org"

3.3 Modules Configuration 69

access:

announce:

admin: allow

direction: allow

modules:

...

mod_adhoc: {}

mod_announce:

access: announce

...

Note that mod announce can be resource intensive on large deployments as it can broadcast lot of
messages. This module should be disabled for instances of ejabberd with hundreds of thousands
users.

3.3.4 mod client state

This module allows for queueing or dropping certain types of stanzas when a client indicates
that the user is not actively using the client at the moment (see XEP-035288). This can save
bandwidth and resources.

Options:

drop chat states: true|false Drop most ”standalone” Chat State Notifications (as defined
in XEP-008589) while a client indicates inactivity. The default value is false.

queue presence: true|false While a client is inactive, queue presence stanzas that indicate
(un)availability. The latest queued stanza of each contact is delivered as soon as the client
becomes active again. The default value is false.

Example:

modules:

...

mod_client_state:

drop_chat_states: true

queue_presence: true

...

3.3.5 mod disco

This module adds support for Service Discovery (XEP-003090). With this module enabled,
services on your server can be discovered by XMPP clients. Note that ejabberd has no modules

88http://xmpp.org/extensions/xep-0352.html
89http://xmpp.org/extensions/xep-0085.html
90http://xmpp.org/extensions/xep-0030.html

http://xmpp.org/extensions/xep-0352.html
http://xmpp.org/extensions/xep-0085.html
http://xmpp.org/extensions/xep-0030.html

70 3. Configuring ejabberd

with support for the superseded Jabber Browsing (XEP-001191) and Agent Information (XEP-
009492). Accordingly, XMPP clients need to have support for the newer Service Discovery
protocol if you want them be able to discover the services you offer.

Options:

iqdisc: Discipline This specifies the processing discipline for Service Discovery (http://jabber.org/protocol/disco#items
and http://jabber.org/protocol/disco#info) IQ queries (see section 3.3.2).

extra domains: [Domain, ...] With this option, you can specify a list of extra domains that
are added to the Service Discovery item list.

server info: [{modules: Modules, name: Name, urls: [URL, ...] }] Specify ad-
ditional information about the server, as described in Contact Addresses for XMPP Services
(XEP-015793). Modules can be the keyword ‘all’, in which case the information is reported
in all the services; or a list of ejabberd modules, in which case the information is only
specified for the services provided by those modules. Any arbitrary Name and URL can be
specified, not only contact addresses.

Examples:

• To serve a link to the Jabber User Directory on jabber.org:

modules:

...

mod_disco:

extra_domains: ["users.jabber.org"]

...

• To serve a link to the transports on another server:

modules:

...

mod_disco:

extra_domains:

- "icq.example.com"

- "msn.example.com"

...

• To serve a link to a few friendly servers:

modules:

...

mod_disco:

extra_domains:

- "example.org"

- "example.com"

...

91http://xmpp.org/extensions/xep-0011.html
92http://xmpp.org/extensions/xep-0094.html
93http://xmpp.org/extensions/xep-0157.html

http://xmpp.org/extensions/xep-0011.html
http://xmpp.org/extensions/xep-0094.html
http://xmpp.org/extensions/xep-0157.html

3.3 Modules Configuration 71

• With this configuration, all services show abuse addresses, feedback address on the main
server, and admin addresses for both the main server and the vJUD service:

modules:

...

mod_disco:

server_info:

-

modules: all

name: "abuse-addresses"

urls: ["mailto:abuse@shakespeare.lit"]

-

modules: [mod_muc]

name: "Web chatroom logs"

urls: ["http://www.example.org/muc-logs"]

-

modules: [mod_disco]

name: "feedback-addresses"

urls:

- "http://shakespeare.lit/feedback.php"

- "mailto:feedback@shakespeare.lit"

- "xmpp:feedback@shakespeare.lit"

-

modules:

- mod_disco

- mod_vcard

name: "admin-addresses"

urls:

- "mailto:xmpp@shakespeare.lit"

- "xmpp:admins@shakespeare.lit"

...

3.3.6 mod echo

This module simply echoes any XMPP packet back to the sender. This mirror can be of interest
for ejabberd and XMPP client debugging.

Options:

host: HostName This option defines the Jabber ID of the service. If the host option is not
specified, the Jabber ID will be the hostname of the virtual host with the prefix ‘echo.’.
The keyword ”@HOST@” is replaced at start time with the real virtual host name.

Example: Mirror, mirror, on the wall, who is the most beautiful of them all?

modules:

...

72 3. Configuring ejabberd

mod_echo:

host: "mirror.example.org"

...

3.3.7 mod fail2ban

The module bans IPs that show the malicious signs. Currently only C2S authentication failures
are detected.

Available options:

c2s auth ban lifetime: Seconds The lifetime of the IP ban caused by too many C2S au-
thentication failures. The default is 3600, i.e. one hour.

c2s max auth failures: Integer The number of C2S authentication failures to trigger the
IP ban. The default is 20.

Example:

modules:

...

mod_fail2ban:

c2s_auth_block_lifetime: 7200

c2s_max_auth_failures: 50

...

3.3.8 mod http bind

This module implements XMPP over Bosh (formerly known as HTTP Binding) as defined in
XEP-012494 and XEP-020695. It extends ejabberd’s built in HTTP service with a configurable
resource at which this service will be hosted.

To use HTTP-Binding, enable the module:

modules:

...

mod_http_bind: {}

...

and add http_bind in the HTTP service. For example:

94http://xmpp.org/extensions/xep-0124.html
95http://xmpp.org/extensions/xep-0206.html

http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0206.html

3.3 Modules Configuration 73

listen:

...

-

port: 5280

module: ejabberd_http

http_bind: true

http_poll: true

web_admin: true

...

With this configuration, the module will serve the requests sent to http://example.org:5280/http-bind/
Remember that this page is not designed to be used by web browsers, it is used by XMPP clients
that support XMPP over Bosh.

If you want to set the service in a different URI path or use a different module, you can configure
it manually using the option request_handlers. For example:

listen:

...

-

port: 5280

module: ejabberd_http

request_handlers:

"/http-bind": mod_http_bind

http_poll: true

web_admin: true

...

Options:

{max inactivity, Seconds} Define the maximum inactivity period in seconds. Default value
is 30 seconds. For example, to set 50 seconds:

modules:

...

mod_http_bind:

max_inactivity: 50

...

3.3.9 mod http fileserver

This simple module serves files from the local disk over HTTP.

Options:

docroot: Path Directory to serve the files.

74 3. Configuring ejabberd

accesslog: Path File to log accesses using an Apache-like format. No log will be recorded if
this option is not specified.

directory indices: [Index, ...] Indicate one or more directory index files, similarly to
Apache’s DirectoryIndex variable. When a web request hits a directory instead of a regular
file, those directory indices are looked in order, and the first one found is returned.

custom headers: {Name: Value} Indicate custom HTTP headers to be included in all re-
sponses. Default value is: []

content types: {Name: Type} Specify mappings of extension to content type. There are
several content types already defined, with this option you can add new definitions, modify
or delete existing ones. To delete an existing definition, simply define it with a value:
‘undefined’.

default content type: Type Specify the content type to use for unknown extensions. Default
value is ‘application/octet-stream’.

This example configuration will serve the files from the local directory /var/www in the address
http://example.org:5280/pub/archive/. In this example a new content type ogg is defined,
png is redefined, and jpg definition is deleted. To use this module you must enable it:

modules:

...

mod_http_fileserver:

docroot: "/var/www"

accesslog: "/var/log/ejabberd/access.log"

directory_indices:

- "index.html"

- "main.htm"

custom_headers:

"X-Powered-By": "Erlang/OTP"

"X-Fry": "It’s a widely-believed fact!"

content_types:

".ogg": "audio/ogg"

".png": "image/png"

".jpg": undefined

default_content_type: "text/html"

...

And define it as a handler in the HTTP service:

listen:

...

-

port: 5280

module: ejabberd_http

request_handlers:

...

3.3 Modules Configuration 75

"/pub/archive": mod_http_fileserver

...

...

3.3.10 mod irc

This module is an IRC transport that can be used to join channels on IRC servers.

End user information:

• A XMPP client with ‘groupchat 1.0’ support or Multi-User Chat support (XEP-004596) is
necessary to join IRC channels.

• An IRC channel can be joined in nearly the same way as joining a XMPP Multi-User Chat
room. The difference is that the room name will be ‘channel%irc.example.org’ in case
irc.example.org is the IRC server hosting ‘channel’. And of course the host should point
to the IRC transport instead of the Multi-User Chat service.

• You can register your nickame by sending ‘IDENTIFY password’ to
nickserver!irc.example.org@irc.jabberserver.org.

• Entering your password is possible by sending ‘LOGIN nick password’
to nickserver!irc.example.org@irc.jabberserver.org.

• The IRC transport provides Ad-Hoc Commands (XEP-005097) to join a channel, and to
set custom IRC username and encoding.

• When using a popular XMPP server, it can occur that no connection can be achieved with
some IRC servers because they limit the number of connections from one IP.

Options:

host: HostName This option defines the Jabber ID of the service. If the host option is not
specified, the Jabber ID will be the hostname of the virtual host with the prefix ‘irc.’.
The keyword ”@HOST@” is replaced at start time with the real virtual host name.

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

access: AccessName This option can be used to specify who may use the IRC transport
(default value: all).

default encoding: Encoding Set the default IRC encoding. Default value: "iso8859-1"

Examples:

96http://xmpp.org/extensions/xep-0045.html
97http://xmpp.org/extensions/xep-0050.html

http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0050.html

76 3. Configuring ejabberd

• In the first example, the IRC transport is available on (all) your virtual host(s) with the
prefix ‘irc.’. Furthermore, anyone is able to use the transport. The default encoding is
set to ”iso8859-15”.

modules:

...

mod_irc:

access: all

default_encoding: "iso8859-15"

...

• In next example the IRC transport is available with JIDs with prefix irc-t.net. Moreover,
the transport is only accessible to two users of example.org, and any user of example.com:

acl:

paying_customers:

user:

- "customer1": "example.org"

- "customer2": "example.org"

server: "example.com"

access:

irc_users:

paying_customers: allow

all: deny

modules:

...

mod_irc:

access: irc_users

host: "irc.example.net"

...

3.3.11 mod last

This module adds support for Last Activity (XEP-001298). It can be used to discover when a
disconnected user last accessed the server, to know when a connected user was last active on the
server, or to query the uptime of the ejabberd server.

Options:

iqdisc: Discipline This specifies the processing discipline for Last activity (jabber:iq:last)
IQ queries (see section 3.3.2).

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

98http://xmpp.org/extensions/xep-0012.html

http://xmpp.org/extensions/xep-0012.html

3.3 Modules Configuration 77

3.3.12 mod muc

This module provides a Multi-User Chat (XEP-004599) service. Users can discover existing
rooms, join or create them. Occupants of a room can chat in public or have private chats.

Some of the features of Multi-User Chat:

• Sending public and private messages to room occupants.

• Inviting other users to a room.

• Setting a room subject.

• Creating password protected rooms.

• Kicking and banning occupants.

The MUC service allows any Jabber ID to register a nickname, so nobody else can use that
nickname in any room in the MUC service. To register a nickname, open the Service Discovery
in your XMPP client and register in the MUC service.

This module supports clustering and load balancing. One module can be started per cluster node.
Rooms are distributed at creation time on all available MUC module instances. The multi-user
chat module is clustered but the rooms themselves are not clustered nor fault-tolerant: if the
node managing a set of rooms goes down, the rooms disappear and they will be recreated on an
available node on first connection attempt.

Module options:

host: HostName This option defines the Jabber ID of the service. If the host option is not spec-
ified, the Jabber ID will be the hostname of the virtual host with the prefix ‘conference.’.
The keyword ”@HOST@” is replaced at start time with the real virtual host name.

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

access: AccessName You can specify who is allowed to use the Multi-User Chat service. By
default everyone is allowed to use it.

access create: AccessName To configure who is allowed to create new rooms at the Multi-
User Chat service, this option can be used. By default any account in the local ejabberd
server is allowed to create rooms.

access persistent: AccessName To configure who is allowed to modify the ’persistent’ room
option. By default any account in the local ejabberd server is allowed to modify that
option.

99http://xmpp.org/extensions/xep-0045.html

http://xmpp.org/extensions/xep-0045.html

78 3. Configuring ejabberd

access admin: AccessName This option specifies who is allowed to administrate the Multi-
User Chat service. The default value is none, which means that only the room creator can
administer his room. The administrators can send a normal message to the service JID,
and it will be shown in all active rooms as a service message. The administrators can send
a groupchat message to the JID of an active room, and the message will be shown in the
room as a service message.

history size: Size A small history of the current discussion is sent to users when they enter
the room. With this option you can define the number of history messages to keep and
send to users joining the room. The value is an integer. Setting the value to 0 disables the
history feature and, as a result, nothing is kept in memory. The default value is 20. This
value is global and thus affects all rooms on the service.

max users: Number This option defines at the service level, the maximum number of users
allowed per room. It can be lowered in each room configuration but cannot be increased
in individual room configuration. The default value is 200.

max users admin threshold: Number This option defines the number of service admins or
room owners allowed to enter the room when the maximum number of allowed occupants
was reached. The default limit is 5.

max user conferences: Number This option defines the maximum number of rooms that any
given user can join. The default value is 10. This option is used to prevent possible abuses.
Note that this is a soft limit: some users can sometimes join more conferences in cluster
configurations.

max room id: Number This option defines the maximum number of characters that Room ID
can have when creating a new room. The default value is to not limit: infinity.

max room name: Number This option defines the maximum number of characters that Room
Name can have when configuring the room. The default value is to not limit: infinity.

max room desc: Number This option defines the maximum number of characters that Room
Description can have when configuring the room. The default value is to not limit:
infinity.

min message interval: Number This option defines the minimum interval between two mes-
sages send by an occupant in seconds. This option is global and valid for all rooms. A
decimal value can be used. When this option is not defined, message rate is not limited.
This feature can be used to protect a MUC service from occupant abuses and limit num-
ber of messages that will be broadcasted by the service. A good value for this minimum
message interval is 0.4 second. If an occupant tries to send messages faster, an error is
send back explaining that the message has been discarded and describing the reason why
the message is not acceptable.

min presence interval: Number This option defines the minimum of time between presence
changes coming from a given occupant in seconds. This option is global and valid for all
rooms. A decimal value can be used. When this option is not defined, no restriction is
applied. This option can be used to protect a MUC service for occupants abuses. If an
occupant tries to change its presence more often than the specified interval, the presence is
cached by ejabberd and only the last presence is broadcasted to all occupants in the room
after expiration of the interval delay. Intermediate presence packets are silently discarded.
A good value for this option is 4 seconds.

3.3 Modules Configuration 79

default room options: {OptionName: OptionValue} This module option allows to define
the desired default room options. Note that the creator of a room can modify the options
of his room at any time using an XMPP client with MUC capability. The available room
options and the default values are:

allow change subj: true|false Allow occupants to change the subject.

allow private messages: true|false Occupants can send private messages to other
occupants.

allow private messages from visitors: anyone|moderators|nobody Visitors can send
private messages to other occupants.

allow query users: true|false Occupants can send IQ queries to other occupants.

allow user invites: false|true Allow occupants to send invitations.

allow visitor nickchange: true|false Allow visitors to change nickname.

allow visitor status: true|false Allow visitors to send status text in presence up-
dates. If disallowed, the status text is stripped before broadcasting the presence
update to all the room occupants.

anonymous: true|false The room is anonymous: occupants don’t see the real JIDs of
other occupants. Note that the room moderators can always see the real JIDs of the
occupants.

captcha protected: false When a user tries to join a room where he has no affiliation
(not owner, admin or member), the room requires him to fill a CAPTCHA challenge
(see section 3.1.9) in order to accept her join in the room.

logging: false|true The public messages are logged using mod muc log.

max users: 200 Maximum number of occupants in the room.

members by default: true|false The occupants that enter the room are participants
by default, so they have ’voice’.

members only: false|true Only members of the room can enter.

moderated: true|false Only occupants with ’voice’ can send public messages.

password: "roompass123" Password of the room. You may want to enable the next
option too.

password protected: false|true The password is required to enter the room.

persistent: false|true The room persists even if the last participant leaves.

public: true|false The room is public in the list of the MUC service, so it can be
discovered.

public list: true|false The list of participants is public, without requiring to enter
the room.

title: "Room Title" A human-readable title of the room.

All of those room options can be set to true or false, except password and title which
are strings, and max users that is integer.

Examples:

80 3. Configuring ejabberd

• In the first example everyone is allowed to use the Multi-User Chat service. Everyone
will also be able to create new rooms but only the user admin@example.org is allowed
to administrate any room. In this example he is also a global administrator. When
admin@example.org sends a message such as ‘Tomorrow, the XMPP server will be moved
to new hardware. This will involve service breakdowns around 23:00 UMT. We apologise
for this inconvenience.’ to conference.example.org, it will be displayed in all active
rooms. In this example the history feature is disabled.

acl:

admin:

user:

- "admin": "example.org"

access:

muc_admin:

admin: allow

modules:

...

mod_muc:

access: all

access_create: all

access_admin: muc_admin

history_size: 0

...

• In the second example the Multi-User Chat service is only accessible by paying customers
registered on our domains and on other servers. Of course the administrator is also allowed
to access rooms. In addition, he is the only authority able to create and administer rooms.
When admin@example.org sends a message such as ‘Tomorrow, the Jabber server will be
moved to new hardware. This will involve service breakdowns around 23:00 UMT. We
apologise for this inconvenience.’ to conference.example.org, it will be displayed in all
active rooms. No history size option is used, this means that the feature is enabled and
the default value of 20 history messages will be send to the users.

acl:

paying_customers:

user:

- "customer1": "example.net"

- "customer2": "example.com"

- "customer3": "example.org"

admin:

user:

- "admin": "example.org"

access:

muc_admin

admin: allow

all: deny

muc_access:

3.3 Modules Configuration 81

paying_customers: allow

admin: allow

all: deny

modules:

...

mod_muc:

access: muc_access

access_create: muc_admin

access_admin: muc_admin

...

• In the following example, MUC anti abuse options are used. An occupant cannot send
more than one message every 0.4 seconds and cannot change its presence more than once
every 4 seconds. The length of Room IDs and Room Names are limited to 20 characters,
and Room Description to 300 characters. No ACLs are defined, but some user restriction
could be added as well:

modules:

...

mod_muc:

min_message_interval: 0.4

min_presence_interval: 4

max_room_id: 20

max_room_name: 20

max_room_desc: 300

...

• This example shows how to use default room options to make sure the newly created
rooms have by default those options.

modules:

...

mod_muc:

access: muc_access

access_create: muc_admin

default_room_options:

allow_change_subj: false

allow_query_users: true

allow_private_messages: true

members_by_default: false

title: "New chatroom"

anonymous: false

access_admin: muc_admin

...

82 3. Configuring ejabberd

3.3.13 mod muc log

This module enables optional logging of Multi-User Chat (MUC) public conversations to HTML.
Once you enable this module, users can join a room using a MUC capable XMPP client, and if
they have enough privileges, they can request the configuration form in which they can set the
option to enable room logging.

Features:

• Room details are added on top of each page: room title, JID, author, subject and configu-
ration.

• The room JID in the generated HTML is a link to join the room (using XMPP URI100).

• Subject and room configuration changes are tracked and displayed.

• Joins, leaves, nick changes, kicks, bans and ‘/me’ are tracked and displayed, including the
reason if available.

• Generated HTML files are XHTML 1.0 Transitional and CSS compliant.

• Timestamps are self-referencing links.

• Links on top for quicker navigation: Previous day, Next day, Up.

• CSS is used for style definition, and a custom CSS file can be used.

• URLs on messages and subjects are converted to hyperlinks.

• Timezone used on timestamps is shown on the log files.

• A custom link can be added on top of each page.

Options:

access log: AccessName This option restricts which occupants are allowed to enable or dis-
able room logging. The default value is muc admin. Note for this default setting you need
to have an access rule for muc admin in order to take effect.

cssfile: false|URL With this option you can set whether the HTML files should have a
custom CSS file or if they need to use the embedded CSS file. Allowed values are false

and an URL to a CSS file. With the first value, HTML files will include the embedded
CSS code. With the latter, you can specify the URL of the custom CSS file (for example:
"http://example.com/my.css"). The default value is false.

dirname: room jid|room name Allows to configure the name of the room directory. Allowed
values are room jid and room name. With the first value, the room directory name will be
the full room JID. With the latter, the room directory name will be only the room name,
not including the MUC service name. The default value is room jid.

100http://xmpp.org/rfcs/rfc5122.html

http://xmpp.org/rfcs/rfc5122.html

3.3 Modules Configuration 83

dirtype: subdirs|plain The type of the created directories can be specified with this option.
Allowed values are subdirs and plain. With the first value, subdirectories are created for
each year and month. With the latter, the names of the log files contain the full date, and
there are no subdirectories. The default value is subdirs.

file format: html|plaintext Define the format of the log files: html stores in HTML format,
plaintext stores in plain text. The default value is html.

file permissions: {mode: Mode, group: Group} Define the permissions that must be
used when creating the log files: the number of the mode, and the numeric id of the
group that will own the files. The default value is {644, 33}.

outdir: Path This option sets the full path to the directory in which the HTML files should
be stored. Make sure the ejabberd daemon user has write access on that directory. The
default value is "www/muc".

spam prevention: true|false To prevent spam, the spam prevention option adds a special
attribute to links that prevent their indexation by search engines. The default value is
true, which mean that nofollow attributes will be added to user submitted links.

timezone: local|universal The time zone for the logs is configurable with this option. Al-
lowed values are local and universal. With the first value, the local time, as reported
to Erlang by the operating system, will be used. With the latter, GMT/UTC time will be
used. The default value is local.

top link: {URL: Text} With this option you can customize the link on the top right corner
of each log file. The default value is {"/", "Home"}.

Examples:

• In the first example any room owner can enable logging, and a custom CSS file will be used
(http://example.com/my.css). The names of the log files will contain the full date, and
there will be no subdirectories. The log files will be stored in /var/www/muclogs, and the
time zone will be GMT/UTC. Finally, the top link will be Jabber.ru.

access:

muc:

all: allow

modules:

...

mod_muc_log:

access_log: muc

cssfile: "http://example.com/my.css"

dirtype: plain

dirname: room_jid

outdir: "/var/www/muclogs"

timezone: universal

spam_prevention: true

top_link:

"http://www.jabber.ru/": "Jabber.ru"

...

84 3. Configuring ejabberd

• In the second example only admin1@example.org and admin2@example.net can enable
logging, and the embedded CSS file will be used. The names of the log files will only
contain the day (number), and there will be subdirectories for each year and month. The
log files will be stored in /var/www/muclogs, and the local time will be used. Finally, the
top link will be the default Home.

acl:

admin:

user:

- "admin1": "example.org"

- "admin2": "example.net"

access:

muc_log:

admin: allow

all: deny

modules:

...

mod_muc_log:

access_log: muc_log

cssfile: false

dirtype: subdirs

file_permissions:

mode: 644

group: 33

outdir: "/var/www/muclogs"

timezone: local

...

3.3.14 mod offline

This module implements offline message storage (XEP-0160101). This means that all messages
sent to an offline user will be stored on the server until that user comes online again. Thus it
is very similar to how email works. Note that ejabberdctl has a command to delete expired
messages (see section 4.1).

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

access max user messages: AccessName This option defines which access rule will be en-
forced to limit the maximum number of offline messages that a user can have (quota).
When a user has too many offline messages, any new messages that he receive are dis-
carded, and a resource-constraint error is returned to the sender. The default value is
max user offline messages. Then you can define an access rule with a syntax similar to
max user sessions (see 3.1.6).

101http://xmpp.org/extensions/xep-0160.html

http://xmpp.org/extensions/xep-0160.html

3.3 Modules Configuration 85

store empty body: true|false Whether or not to store messages with empty <body/> ele-
ment. The default value is true.

This example allows power users to have as much as 5000 offline messages, administrators up to
2000, and all the other users up to 100.

acl:

admin:

user:

- "admin1": "localhost"

- "admin2": "example.org"

poweruser:

user:

- "bob": "example.org"

- "jane": "example.org"

access:

max_user_offline_messages:

poweruser: 5000

admin: 2000

all: 100

modules:

...

mod_offline:

access_max_user_messages: max_user_offline_messages

...

3.3.15 mod ping

This module implements support for XMPP Ping (XEP-0199102) and periodic keepalives. When
this module is enabled ejabberd responds correctly to ping requests, as defined in the protocol.

Configuration options:

send pings: true|false If this option is set to true, the server sends pings to connected
clients that are not active in a given interval ping interval. This is useful to keep client
connections alive or checking availability. By default this option is disabled.

ping interval: Seconds How often to send pings to connected clients, if the previous option
is enabled. If a client connection does not send or receive any stanza in this interval, a ping
request is sent to the client. The default value is 60 seconds.

timeout action: none|kill What to do when a client does not answer to a server ping request
in less than 32 seconds. The default is to do nothing.

102http://xmpp.org/extensions/xep-0199.html

http://xmpp.org/extensions/xep-0199.html

86 3. Configuring ejabberd

This example enables Ping responses, configures the module to send pings to client connections
that are inactive for 4 minutes, and if a client does not answer to the ping in less than 32 seconds,
its connection is closed:

modules:

...

mod_ping:

send_pings: true

ping_interval: 240

timeout_action: kill

...

3.3.16 mod pres counter

This module detects flood/spam in presence subscription stanza traffic. If a user sends or receives
more of those stanzas in a time interval, the exceeding stanzas are silently dropped, and warning
is logged.

Configuration options:

count: StanzaNumber The number of subscription presence stanzas (subscribe, unsubscribe,
subscribed, unsubscribed) allowed for any direction (input or output) per time interval.
Please note that two users subscribing to each other usually generate 4 stanzas, so the
recommended value is 4 or more. The default value is: 5.

interval: Seconds The time interval defined in seconds. The default value is 60.

This example enables the module, and allows up to 5 presence subscription stanzas to be sent
or received by the users in 60 seconds:

modules:

...

mod_pres_counter:

count: 5

interval: 60

...

3.3.17 mod privacy

This module implements Blocking Communication (also known as Privacy Rules) as defined in
section 10 from XMPP IM. If end users have support for it in their XMPP client, they will be
able to:

• Retrieving one’s privacy lists.

• Adding, removing, and editing one’s privacy lists.

3.3 Modules Configuration 87

• Setting, changing, or declining active lists.

• Setting, changing, or declining the default list (i.e., the list that is active by
default).

• Allowing or blocking messages based on JID, group, or subscription type (or
globally).

• Allowing or blocking inbound presence notifications based on JID, group, or
subscription type (or globally).

• Allowing or blocking outbound presence notifications based on JID, group, or
subscription type (or globally).

• Allowing or blocking IQ stanzas based on JID, group, or subscription type (or
globally).

• Allowing or blocking all communications based on JID, group, or subscription
type (or globally).

(from http://xmpp.org/rfcs/rfc3921.html#privacy)

Options:

iqdisc: Discipline This specifies the processing discipline for Blocking Communication (jabber:iq:privacy)
IQ queries (see section 3.3.2).

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

3.3.18 mod private

This module adds support for Private XML Storage (XEP-0049103):

Using this method, XMPP entities can store private data on the server and retrieve
it whenever necessary. The data stored might be anything, as long as it is valid
XML. One typical usage for this namespace is the server-side storage of client-specific
preferences; another is Bookmark Storage (XEP-0048104).

Options:

iqdisc: Discipline This specifies the processing discipline for Private XML Storage (jabber:iq:private)
IQ queries (see section 3.3.2).

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

103http://xmpp.org/extensions/xep-0049.html
104http://xmpp.org/extensions/xep-0048.html

http://xmpp.org/rfcs/rfc3921.html#privacy
http://xmpp.org/extensions/xep-0049.html
http://xmpp.org/extensions/xep-0048.html

88 3. Configuring ejabberd

3.3.19 mod proxy65

This module implements SOCKS5 Bytestreams (XEP-0065105). It allows ejabberd to act as a
file transfer proxy between two XMPP clients.

Options:

host: HostName This option defines the Jabber ID of the service. If the host option is not
specified, the Jabber ID will be the hostname of the virtual host with the prefix ‘proxy.’.
The keyword ”@HOST@” is replaced at start time with the real virtual host name.

name: Text Defines Service Discovery name of the service. Default is "SOCKS5 Bytestreams".

ip: IP This option specifies which network interface to listen for. Default is an IP address of
the service’s DNS name, or, if fails, "127.0.0.1".

port: Number This option defines port to listen for incoming connections. Default is 7777.

hostname: HostName Defines a hostname advertised by the service when establishing a session
with clients. This is useful when you run the service behind a NAT. The default is the
value of ip option. Examples: "proxy.mydomain.org", "200.150.100.50". Note that
not all clients understand domain names in stream negotiation, so you should think twice
before setting domain name in this option.

auth type: anonymous|plain SOCKS5 authentication type. Possible values are anonymous

and plain. Default is anonymous.

access: AccessName Defines ACL for file transfer initiators. Default is all.

max connections: Number Maximum number of active connections per file transfer initiator.
No limit by default.

shaper: none|ShaperName This option defines shaper for the file transfer peers. Shaper with
the maximum bandwidth will be selected. Default is none.

Examples:

• The simpliest configuration of the module:

modules:

...

mod_proxy65: {}

...

• More complicated configuration.

105http://xmpp.org/extensions/xep-0065.html

http://xmpp.org/extensions/xep-0065.html

3.3 Modules Configuration 89

acl:

admin:

user:

- "admin": "example.org"

proxy_users:

server:

- "example.org"

access:

proxy65_access:

proxy_users: allow

all: deny

proxy65_shaper:

admin: none

proxy_users: proxyrate

shaper:

proxyrate: 10240

modules:

...

mod_proxy65:

host: "proxy1.example.org"

name: "File Transfer Proxy"

ip: "200.150.100.1"

port: 7778

max_connections: 5

access: proxy65_access

shaper: proxy65_shaper

...

3.3.20 mod pubsub

This module offers a Publish-Subscribe Service (XEP-0060106). The functionality in mod pubsub

can be extended using plugins. The plugin that implements PEP (Personal Eventing via Pubsub)
(XEP-0163107) is enabled in the default ejabberd configuration file, and it requires mod caps.

Options:

host: HostName This option defines the Jabber ID of the service. If the host option is not
specified, the Jabber ID will be the hostname of the virtual host with the prefix ‘pubsub.’.
The keyword ”@HOST@” is replaced at start time with the real virtual host name. If
you use mod pubsub odbc, please ensure the prefix contains only one dot, for example
‘pubsub.’, or ‘publish.’,.

106http://xmpp.org/extensions/xep-0060.html
107http://xmpp.org/extensions/xep-0163.html

http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0163.html

90 3. Configuring ejabberd

access createnode: AccessName This option restricts which users are allowed to create pub-
sub nodes using ACL and ACCESS. By default any account in the local ejabberd server is
allowed to create pubsub nodes.

max items node: MaxItems Define the maximum number of items that can be stored in a
node. Default value is 10.

plugins: [Plugin, ...] To specify which pubsub node plugins to use. The first one in
the list is used by default. If this option is not defined, the default plugins list is:
["flat"]. PubSub clients can define which plugin to use when creating a node: add
type=’plugin-name’ attribute to the create stanza element.

nodetree: Nodetree To specify which nodetree to use. If not defined, the default pubsub
nodetree is used: ”tree”. Only one nodetree can be used per host, and is shared by all
node plugins.

The ”virtual” nodetree does not store nodes on database. This saves resources on systems
with tons of nodes. If using the ”virtual” nodetree, you can only enable those node plugins:
[”flat”,”pep”] or [”flat”]; any other plugins configuration will not work. Also, all nodes will
have the defaut configuration, and this can not be changed. Using ”virtual” nodetree
requires to start from a clean database, it will not work if you used the default ”tree”
nodetree before.

The ”dag” nodetree provides experimental support for PubSub Collection Nodes (XEP-
0248108). In that case you should also add ”dag” node plugin as default, for example:
plugins: ["dag","flat","hometree","pep"]

ignore pep from offline: false|true To specify whether or not we should get last pub-
lished PEP items from users in our roster which are offline when we connect. Value is true
or false. If not defined, pubsub assumes true so we only get last items of online contacts.

last item cache: false|true To specify whether or not pubsub should cache last items.
Value is true or false. If not defined, pubsub do not cache last items. On systems with not
so many nodes, caching last items speeds up pubsub and allows to raise user connection
rate. The cost is memory usage, as every item is stored in memory.

pep mapping: {Key, Value} This allow to define a Key-Value list to choose defined node
plugins on given PEP namespace. The following example will use node tune instead of
node pep for every PEP node with tune namespace:

modules:

...

mod_pubsub:

pep_mapping:

"http://jabber.org/protocol/tune": "tune"

...

Example of configuration that uses flat nodes as default, and allows use of flat, nodetree and pep
nodes:

108http://xmpp.org/extensions/xep-0248.html

http://xmpp.org/extensions/xep-0248.html

3.3 Modules Configuration 91

modules:

...

mod_pubsub:

access_createnode: pubsub_createnode

plugins:

- "flat"

- "hometree"

- "pep"

...

Using ODBC database requires using mod pubsub odbc without option changes. Only flat,
hometree and pep plugins supports ODBC. The following example shows previous configuration
with ODBC usage:

modules:

...

mod_pubsub_odbc:

access_createnode: pubsub_createnode

plugins:

- "flat"

- "hometree"

- "pep"

...

3.3.21 mod register

This module adds support for In-Band Registration (XEP-0077109). This protocol enables end
users to use a XMPP client to:

• Register a new account on the server.

• Change the password from an existing account on the server.

• Delete an existing account on the server.

Options:

access: AccessName Specify rules to restrict what usernames can be registered and unregis-
tered. If a rule returns ‘deny’ on the requested username, registration and unregistration
of that user name is denied. There are no restrictions by default.

access from: AccessName By default, ejabberd doesn’t allow to register new accounts from
s2s or existing c2s sessions. You can change it by defining access rule in this option. Use
with care: allowing registration from s2s leads to uncontrolled massive accounts creation
by rogue users.

109http://xmpp.org/extensions/xep-0077.html

http://xmpp.org/extensions/xep-0077.html

92 3. Configuring ejabberd

captcha protected: false|true Protect registrations with CAPTCHA (see section 3.1.9).
The default is false.

ip access: AccessName Define rules to allow or deny account registration depending on the
IP address of the XMPP client. The AccessName should be of type ip. The default value
is all.

password strength: Entropy This option sets the minimum informational entropy for pass-
words. The value Entropy is a number of bits of entropy. The recommended minimum is
32 bits. The default is 0, i.e. no checks are performed.

welcome message: {subject: Subject, body: Body} Set a welcome message that is sent
to each newly registered account. The first string is the subject, and the second string is
the message body.

registration watchers: [JID, ...] This option defines a list of JIDs which will be notified
each time a new account is registered.

iqdisc: Discipline This specifies the processing discipline for In-Band Registration (jabber:iq:register)
IQ queries (see section 3.3.2).

This module reads also another option defined globally for the server: registration timeout:

Timeout. This option limits the frequency of registration from a given IP or username. So, a
user that tries to register a new account from the same IP address or JID during this number
of seconds after his previous registration will receive an error resource-constraint with the
explanation: “Users are not allowed to register accounts so quickly”. The timeout is expressed
in seconds, and it must be an integer. To disable this limitation, instead of an integer put a word
like: infinity. Default value: 600 seconds.

Examples:

• Next example prohibits the registration of too short account names, and allows to create
accounts only to clients of the local network:

acl:

loopback:

ip:

- "127.0.0.0/8"

- "::"

shortname:

user_glob:

- "?"

- "??"

The same using regexp:

##user_regexp: "^..?$"

access:

mynetworks:

loopback: allow

all: deny

register:

3.3 Modules Configuration 93

shortname: deny

all: allow

modules:

mod_register:

ip_access: mynetworks

access: register

• This configuration prohibits usage of In-Band Registration to create or delete accounts,
but allows existing accounts to change the password:

access:

register:

all: deny

modules:

...

mod_register:

access: register

...

• This configuration disables all In-Band Registration functionality: create, delete accounts
and change password:

modules:

...

mod_register:

access: register

...

• Define the welcome message and two registration watchers. Also define a registration
timeout of one hour:

registration_timeout: 3600

modules:

...

mod_register:

welcome_message:

subject: "Welcome!"

body: |-

Hi.

Welcome to this Jabber server.

Check http://www.jabber.org

Bye

registration_watchers:

- "admin1@example.org"

- "boss@example.net"

...

94 3. Configuring ejabberd

3.3.22 mod register web

This module provides a web page where people can:

• Register a new account on the server.

• Change the password from an existing account on the server.

• Delete an existing account on the server.

This module supports CAPTCHA image to register a new account. To enable this feature,
configure the options captcha cmd and captcha host.

Options:

registration watchers: [JID, ...] This option defines a list of JIDs which will be notified
each time a new account is registered.

This example configuration shows how to enable the module and the web handler:

hosts:

- "localhost"

- "example.org"

- "example.com"

listen:

...

-

port: 5281

module: ejabberd_http

register: true

certfile: "/etc/ejabberd/certificate.pem"

tls: true

...

modules:

...

mod_register_web: {}

...

For example, the users of the host example.org can visit the page: https://example.org:5281/register/
It is important to include the last / character in the URL, otherwise the subpages URL will be
incorrect.

3.3 Modules Configuration 95

3.3.23 mod roster

This module implements roster management as defined in RFC 3921: XMPP IM110. It also
supports Roster Versioning (XEP-0237111).

Options:

iqdisc: Discipline This specifies the processing discipline for Roster Management (jabber:iq:roster)
IQ queries (see section 3.3.2).

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

versioning: false|true Enables Roster Versioning. This option is disabled by default.

store current id: false|true If this option is enabled, the current version number is stored
on the database. If disabled, the version number is calculated on the fly each time. En-
abling this option reduces the load for both ejabberd and the database. This option does
not affect the client in any way. This option is only useful if Roster Versioning is en-
abled. This option is disabled by default. Important: if you use mod shared roster or
mod shared roster ldap, you must disable this option.

access This option can be configured to specify rules to restrict roster management. If a rule
returns ‘deny’ on the requested user name, that user cannot modify his personal roster: not
add/remove/modify contacts, or subscribe/unsubscribe presence. By default there aren’t
restrictions.

managers List of remote entities that can manage users rosters using Remote Roster Man-
agement (XEP-0321112). The protocol sections implemented are: 4.2. The remote

entity requests current user’s roster. 4.3. The user updates roster. 4.4.

The remote entity updates the user’s roster. A remote entity cab only get or mod-
ify roster items that have the same domain as the entity. Default value is: [].

This example configuration enables Roster Versioning with storage of current id. The ICQ and
MSN transports can get ICQ and MSN contacts, add them, or remove them for any local account:

modules:

...

mod_roster:

versioning: true

store_current_id: true

managers:

- "icq.example.org"

- "msn.example.org"

...

110http://xmpp.org/rfcs/rfc3921.html#roster
111http://xmpp.org/extensions/xep-0237.html
112http://xmpp.org/extensions/xep-0321.html

http://xmpp.org/rfcs/rfc3921.html#roster
http://xmpp.org/extensions/xep-0237.html
http://xmpp.org/extensions/xep-0321.html

96 3. Configuring ejabberd

With this example configuration, only admins can manage their rosters; everybody else cannot
modify the roster:

acl:

admin:

user:

- "sarah": "example.org"

access:

roster:

admin: allow

modules:

...

mod_roster:

access: roster

...

3.3.24 mod service log

This module adds support for logging end user packets via a XMPP message auditing service
such as Bandersnatch113. All user packets are encapsulated in a <route/> element and sent to
the specified service(s).

Options:

loggers: [Names, ...] With this option a (list of) service(s) that will receive the packets
can be specified.

Examples:

• To log all end user packets to the Bandersnatch service running on bandersnatch.example.com:

modules:

...

mod_service_log:

loggers: ["bandersnatch.example.com"]

...

• To log all end user packets to the Bandersnatch service running on bandersnatch.example.com

and the backup service on bandersnatch.example.org:

modules:

...

mod_service_log:

loggers:

- "bandersnatch.example.com"

- "bandersnatch.example.org"

...
113http://www.funkypenguin.info/project/bandersnatch/

http://www.funkypenguin.info/project/bandersnatch/

3.3 Modules Configuration 97

3.3.25 mod shared roster

This module enables you to create shared roster groups. This means that you can create groups
of people that can see members from (other) groups in their rosters. The big advantages of this
feature are that end users do not need to manually add all users to their rosters, and that they
cannot permanently delete users from the shared roster groups. A shared roster group can have
members from any XMPP server, but the presence will only be available from and to members
of the same virtual host where the group is created.

Options:

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

Shared roster groups can be edited only via the Web Admin. Each group has a unique identifi-
cation and the following parameters:

Name The name of the group, which will be displayed in the roster.

Description The description of the group. This parameter does not affect anything.

Members A list of JIDs of group members, entered one per line in the Web Admin. The special
member directive @all@ represents all the registered users in the virtual host; which is
only recommended for a small server with just a few hundred users. The special member
directive @online@ represents the online users in the virtual host.

Displayed groups A list of groups that will be in the rosters of this group’s members. A group
of other vhost can be identified with groupid@vhost

Examples:

• Take the case of a computer club that wants all its members seeing each other in their
rosters. To achieve this, they need to create a shared roster group similar to next table:

Identification Group ‘club members’
Name Club Members
Description Members from the computer club

Members
member1@example.org

member2@example.org

member3@example.org

Displayed groups club members

• In another case we have a company which has three divisions: Management, Marketing
and Sales. All group members should see all other members in their rosters. Additionally,
all managers should have all marketing and sales people in their roster. Simultaneously,
all marketeers and the whole sales team should see all managers. This scenario can be
achieved by creating shared roster groups as shown in the following table:

98 3. Configuring ejabberd

Identification Group ‘management’ Group ‘marketing’ Group ‘sales’
Name Management Marketing Sales
Description

Members

manager1@example.org

manager2@example.org

manager3@example.org

manager4@example.org

marketeer1@example.org

marketeer2@example.org

marketeer3@example.org

marketeer4@example.org

saleswoman1@example.org

salesman1@example.org

saleswoman2@example.org

salesman2@example.org

Displayed groups
management

marketing

sales

management

marketing

management

sales

3.3.26 mod shared roster ldap

This module lets the server administrator automatically populate users’ rosters (contact lists)
with entries based on users and groups defined in an LDAP-based directory.

Configuration parameters

The module accepts the following configuration parameters. Some of them, if unspecified, default
to the values specified for the top level of configuration. This lets you avoid specifying, for
example, the bind password, in multiple places.

Filters These parameters specify LDAP filters used to query for shared roster information. All
of them are run against the ldap_base.

ldap rfilter So called “Roster Filter”. Used to find names of all “shared roster” groups. See
also the ldap_groupattr parameter. If unspecified, defaults to the top-level parameter of
the same name. You must specify it in some place in the configuration, there is no default.

ldap ufilter “User Filter” – used for retrieving the human-readable name of roster entries
(usually full names of people in the roster). See also the parameters ldap_userdesc and
ldap_useruid. If unspecified, defaults to the top-level parameter of the same name. If
that one also is unspecified, then the filter is assembled from values of other parameters
as follows ([ldap_SOMETHING] is used to mean “the value of the configuration parameter
ldap SOMETHING”):

(&(&([ldap_memberattr]=[ldap_memberattr_format])([ldap_groupattr]=%g))[ldap_filter])

Subsequently %u and %g are replaced with a *. This means that given the defaults, the
filter sent to the LDAP server is would be (&(memberUid=*)(cn=*)). If however the
ldap memberattr format is something like uid=%u,ou=People,o=org, then the filter will
be (&(memberUid=uid=*,ou=People,o=org)(cn=*)).

3.3 Modules Configuration 99

ldap gfilter “Group Filter” – used when retrieving human-readable name (a.k.a. “Display
Name”) and the members of a group. See also the parameters ldap_groupattr, ldap_groupdesc
and ldap_memberattr. If unspecified, defaults to the top-level parameter of the same name.
If that one also is unspecified, then the filter is constructed exactly in the same way as
User Filter.

ldap filter Additional filter which is AND-ed together with User Filter and Group Filter.
If unspecified, defaults to the top-level parameter of the same name. If that one is also
unspecified, then no additional filter is merged with the other filters.

Note that you will probably need to manually define the User and Group Filters (since the
auto-assembled ones will not work) if:

• your ldap memberattr format is anything other than a simple %u,

• and the attribute specified with ldap memberattr does not support substring matches.

An example where it is the case is OpenLDAP and (unique)MemberName attribute from the
groupOf(Unique)Names objectClass. A symptom of this problem is that you will see messages
such as the following in your slapd.log:

get_filter: unknown filter type=130

filter="(&(?=undefined)(?=undefined)(something=else))"

Attributes

These parameters specify the names of the attributes which hold interesting data in the entries
returned by running filters specified in section 3.3.26.

ldap groupattr The name of the attribute that holds the group name, and that is used to
differentiate between them. Retrieved from results of the “Roster Filter” and “Group
Filter”. Defaults to cn.

ldap groupdesc The name of the attribute which holds the human-readable group name in the
objects you use to represent groups. Retrieved from results of the “Group Filter”. Defaults
to whatever ldap groupattr is set.

ldap memberattr The name of the attribute which holds the IDs of the members of a group.
Retrieved from results of the “Group Filter”. Defaults to memberUid.

The name of the attribute differs depending on the objectClass you use for your group
objects, for example:

posixGroup → memberUid

groupOfNames → member

groupOfUniqueNames → uniqueMember

100 3. Configuring ejabberd

ldap userdesc The name of the attribute which holds the human-readable user name. Retrieved
from results of the “User Filter”. Defaults to cn.

ldap useruid The name of the attribute which holds the ID of a roster item. Value of this at-
tribute in the roster item objects needs to match the ID retrieved from the ldap memberattr

attribute of a group object. Retrieved from results of the “User Filter”. Defaults to cn.

Control parameters

These paramters control the behaviour of the module.

ldap memberattr format A globbing format for extracting user ID from the value of the at-
tribute named by ldap_memberattr. Defaults to %u, which means that the whole value is
the member ID. If you change it to something different, you may also need to specify the
User and Group Filters manually — see section 3.3.26.

ldap memberattr format re A regex for extracting user ID from the value of the attribute
named by ldap_memberattr.

An example value "CN=(\\w*),(OU=.*,)*DC=company,DC=com" works for user IDs such
as the following:

• CN=Romeo,OU=Montague,DC=company,DC=com

• CN=Abram,OU=Servants,OU=Montague,DC=company,DC=com

• CN=Juliet,OU=Capulet,DC=company,DC=com

• CN=Peter,OU=Servants,OU=Capulet,DC=company,DC=com

In case:

• the option is unset,

• or the re module in unavailable in the current Erlang environment,

• or the regular expression does not compile,

then instead of a regular expression, a simple format specified by ldap memberattr format

is used. Also, in the last two cases an error message is logged during the module initializa-
tion.

Also, note that in all cases ldap memberattr format (and not the regex version) is used
for constructing the default “User/Group Filter” — see section 3.3.26.

ldap auth check Whether the module should check (via the ejabberd authentication subsys-
tem) for existence of each user in the shared LDAP roster. See section 3.3.26 form more
information. Set to off if you want to disable the check. Defaults to on.

ldap user cache validity Number of seconds for which the cache for roster item full names is
considered fresh after retrieval. 300 by default. See section 3.3.26 on how it is used during
roster retrieval.

ldap group cache validity Number of seconds for which the cache for group membership is
considered fresh after retrieval. 300 by default. See section 3.3.26 on how it is used during
roster retrieval.

3.3 Modules Configuration 101

Connection parameters

The module also accepts the connection parameters, all of which default to the top-level param-
eter of the same name, if unspecified. See 3.2.2 for more information about them.

Retrieving the roster

When the module is called to retrieve the shared roster for a user, the following algorithm is
used:

1. A list of names of groups to display is created: the Roster Filter is run against the base
DN, retrieving the values of the attribute named by ldap groupattr.

2. Unless the group cache is fresh (see the ldap group cache validity option), it is refreshed:

(a) Information for all groups is retrieved using a single query: the Group Filter is run
against the Base DN, retrieving the values of attributes named by ldap groupattr

(group ID), ldap groupdesc (group “Display Name”) and ldap memberattr (IDs of
group members).

(b) group “Display Name”, read from the attribute named by ldap groupdesc, is stored
in the cache for the given group

(c) the following processing takes place for each retrieved value of attribute named by
ldap memberattr:

i. the user ID part of it is extracted using ldap memberattr format(re),

ii. then (unless ldap auth check is set to off) for each found user ID, the module
checks (using the ejabberd authentication subsystem) whether such user exists
in the given virtual host. It is skipped if the check is enabled and fails.
This step is here for historical reasons. If you have a tidy DIT and properly
defined “Roster Filter” and “Group Filter”, it is safe to disable it by setting
ldap auth check to off — it will speed up the roster retrieval.

iii. the user ID is stored in the list of members in the cache for the given group

3. For each item (group name) in the list of groups retrieved in step 1:

(a) the display name of a shared roster group is retrieved from the group cache

(b) for each IDs of users which belong to the group, retrieved from the group cache:

i. the ID is skipped if it’s the same as the one for which we are retrieving the roster.
This is so that the user does not have himself in the roster.

ii. the display name of a shared roster user is retrieved:

A. first, unless the user name cache is fresh (see the ldap user cache validity

option), it is refreshed by running the User Filter, against the Base DN, re-
trieving the values of attributes named by ldap useruid and ldap userdesc.

B. then, the display name for the given user ID is retrieved from the user name
cache.

102 3. Configuring ejabberd

Configuration examples

Since there are many possible DIT114 layouts, it will probably be easiest to understand how to
configure the module by looking at an example for a given DIT (or one resembling it).

Flat DIT This seems to be the kind of DIT for which this module was initially designed.
Basically there are just user objects, and group membership is stored in an attribute individually
for each user. For example in a layout shown in figure 3.1, the group of each user is stored in its
ou attribute.

Figure 3.1: Flat DIT graph

Such layout has a few downsides, including:

• information duplication – the group name is repeated in every member object

• difficult group management – information about group members is not centralized, but
distributed between member objects

• inefficiency – the list of unique group names has to be computed by iterating over all users

114http://en.wikipedia.org/wiki/Directory Information Tree

http://en.wikipedia.org/wiki/Directory_Information_Tree

3.3 Modules Configuration 103

This however seems to be a common DIT layout, so the module keeps supporting it. You can
use the following configuration. . .

modules:

...

mod_shared_roster_ldap:

ldap_base: "ou=flat,dc=nodomain"

ldap_rfilter: "(objectClass=inetOrgPerson)"

ldap_groupattr: "ou"

ldap_memberattr: "cn"

ldap_filter: "(objectClass=inetOrgPerson)"

ldap_userdesc: "displayName"

...

. . . to be provided with a roster as shown in figure 3.2 upon connecting as user czesio.

Figure 3.2: Roster from flat DIT

Deep DIT This type of DIT contains distinctly typed objects for users and groups – see
figure 3.3. They are shown separated into different subtrees, but it’s not a requirement.

If you use the following example module configuration with it:

modules:

...

mod_shared_roster_ldap:

ldap_base: "ou=deep,dc=nodomain"

ldap_rfilter: "(objectClass=groupOfUniqueNames)"

ldap_filter: ""

ldap_gfilter: "(&(objectClass=groupOfUniqueNames)(cn=%g))"

ldap_groupdesc: "description"

ldap_memberattr: "uniqueMember"

ldap_memberattr_format: "cn=%u,ou=people,ou=deep,dc=nodomain"

104 3. Configuring ejabberd

Figure 3.3: Example “deep” DIT graph

3.3 Modules Configuration 105

ldap_ufilter: "(&(objectClass=inetOrgPerson)(cn=%u))"

ldap_userdesc: "displayName"

...

. . . and connect as user czesio, then ejabberd will provide you with the roster shown in figure 3.4.

Figure 3.4: Example roster from “deep” DIT

3.3.27 mod sic

This module adds support for Server IP Check (XEP-0279115). This protocol enables a client to
discover its external IP address.

Options:

iqdisc: Discipline This specifies the processing discipline for urn:xmpp:sic:0 IQ queries
(see section 3.3.2).

3.3.28 mod sip

This module adds SIP proxy/registrar support for the corresponding virtual host. Note that it
is not enough to just load this module only. You should also configure listeners and DNS records
properly. See section 3.1.11 for the full explanation.

Example configuration:

modules:

...

mod_sip: {}

...

115http://xmpp.org/extensions/xep-0279.html

http://xmpp.org/extensions/xep-0279.html

106 3. Configuring ejabberd

Options:

record route: SIP URI When the option always record route is set or when SIP outbound
is utilized RFC 5626116, ejabberd inserts Record-Route header field with this SIP URI

into a SIP message. The default is SIP URI constructed from the virtual host.

always record route: true|false Always insert Record-Route header into SIP messages.
This approach allows to bypass NATs/firewalls a bit more easily. The default is true.

routes: [SIP URI] You can set a list of SIP URIs of routes pointing to this proxy server. The
default is a list of a SIP URI constructed from the virtual host.

flow timeout udp: Seconds For SIP outbound UDP connections set a keep-alive timer to
Seconds. The default is 29.

flow timeout tcp: Seconds For SIP outbound TCP connections set a keep-alive timer to
Seconds. The default is 120.

via: [{type: Type, host: Host, port: Port}] With this option for every Type you
can specify Host and Port to set in Via header of outgoing SIP messages, where Type can
be udp, tcp or tls. Host is a string and Port is a non negative integer. This is useful if
you’re running your server in a non-standard network topology.

Example complex configuration:

modules:

...

mod_sip:

always_record_route: false

record_route: sip:example.com;lr

routes:

- sip:example.com;lr

- sip:sip.example.com;lr

flow_timeout_udp: 30

flow_timeout_tcp: 130

via:

-

type: tls

host: "sip-tls.example.com"

port: 5061

-

type: tcp

host: "sip-tcp.example.com"

port: 5060

-

type: udp

host: "sip-udp.example.com"

port: 5060

...

116http://tools.ietf.org/html/rfc5626

http://tools.ietf.org/html/rfc5626

3.3 Modules Configuration 107

3.3.29 mod stats

This module adds support for Statistics Gathering (XEP-0039117). This protocol allows you to
retrieve next statistics from your ejabberd deployment:

• Total number of registered users on the current virtual host (users/total).

• Total number of registered users on all virtual hosts (users/all-hosts/total).

• Total number of online users on the current virtual host (users/online).

• Total number of online users on all virtual hosts (users/all-hosts/online).

Options:

iqdisc: Discipline This specifies the processing discipline for Statistics Gathering (http://jabber.org/protocol/stats)
IQ queries (see section 3.3.2).

As there are only a small amount of clients (for example Tkabber118) and software libraries with
support for this XEP, a few examples are given of the XML you need to send in order to get the
statistics. Here they are:

• You can request the number of online users on the current virtual host (example.org) by
sending:

<iq to=’example.org’ type=’get’>

<query xmlns=’http://jabber.org/protocol/stats’>

<stat name=’users/online’/>

</query>

</iq>

• You can request the total number of registered users on all virtual hosts by sending:

<iq to=’example.org’ type=’get’>

<query xmlns=’http://jabber.org/protocol/stats’>

<stat name=’users/all-hosts/total’/>

</query>

</iq>

3.3.30 mod time

This module features support for Entity Time (XEP-0202119). By using this XEP, you are able
to discover the time at another entity’s location.

Options:

iqdisc: Discipline This specifies the processing discipline for Entity Time (jabber:iq:time)
IQ queries (see section 3.3.2).

117http://xmpp.org/extensions/xep-0039.html
118http://tkabber.jabber.ru/
119http://xmpp.org/extensions/xep-0202.html

http://xmpp.org/extensions/xep-0039.html
http://tkabber.jabber.ru/
http://xmpp.org/extensions/xep-0202.html

108 3. Configuring ejabberd

3.3.31 mod vcard

This module allows end users to store and retrieve their vCard, and to retrieve other users vCards,
as defined in vcard-temp (XEP-0054120). The module also implements an uncomplicated Jabber
User Directory based on the vCards of these users. Moreover, it enables the server to send its
vCard when queried.

Options:

host: HostName This option defines the Jabber ID of the service. If the host option is not
specified, the Jabber ID will be the hostname of the virtual host with the prefix ‘vjud.’.
The keyword ”@HOST@” is replaced at start time with the real virtual host name.

iqdisc: Discipline This specifies the processing discipline for vcard-temp IQ queries (see
section 3.3.2).

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

search: true|false This option specifies whether the search functionality is enabled or not
If disabled, the option host will be ignored and the Jabber User Directory service will not
appear in the Service Discovery item list. The default value is true.

matches: infinity|Number With this option, the number of reported search results can be
limited. If the option’s value is set to infinity, all search results are reported. The default
value is 30.

allow return all: false|true This option enables you to specify if search operations with
empty input fields should return all users who added some information to their vCard. The
default value is false.

search all hosts, true|false If this option is set to true, search operations will apply to
all virtual hosts. Otherwise only the current host will be searched. The default value is
true. This option is available in mod vcardwhen using Mnesia, but not when using ODBC
storage.

Examples:

• In this first situation, search results are limited to twenty items, every user who added
information to their vCard will be listed when people do an empty search, and only users
from the current host will be returned:

modules:

...

mod_vcard:

search: true

matches: 20

allow_return_all: true

search_all_hosts: false

...
120http://xmpp.org/extensions/xep-0054.html

http://xmpp.org/extensions/xep-0054.html

3.3 Modules Configuration 109

• The second situation differs in a way that search results are not limited, and that all virtual
hosts will be searched instead of only the current one:

modules:

...

mod_vcard:

search: true

matches: infinity

allow_return_all: true

...

3.3.32 mod vcard ldap

ejabberd can map LDAP attributes to vCard fields. This behaviour is implemented in the
mod vcard ldap module. This module does not depend on the authentication method (see 3.2.2).

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not
possible to create accounts or edit vCard that is stored in LDAP. However, it is possible to
change passwords if mod register module is enabled and LDAP server supports RFC 3062121.

The mod vcard ldap module has its own optional parameters. The first group of parameters
has the same meaning as the top-level LDAP parameters to set the authentication method:
ldap servers, ldap port, ldap rootdn, ldap password, ldap base, ldap uids, ldap deref aliases

and ldap filter. See section 3.2.2 for detailed information about these options. If one of these
options is not set, ejabberd will look for the top-level option with the same name.

The second group of parameters consists of the following mod vcard ldap-specific options:

host: HostName This option defines the Jabber ID of the service. If the host option is not
specified, the Jabber ID will be the hostname of the virtual host with the prefix ‘vjud.’.
The keyword ”@HOST@” is replaced at start time with the real virtual host name.

iqdisc: Discipline This specifies the processing discipline for vcard-temp IQ queries (see
section 3.3.2).

{search, true|false} This option specifies whether the search functionality is enabled (value:
true) or disabled (value: false). If disabled, the option host will be ignored and the
Jabber User Directory service will not appear in the Service Discovery item list. The
default value is true.

{matches, infinity|Number} With this option, the number of reported search results can be
limited. If the option’s value is set to infinity, all search results are reported. The default
value is 30.

{ldap vcard map, [{Name, Pattern, LDAPattributes}, ...]} With this option you can
set the table that maps LDAP attributes to vCard fields. Name is the type name of the
vCard as defined in RFC 2426122. Pattern is a string which contains pattern variables

121http://tools.ietf.org/html/rfc3062
122http://tools.ietf.org/html/rfc2426

http://tools.ietf.org/html/rfc3062
http://tools.ietf.org/html/rfc2426

110 3. Configuring ejabberd

"%u", "%d" or "%s". LDAPattributes is the list containing LDAP attributes. The pat-
tern variables "%s" will be sequentially replaced with the values of LDAP attributes from
List of LDAP attributes, "%u" will be replaced with the user part of a JID, and "%d"

will be replaced with the domain part of a JID. The default is:

[{"NICKNAME", "%u", []},

{"FN", "%s", ["displayName"]},

{"LAST", "%s", ["sn"]},

{"FIRST", "%s", ["givenName"]},

{"MIDDLE", "%s", ["initials"]},

{"ORGNAME", "%s", ["o"]},

{"ORGUNIT", "%s", ["ou"]},

{"CTRY", "%s", ["c"]},

{"LOCALITY", "%s", ["l"]},

{"STREET", "%s", ["street"]},

{"REGION", "%s", ["st"]},

{"PCODE", "%s", ["postalCode"]},

{"TITLE", "%s", ["title"]},

{"URL", "%s", ["labeleduri"]},

{"DESC", "%s", ["description"]},

{"TEL", "%s", ["telephoneNumber"]},

{"EMAIL", "%s", ["mail"]},

{"BDAY", "%s", ["birthDay"]},

{"ROLE", "%s", ["employeeType"]},

{"PHOTO", "%s", ["jpegPhoto"]}]

{ldap search fields, [{Name, Attribute}, ...]} This option defines the search form and
the LDAP attributes to search within. Name is the name of a search form field which will
be automatically translated by using the translation files (see msgs/*.msg for available
words). Attribute is the LDAP attribute or the pattern "%u". The default is:

[{"User", "%u"},

{"Full Name", "displayName"},

{"Given Name", "givenName"},

{"Middle Name", "initials"},

{"Family Name", "sn"},

{"Nickname", "%u"},

{"Birthday", "birthDay"},

{"Country", "c"},

{"City", "l"},

{"Email", "mail"},

{"Organization Name", "o"},

{"Organization Unit", "ou"}]

{ldap search reported, [{SearchField, VcardField}, ...]} This option defines which
search fields should be reported. SearchField is the name of a search form field which
will be automatically translated by using the translation files (see msgs/*.msg for available
words). VcardField is the vCard field name defined in the ldap vcard map option. The
default is:

3.3 Modules Configuration 111

[{"Full Name", "FN"},

{"Given Name", "FIRST"},

{"Middle Name", "MIDDLE"},

{"Family Name", "LAST"},

{"Nickname", "NICKNAME"},

{"Birthday", "BDAY"},

{"Country", "CTRY"},

{"City", "LOCALITY"},

{"Email", "EMAIL"},

{"Organization Name", "ORGNAME"},

{"Organization Unit", "ORGUNIT"}]

Examples:

• Let’s say ldap.example.org is the name of our LDAP server. We have users with their
passwords in "ou=Users,dc=example,dc=org" directory. Also we have addressbook, which
contains users emails and their additional infos in "ou=AddressBook,dc=example,dc=org"

directory. Corresponding authentication section should looks like this:

%% authentication method

{auth_method, ldap}.

%% DNS name of our LDAP server

{ldap_servers, ["ldap.example.org"]}.

%% We want to authorize users from ’shadowAccount’ object class only

{ldap_filter, "(objectClass=shadowAccount)"}.

Now we want to use users LDAP-info as their vCards. We have four attributes defined in
our LDAP schema: "mail" — email address, "givenName" — first name, "sn" — second
name, "birthDay" — birthday. Also we want users to search each other. Let’s see how we
can set it up:

{modules,

...

{mod_vcard_ldap,

[

%% We use the same server and port, but want to bind anonymously because

%% our LDAP server accepts anonymous requests to

%% "ou=AddressBook,dc=example,dc=org" subtree.

{ldap_rootdn, ""},

{ldap_password, ""},

%% define the addressbook’s base

{ldap_base, "ou=AddressBook,dc=example,dc=org"},

%% uidattr: user’s part of JID is located in the "mail" attribute

%% uidattr_format: common format for our emails

{ldap_uids, [{"mail","%u@mail.example.org"}]},

%% We have to define empty filter here, because entries in addressbook does not

%% belong to shadowAccount object class

{ldap_filter, ""},

112 3. Configuring ejabberd

%% Now we want to define vCard pattern

{ldap_vcard_map,

[{"NICKNAME", "%u", []}, % just use user’s part of JID as his nickname

{"FIRST", "%s", ["givenName"]},

{"LAST", "%s", ["sn"]},

{"FN", "%s, %s", ["sn", "givenName"]}, % example: "Smith, John"

{"EMAIL", "%s", ["mail"]},

{"BDAY", "%s", ["birthDay"]}]},

%% Search form

{ldap_search_fields,

[{"User", "%u"},

{"Name", "givenName"},

{"Family Name", "sn"},

{"Email", "mail"},

{"Birthday", "birthDay"}]},

%% vCard fields to be reported

%% Note that JID is always returned with search results

{ldap_search_reported,

[{"Full Name", "FN"},

{"Nickname", "NICKNAME"},

{"Birthday", "BDAY"}]}

]}

...

}.

Note that mod vcard ldap module checks an existence of the user before searching his info
in LDAP.

• ldap vcard map example:

{ldap_vcard_map,

[{"NICKNAME", "%u", []},

{"FN", "%s", ["displayName"]},

{"CTRY", "Russia", []},

{"EMAIL", "%u@%d", []},

{"DESC", "%s\n%s", ["title", "description"]}

]},

• ldap search fields example:

{ldap_search_fields,

[{"User", "uid"},

{"Full Name", "displayName"},

{"Email", "mail"}

]},

• ldap search reported example:

{ldap_search_reported,

[{"Full Name", "FN"},

3.3 Modules Configuration 113

{"Email", "EMAIL"},

{"Birthday", "BDAY"},

{"Nickname", "NICKNAME"}

]},

3.3.33 mod vcard xupdate

The user’s client can store an avatar in the user vCard. The vCard-Based Avatars protocol
(XEP-0153123) provides a method for clients to inform the contacts what is the avatar hash
value. However, simple or small clients may not implement that protocol.

If this module is enabled, all the outgoing client presence stanzas get automatically the avatar
hash on behalf of the client. So, the contacts receive the presence stanzas with the Update
Data described in XEP-0153124 as if the client would had inserted it itself. If the client had
already included such element in the presence stanza, it is replaced with the element generated
by ejabberd.

By enabling this module, each vCard modification produces a hash recalculation, and each
presence sent by a client produces hash retrieval and a presence stanza rewrite. For this reason,
enabling this module will introduce a computational overhead in servers with clients that change
frequently their presence.

Options:

db type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

3.3.34 mod version

This module implements Software Version (XEP-0092125). Consequently, it answers ejabberd’s
version when queried.

Options:

show os: true|false Should the operating system be revealed or not. The default value is
true.

iqdisc: Discipline This specifies the processing discipline for Software Version (jabber:iq:version)
IQ queries (see section 3.3.2).

123http://xmpp.org/extensions/xep-0153.html
124http://xmpp.org/extensions/xep-0153.html
125http://xmpp.org/extensions/xep-0092.html

http://xmpp.org/extensions/xep-0153.html
http://xmpp.org/extensions/xep-0153.html
http://xmpp.org/extensions/xep-0092.html

114 3. Configuring ejabberd

Chapter 4

Managing an ejabberd Server

4.1 ejabberdctl

With the ejabberdctl command line administration script you can execute ejabberdctl commands

(described in the next section, 4.1.1) and also many general ejabberd commands (described in
section 4.2). This means you can start, stop and perform many other administrative tasks in a
local or remote ejabberd server (by providing the argument --node NODENAME).

The ejabberdctl script can be configured in the file ejabberdctl.cfg. This file includes de-
tailed information about each configurable option. See section 4.1.2.

The ejabberdctl script returns a numerical status code. Success is represented by 0, error is
represented by 1, and other codes may be used for specific results. This can be used by other
scripts to determine automatically if a command succeeded or failed, for example using: echo

$?

If you use Bash, you can get Bash completion by copying the file tools/ejabberdctl.bc to the
directory /etc/bash completion.d/ (in Debian, Ubuntu, Fedora and maybe others).

4.1.1 ejabberdctl Commands

When ejabberdctl is executed without any parameter, it displays the available options. If there
isn’t an ejabberd server running, the available parameters are:

start Start ejabberd in background mode. This is the default method.

debug Attach an Erlang shell to an already existing ejabberd server. This allows to execute
commands interactively in the ejabberd server.

live Start ejabberd in live mode: the shell keeps attached to the started server, showing log
messages and allowing to execute interactive commands.

115

116 4. Managing an ejabberd Server

If there is an ejabberd server running in the system, ejabberdctl shows the ejabberdctl

commands described bellow and all the ejabberd commands available in that server (see 4.2.1).

The ejabberdctl commands are:

help Get help about ejabberdctl or any available command. Try ejabberdctl help help.

status Check the status of the ejabberd server.

stop Stop the ejabberd server.

restart Restart the ejabberd server.

mnesia Get information about the Mnesia database.

The ejabberdctl script can be restricted to require authentication and execute some ejabberd

commands; see 4.2.2. Add the option to the file ejabberd.yml. In this example there is no
restriction:

ejabberdctl_access_commands: []

If account robot1@example.org is registered in ejabberd with password abcdef (which MD5
is E8B501798950FC58AAD83C8C14978E), and ejabberd.yml contains this setting:

{hosts, ["example.org"]}.

{acl, bots, {user, "robot1", "example.org"}}.

{access, ctlaccess, [{allow, bots}]}.

{ejabberdctl_access_commands, [{ctlaccess, [registered_users, register], []}]}.

then you can do this in the shell:

$ ejabberdctl registered_users example.org

Error: no_auth_provided

$ ejabberdctl --auth robot1 example.org abcdef registered_users example.org

robot1

testuser1

testuser2

4.1.2 Erlang Runtime System

ejabberd is an Erlang/OTP application that runs inside an Erlang runtime system. This system
is configured using environment variables and command line parameters. The ejabberdctl

administration script uses many of those possibilities. You can configure some of them with the
file ejabberdctl.cfg, which includes detailed description about them. This section describes
for reference purposes all the environment variables and command line parameters.

The environment variables:

4.1 ejabberdctl 117

EJABBERD CONFIG PATH Path to the ejabberd configuration file.

EJABBERD MSGS PATH Path to the directory with translated strings.

EJABBERD LOG PATH Path to the ejabberd service log file.

EJABBERD SO PATH Path to the directory with binary system libraries.

EJABBERD DOC PATH Path to the directory with ejabberd documentation.

EJABBERD PID PATH Path to the PID file that ejabberd can create when started.

HOME Path to the directory that is considered ejabberd’s home. This path is used to read the
file .erlang.cookie.

ERL CRASH DUMP Path to the file where crash reports will be dumped.

ERL EPMD ADDRESS IP address where epmd listens for connections (see section 5.2).

ERL INETRC Indicates which IP name resolution to use. If using -sname, specify either this
option or -kernel inetrc filepath.

ERL MAX PORTS Maximum number of simultaneously open Erlang ports.

ERL MAX ETS TABLES Maximum number of ETS and Mnesia tables.

The command line parameters:

-sname ejabberd The Erlang node will be identified using only the first part of the host name,
i. e. other Erlang nodes outside this domain cannot contact this node. This is the preferable
option in most cases.

-name ejabberd The Erlang node will be fully identified. This is only useful if you plan to setup
an ejabberd cluster with nodes in different networks.

-kernel inetrc ’"/etc/ejabberd/inetrc"’ Indicates which IP name resolution to use. If
using -sname, specify either this option or ERL INETRC.

-kernel inet dist listen min 4200 inet dist listen min 4210 Define the first and last ports
that epmd (section 5.2) can listen to.

-kernel inet dist use interface "{127,0,0,1 }" Define the IP address where this Erlang
node listens for other nodes connections (see section 5.2).

-detached Starts the Erlang system detached from the system console. Useful for running
daemons and background processes.

-noinput Ensures that the Erlang system never tries to read any input. Useful for running
daemons and background processes.

-pa /var/lib/ejabberd/ebin Specify the directory where Erlang binary files (*.beam) are lo-
cated.

-s ejabberd Tell Erlang runtime system to start the ejabberd application.

-mnesia dir ’"/var/lib/ejabberd/"’ Specify the Mnesia database directory.

118 4. Managing an ejabberd Server

-sasl sasl error logger {file, "/var/log/ejabberd/erlang.log"} Path to the Erlang/OTP
system log file. SASL here means “System Architecture Support Libraries” not “Simple
Authentication and Security Layer”.

+K [true|false] Kernel polling.

-smp [auto|enable|disable] SMP support.

+P 250000 Maximum number of Erlang processes.

-remsh ejabberd@localhost Open an Erlang shell in a remote Erlang node.

-hidden The connections to other nodes are hidden (not published). The result is that this node
is not considered part of the cluster. This is important when starting a temporary ctl or
debug node.

Note that some characters need to be escaped when used in shell scripts, for instance " and {}.
You can find other options in the Erlang manual page (erl -man erl).

4.2 ejabberd Commands

An ejabberd command is an abstract function identified by a name, with a defined number and
type of calling arguments and type of result that is registered in the ejabberd commands service.
Those commands can be defined in any Erlang module and executed using any valid frontend.

ejabberd includes two frontends to execute ejabberd commands: the script ejabberdctl (4.1)
and the ejabberd xmlrpc listener (3.1.4). Other known frontends that can be installed to execute
ejabberd commands in different ways are: mod rest (HTTP POST service), mod shcommands

(ejabberd WebAdmin page).

4.2.1 List of ejabberd Commands

ejabberd includes a few ejabberd Commands by default. When more modules are installed, new
commands may be available in the frontends.

The easiest way to get a list of the available commands, and get help for them is to use the
ejabberdctl script:

$ ejabberdctl help

Usage: ejabberdctl [--node nodename] [--auth user host password] command [options]

Available commands in this ejabberd node:

backup file Store the database to backup file

connected_users List all established sessions

connected_users_number Get the number of established sessions

...

4.2 ejabberd Commands 119

The most interesting ones are:

reopen log Reopen the log files after they were renamed. If the old files were not renamed
before calling this command, they are automatically renamed to "*-old.log". See section
7.1.

convert to yaml /etc/ejabberd/ejabberd.cfg /etc/ejabberd/ejabberd-converted.yml Convert
an old ejabberd.cfg file to the YAML syntax in a new file.

backup ejabberd.backup Store internal Mnesia database to a binary backup file.

restore ejabberd.backup Restore immediately from a binary backup file the internal Mnesia
database. This will consume a lot of memory if you have a large database, so better use
install fallback.

install fallback ejabberd.backup The binary backup file is installed as fallback: it will be
used to restore the database at the next ejabberd start. This means that, after running
this command, you have to restart ejabberd. This command requires less memory than
restore.

dump ejabberd.dump Dump internal Mnesia database to a text file dump.

load ejabberd.dump Restore immediately from a text file dump. This is not recommended
for big databases, as it will consume much time, memory and processor. In that case it’s
preferable to use backup and install fallback.

import piefxis, export piefxis, export piefxis host These options can be used to mi-
grate accounts using XEP-02271 formatted XML files from/to other Jabber/XMPP servers
or move users of a vhost to another ejabberd installation. See also ejabberd migration kit2.

import file, import dir These options can be used to migrate accounts using jabberd1.4
formatted XML files. from other Jabber/XMPP servers There exist tutorials to migrate
from other software to ejabberd3.

export2odbc virtualhost directory Export virtual host information from Mnesia tables to
SQL files.

delete expired messages This option can be used to delete old messages in offline storage.
This might be useful when the number of offline messages is very high.

delete old messages days Delete offline messages older than the given days.

register user host password Register an account in that domain with the given password.

unregister user host Unregister the given account.

1http://xmpp.org/extensions/xep-0227.html
2https://support.process-one.net/doc/display/MESSENGER/ejabberd+migration+kit
3http://www.ejabberd.im/migrate-to-ejabberd

http://xmpp.org/extensions/xep-0227.html
https://support.process-one.net/doc/display/MESSENGER/ejabberd+migration+kit
http://www.ejabberd.im/migrate-to-ejabberd

120 4. Managing an ejabberd Server

4.2.2 Restrict Execution with AccessCommands

The frontends can be configured to restrict access to certain commands. In that case, authenti-
cation information must be provided. In each frontend the AccessCommands option is defined in
a different place. But in all cases the option syntax is the same:

AccessCommands = [{Access, CommandNames, Arguments}, ...]

Access = atom()

CommandNames = all | [CommandName]

CommandName = atom()

Arguments = [{ArgumentName, ArgumentValue}, ...]

ArgumentName = atom()

ArgumentValue = any()

The default value is to not define any restriction: []. The authentication information is provided
when executing a command, and is Username, Hostname and Password of a local XMPP account
that has permission to execute the corresponding command. This means that the account must
be registered in the local ejabberd, because the information will be verified.

When one or several access restrictions are defined and the authentication information is pro-
vided, each restriction is verified until one matches completely: the account matches the Access
rule, the command name is listed in CommandNames, and the provided arguments do not con-
tradict Arguments.

As an example to understand the syntax, let’s suppose those options:

{hosts, ["example.org"]}.

{acl, bots, {user, "robot1", "example.org"}}.

{access, commaccess, [{allow, bots}]}.

This list of access restrictions allows only robot1@example.org to execute all commands:

[{commaccess, all, []}]

See another list of restrictions (the corresponding ACL and ACCESS are not shown):

[

%% This bot can execute all commands:

{bot, all, []},

%% This bot can only execute the command ’dump’. No argument restriction:

{bot_backups, [dump], []}

%% This bot can execute all commands,

%% but if a ’host’ argument is provided, it must be "example.org":

{bot_all_example, all, [{host, "example.org"}]},

%% This bot can only execute the command ’register’,

%% and if argument ’host’ is provided, it must be "example.org":

{bot_reg_example, [register], [{host, "example.org"}]},

4.3 Web Admin 121

%% This bot can execute the commands ’register’ and ’unregister’,

%% if argument host is provided, it must be "test.org":

{_bot_reg_test, [register, unregister], [{host, "test.org"}]}

]

4.3 Web Admin

The ejabberd Web Admin allows to administer most of ejabberd using a web browser.

This feature is enabled by default: a ejabberd http listener with the option web admin (see
section 3.1.4) is included in the listening ports. Then you can open http://server:port/admin/

in your favourite web browser. You will be asked to enter the username (the full Jabber ID)
and password of an ejabberd user with administrator rights. After authentication you will see
a page similar to figure 4.1.

Figure 4.1: Top page from the Web Admin

Here you can edit access restrictions, manage users, create backups, manage the database, en-
able/disable ports listened for, view server statistics,. . .

The access rule configure determines what accounts can access the Web Admin and modify it.
The access rule webadmin view is to grant only view access: those accounts can browse the Web
Admin with read-only access.

Example configurations:

• You can serve the Web Admin on the same port as the HTTP Polling interface. In this
example you should point your web browser to http://example.org:5280/admin/ to ad-
minister all virtual hosts or to http://example.org:5280/admin/server/example.com/

to administer only the virtual host example.com. Before you get access to the Web Admin
you need to enter as username, the JID and password from a registered user that is allowed
to configure ejabberd. In this example you can enter as username ‘admin@example.net’

122 4. Managing an ejabberd Server

to administer all virtual hosts (first URL). If you log in with ‘admin@example.com’ on
http://example.org:5280/admin/server/example.com/ you can only administer the
virtual host example.com. The account ‘reviewer@example.com’ can browse that vhost
in read-only mode.

acl:

admin:

user:

- "admin": "example.net"

host_config:

"example.com":

acl:

admin:

user:

- "admin": "example.com"

viewers:

user:

- "reviewer": "example.com"

access:

configure:

admin: allow

webadmin_view:

viewers: allow

hosts:

- "example.org"

listen:

...

-

port: 5280

module: ejabberd_http

web_admin: true

http_poll: true

...

• For security reasons, you can serve the Web Admin on a secured connection, on a port differ-
ing from the HTTP Polling interface, and bind it to the internal LAN IP. The Web Admin
will be accessible by pointing your web browser to https://192.168.1.1:5282/admin/:

hosts:

- "example.org"

listen:

...

-

port: 5280

module: ejabberd_http

http_poll: true

4.4 Ad-hoc Commands 123

-

ip: "192.168.1.1"

port: 5282

module: ejabberd_http

certfile: "/usr/local/etc/server.pem"

tls: true

web_admin: true

...

Certain pages in the ejabberd Web Admin contain a link to a related section in the ejabberd In-
stallation and Operation Guide. In order to view such links, a copy in HTML format of the Guide
must be installed in the system. The file is searched by default in "/share/doc/ejabberd/guide.html".
The directory of the documentation can be specified in the environment variable EJABBERD DOC PATH.
See section 4.1.2.

4.4 Ad-hoc Commands

If you enable mod configure and mod adhoc, you can perform several administrative tasks in
ejabberd with an XMPP client. The client must support Ad-Hoc Commands (XEP-00504), and
you must login in the XMPP server with an account with proper privileges.

4.5 Change Computer Hostname

ejabberd uses the distributed Mnesia database. Being distributed, Mnesia enforces consistency
of its file, so it stores the name of the Erlang node in it (see section 5.4). The name of an Erlang
node includes the hostname of the computer. So, the name of the Erlang node changes if you
change the name of the machine in which ejabberd runs, or when you move ejabberd to a
different machine.

You have two ways to use the old Mnesia database in an ejabberd with new node name: put the
old node name in ejabberdctl.cfg, or convert the database to the new node name.

Those example steps will backup, convert and load the Mnesia database. You need to have either
the old Mnesia spool dir or a backup of Mnesia. If you already have a backup file of the old
database, you can go directly to step 5. You also need to know the old node name and the new
node name. If you don’t know them, look for them by executing ejabberdctl or in the ejabberd
log files.

Before starting, setup some variables:

OLDNODE=ejabberd@oldmachine

NEWNODE=ejabberd@newmachine

OLDFILE=/tmp/old.backup

NEWFILE=/tmp/new.backup

4http://xmpp.org/extensions/xep-0050.html

http://xmpp.org/extensions/xep-0050.html

124 4. Managing an ejabberd Server

1. Start ejabberd enforcing the old node name:

ejabberdctl --node $OLDNODE start

2. Generate a backup file:

ejabberdctl --node $OLDNODE backup $OLDFILE

3. Stop the old node:

ejabberdctl --node $OLDNODE stop

4. Make sure there aren’t files in the Mnesia spool dir. For example:

mkdir /var/lib/ejabberd/oldfiles

mv /var/lib/ejabberd/*.* /var/lib/ejabberd/oldfiles/

5. Start ejabberd. There isn’t any need to specify the node name anymore:

ejabberdctl start

6. Convert the backup to new node name:

ejabberdctl mnesia_change_nodename $OLDNODE $NEWNODE $OLDFILE $NEWFILE

7. Install the backup file as a fallback:

ejabberdctl install_fallback $NEWFILE

8. Stop ejabberd:

ejabberdctl stop

You may see an error message in the log files, it’s normal, so don’t worry:

Mnesia(ejabberd@newmachine):

** ERROR ** (ignoring core)

** FATAL ** A fallback is installed and Mnesia must be restarted.

Forcing shutdown after mnesia_down from ejabberd@newmachine...

9. Now you can finally start ejabberd:

ejabberdctl start

10. Check that the information of the old database is available: accounts, rosters... After you
finish, remember to delete the temporary backup files from public directories.

Chapter 5

Securing ejabberd

5.1 Firewall Settings

You need to take the following TCP ports in mind when configuring your firewall:

Port Description

5222 Standard port for Jabber/XMPP client connections, plain or STARTTLS.
5223 Standard port for Jabber client connections using the old SSL method.
5269 Standard port for Jabber/XMPP server connections.
4369 EPMD (section 5.2) listens for Erlang node name requests.
port range Used for connections between Erlang nodes. This range is configurable (see section 5.2).

5.2 epmd

epmd (Erlang Port Mapper Daemon)1 is a small name server included in Erlang/OTP and used
by Erlang programs when establishing distributed Erlang communications. ejabberd needs
epmd to use ejabberdctl and also when clustering ejabberd nodes. This small program is
automatically started by Erlang, and is never stopped. If ejabberd is stopped, and there aren’t
any other Erlang programs running in the system, you can safely stop epmd if you want.

ejabberd runs inside an Erlang node. To communicate with ejabberd, the script ejabberdctl
starts a new Erlang node and connects to the Erlang node that holds ejabberd. In order for this
communication to work, epmd must be running and listening for name requests in the port 4369.
You should block the port 4369 in the firewall in such a way that only the programs in your
machine can access it. or configure the option ERL EPMD ADDRESS in the file ejabberdctl.cfg.

If you build a cluster of several ejabberd instances, each ejabberd instance is called an ejabberd

node. Those ejabberd nodes use a special Erlang communication method to build the cluster,

1http://www.erlang.org/doc/man/epmd.html

125

http://www.erlang.org/doc/man/epmd.html

126 5. Securing ejabberd

and EPMD is again needed listening in the port 4369. So, if you plan to build a cluster of
ejabberd nodes you must open the port 4369 for the machines involved in the cluster. Remember
to block the port so Internet doesn’t have access to it.

Once an Erlang node solved the node name of another Erlang node using EPMD and port 4369,
the nodes communicate directly. The ports used in this case by default are random, but can be
configured in the file ejabberdctl.cfg. The Erlang command-line parameter used internally is,
for example:

erl ... -kernel inet_dist_listen_min 4370 inet_dist_listen_max 4375

It is also possible to configure in ejabberdctl.cfg the network interface where the Erlang node
will listen and accept connections. The Erlang command-line parameter used internally is, for
example:

erl ... -kernel inet_dist_use_interface "{127,0,0,1}"

5.3 Erlang Cookie

The Erlang cookie is a string with numbers and letters. An Erlang node reads the cookie at
startup from the command-line parameter -setcookie. If not indicated, the cookie is read from
the cookie file $HOME/.erlang.cookie. If this file does not exist, it is created immediately with
a random cookie. Two Erlang nodes communicate only if they have the same cookie. Setting a
cookie on the Erlang node allows you to structure your Erlang network and define which nodes
are allowed to connect to which.

Thanks to Erlang cookies, you can prevent access to the Erlang node by mistake, for example
when there are several Erlang nodes running different programs in the same machine.

Setting a secret cookie is a simple method to difficult unauthorized access to your Erlang node.
However, the cookie system is not ultimately effective to prevent unauthorized access or intrusion
to an Erlang node. The communication between Erlang nodes are not encrypted, so the cookie
could be read sniffing the traffic on the network. The recommended way to secure the Erlang
node is to block the port 4369.

5.4 Erlang Node Name

An Erlang node may have a node name. The name can be short (if indicated with the command-
line parameter -sname) or long (if indicated with the parameter -name). Starting an Erlang node
with -sname limits the communication between Erlang nodes to the LAN.

Using the option -sname instead of -name is a simple method to difficult unauthorized access to
your Erlang node. However, it is not ultimately effective to prevent access to the Erlang node,
because it may be possible to fake the fact that you are on another network using a modified
version of Erlang epmd. The recommended way to secure the Erlang node is to block the port
4369.

5.5 Securing Sensitive Files 127

5.5 Securing Sensitive Files

ejabberd stores sensitive data in the file system either in plain text or binary files. The file
system permissions should be set to only allow the proper user to read, write and execute those
files and directories.

ejabberd configuration file: /etc/ejabberd/ejabberd.yml Contains the JID of admin-
istrators and passwords of external components. The backup files probably contain also
this information, so it is preferable to secure the whole /etc/ejabberd/ directory.

ejabberd service log: /var/log/ejabberd/ejabberd.log Contains IP addresses of clients.
If the loglevel is set to 5, it contains whole conversations and passwords. If a logrotate sys-
tem is used, there may be several log files with similar information, so it is preferable to
secure the whole /var/log/ejabberd/ directory.

Mnesia database spool files in /var/lib/ejabberd/ The files store binary data, but some
parts are still readable. The files are generated by Mnesia and their permissions cannot be
set directly, so it is preferable to secure the whole /var/lib/ejabberd/ directory.

Erlang cookie file: /var/lib/ejabberd/.erlang.cookie See section 5.3.

128 5. Securing ejabberd

Chapter 6

Clustering

6.1 How it Works

A XMPP domain is served by one or more ejabberd nodes. These nodes can be run on different
machines that are connected via a network. They all must have the ability to connect to port 4369
of all another nodes, and must have the same magic cookie (see Erlang/OTP documentation,
in other words the file ~ejabberd/.erlang.cookie must be the same on all nodes). This is
needed because all nodes exchange information about connected users, s2s connections, registered
services, etc. . .

Each ejabberd node has the following modules:

• router,

• local router,

• session manager,

• s2s manager.

6.1.1 Router

This module is the main router of XMPP packets on each node. It routes them based on their
destination’s domains. It uses a global routing table. The domain of the packet’s destination is
searched in the routing table, and if it is found, the packet is routed to the appropriate process.
If not, it is sent to the s2s manager.

6.1.2 Local Router

This module routes packets which have a destination domain equal to one of this server’s host
names. If the destination JID has a non-empty user part, it is routed to the session manager,
otherwise it is processed depending on its content.

129

130 6. Clustering

6.1.3 Session Manager

This module routes packets to local users. It looks up to which user resource a packet must be
sent via a presence table. Then the packet is either routed to the appropriate c2s process, or
stored in offline storage, or bounced back.

6.1.4 s2s Manager

This module routes packets to other XMPP servers. First, it checks if an opened s2s connection
from the domain of the packet’s source to the domain of the packet’s destination exists. If that
is the case, the s2s manager routes the packet to the process serving this connection, otherwise
a new connection is opened.

6.2 Clustering Setup

Suppose you already configured ejabberd on one machine named (first), and you need to setup
another one to make an ejabberd cluster. Then do following steps:

1. Copy ~ejabberd/.erlang.cookie file from first to second.

(alt) You can also add ‘-setcookie content_of_.erlang.cookie’ option to all ‘erl’ com-
mands below.

2. On second run the following command as the ejabberd daemon user, in the working
directory of ejabberd:

erl -sname ejabberd \

-mnesia dir ’"/var/lib/ejabberd/"’ \

-mnesia extra_db_nodes "[’ejabberd@first’]" \

-s mnesia

This will start Mnesia serving the same database as ejabberd@first. You can check this
by running the command ‘mnesia:info().’. You should see a lot of remote tables and a
line like the following:

Note: the Mnesia directory may be different in your system. To know where does ejabberd
expect Mnesia to be installed by default, call 4.1 without options and it will show some
help, including the Mnesia database spool dir.

running db nodes = [ejabberd@first, ejabberd@second]

3. Now run the following in the same ‘erl’ session:

mnesia:change_table_copy_type(schema, node(), disc_copies).

6.3 Service Load-Balancing 131

This will create local disc storage for the database.

(alt) Change storage type of the scheme table to ‘RAM and disc copy’ on the second node
via the Web Admin.

4. Now you can add replicas of various tables to this node with ‘mnesia:add_table_copy’
or ‘mnesia:change_table_copy_type’ as above (just replace ‘schema’ with another table
name and ‘disc_copies’ can be replaced with ‘ram_copies’ or ‘disc_only_copies’).

Which tables to replicate is very dependant on your needs, you can get some hints from
the command ‘mnesia:info().’, by looking at the size of tables and the default storage
type for each table on ’first’.

Replicating a table makes lookups in this table faster on this node. Writing, on the other
hand, will be slower. And of course if machine with one of the replicas is down, other
replicas will be used.

Also section 5.3 (Table Fragmentation) of Mnesia User’s Guide1 can be helpful.

(alt) Same as in previous item, but for other tables.

5. Run ‘init:stop().’ or just ‘q().’ to exit from the Erlang shell. This probably can take
some time if Mnesia has not yet transfered and processed all data it needed from first.

6. Now run ejabberd on second with a configuration similar as on first: you probably do
not need to duplicate ‘acl’ and ‘access’ options because they will be taken from first;
and mod_irc should be enabled only on one machine in the cluster.

You can repeat these steps for other machines supposed to serve this domain.

6.3 Service Load-Balancing

6.3.1 Domain Load-Balancing Algorithm

ejabberd includes an algorithm to load balance the components that are plugged on an ejabberd

cluster. It means that you can plug one or several instances of the same component on each
ejabberd cluster and that the traffic will be automatically distributed.

The default distribution algorithm try to deliver to a local instance of a component. If several
local instances are available, one instance is chosen randomly. If no instance is available locally,
one instance is chosen randomly among the remote component instances.

If you need a different behaviour, you can change the load balancing behaviour with the option
domain balancing. The syntax of the option is the following:

domain balancing: BalancingCriteria

Several balancing criteria are available:

1http://www.erlang.org/doc/apps/mnesia/Mnesia chap5.html#5.3

http://www.erlang.org/doc/apps/mnesia/Mnesia_chap5.html#5.3

132 6. Clustering

• destination: the full JID of the packet to attribute is used.

• source: the full JID of the packet from attribute is used.

• bare destination: the bare JID (without resource) of the packet to attribute is used.

• bare source: the bare JID (without resource) of the packet from attribute is used.

If the value corresponding to the criteria is the same, the same component instance in the cluster
will be used.

6.3.2 Load-Balancing Buckets

When there is a risk of failure for a given component, domain balancing can cause service trouble.
If one component is failing the service will not work correctly unless the sessions are rebalanced.

In this case, it is best to limit the problem to the sessions handled by the failing component.
This is what the domain balancing component number option does, making the load balancing
algorithm not dynamic, but sticky on a fix number of component instances.

The syntax is:

domain balancing component number: Number

Chapter 7

Debugging

7.1 Log Files

An ejabberd node writes three log files:

ejabberd.log is the ejabberd service log, with the messages reported by ejabberd code

error.log is the file accumulating error messages from ejabberd.log

crash.log is the Erlang/OTP log, with the crash messages reported by Erlang/OTP using
SASL (System Architecture Support Libraries)

The option loglevel modifies the verbosity of the file ejabberd.log. The syntax:

loglevel: Level The standard form to set a global log level.

The possible Level are:

0 No ejabberd log at all (not recommended)

1 Critical

2 Error

3 Warning

4 Info

5 Debug

For example, the default configuration is:

133

134 7. Debugging

loglevel: 4

Option log rate limit is useful if you want to protect the logging mechanism from being over-
loaded by excessive amount of log messages. The syntax is:

log rate limit: N Where N is a maximum number of log messages per second. The default
value is 100.

When the limit is reached the similar warning message is logged:

lager_error_logger_h dropped 800 messages in the last second that exceeded the limit of 100 messages/sec

By default ejabberd rotates the log files when they get grown above a certain size. The exact
value is controlled by log rotate size option. The syntax is:

log rotate size: N Where N is the maximum size of a log file in bytes. The default value is
10485760 (10Mb).

ejabberd can also rotates the log files at given date interval. The exact value is controlled by
log rotate date option. The syntax is:

log rotate date: D Where D is a string with syntax is taken from the syntax newsyslog uses
in newsyslog.conf. The default value is "" (no rotation triggered by date).

However, you can rotate the log files manually. For doing this, set log rotate size option to
0 and log rotate date to empty list, then, when you need to rotate the files, rename and then
reopen them. The ejabberdctl command reopen-log (please refer to section 4.1.1) reopens the
log files, and also renames the old ones if you didn’t rename them.

The option log rotate count defines the number of rotated files to keep by reopen-log com-
mand. Every such file has a numeric suffix. The exact format is:

log rotate count: N The default value is 1, which means only ejabberd.log.0, error.log.0
and crash.log.0 will be kept.

7.2 Debug Console

The Debug Console is an Erlang shell attached to an already running ejabberd server. With
this Erlang shell, an experienced administrator can perform complex tasks.

This shell gives complete control over the ejabberd server, so it is important to use it with
extremely care. There are some simple and safe examples in the article Interconnecting Erlang
Nodes1

To exit the shell, close the window or press the keys: control+c control+c.

1http://www.ejabberd.im/interconnect-erl-nodes

http://www.ejabberd.im/interconnect-erl-nodes

7.3 Watchdog Alerts 135

7.3 Watchdog Alerts

ejabberd includes a watchdog mechanism that may be useful to developers when troubleshooting
a problem related to memory usage. If a process in the ejabberd server consumes more memory
than the configured threshold, a message is sent to the XMPP accounts defined with the option
watchdog admins in the ejabberd configuration file.

The syntax is:

watchdog admins: [JID, ...]

The memory consumed is measured in words: a word on 32-bit architecture is 4 bytes, and a
word on 64-bit architecture is 8 bytes. The threshold by default is 1000000 words. This value
can be configured with the option watchdog large heap, or in a conversation with the watchdog
alert bot.

The syntax is:

watchdog large heap: Number

Example configuration:

watchdog_admins:

- "admin2@localhost"

- "admin2@example.org"

watchdog_large_heap: 30000000

To remove watchdog admins, remove them in the option. To remove all watchdog admins, set
the option with an empty list:

watchdog_admins: []

136 7. Debugging

Appendix A

Internationalization and
Localization

The source code of ejabberd supports localization. The translators can edit the gettext1 .po
files using any capable program (KBabel, Lokalize, Poedit...) or a simple text editor.

Then gettext is used to extract, update and export those .po files to the .msg format read by
ejabberd. To perform those management tasks, in the src/ directory execute make translations.
The translatable strings are extracted from source code to generate the file ejabberd.pot. This
file is merged with each .po file to produce updated .po files. Finally those .po files are exported
to .msg files, that have a format easily readable by ejabberd.

All built-in modules support the xml:lang attribute inside IQ queries. Figure A.1, for example,
shows the reply to the following query:

<iq id=’5’

to=’example.org’

type=’get’

xml:lang=’ru’>

<query xmlns=’http://jabber.org/protocol/disco#items’/>

</iq>

The Web Admin also supports the Accept-Language HTTP header.

1http://www.gnu.org/software/gettext/

137

http://www.gnu.org/software/gettext/

138 A. Internationalization and Localization

Figure A.1: Service Discovery when xml:lang=’ru’

Figure A.2: Web Admin showing a virtual host when the web browser provides the HTTP header
‘Accept-Language: ru’

Appendix B

Release Notes

Release notes are available from ejabberd Home Page1

1http://www.process-one.net/en/ejabberd/release notes/

139

http://www.process-one.net/en/ejabberd/release_notes/

140 B. Release Notes

Appendix C

Acknowledgements

Thanks to all people who contributed to this guide:

• Alexey Shchepin (xmpp:aleksey@jabber.ru)

• Badlop (xmpp:badlop@jabberes.org)

• Evgeniy Khramtsov (xmpp:xram@jabber.ru)

• Florian Zumbiehl (xmpp:florz@florz.de)

• Ludovic Bocquet (xmpp:lbocquet@jabber.org)

• Marcin Owsiany (xmpp:marcin.owsiany@gmail.com)

• Michael Grigutsch (xmpp:migri@jabber.i-pobox.net)

• Mickael Remond (xmpp:mremond@process-one.net)

• Sander Devrieze (xmpp:s.devrieze@gmail.com)

• Sergei Golovan (xmpp:sgolovan@nes.ru)

• Vsevolod Pelipas (xmpp:vsevoload@jabber.ru)

141

xmpp:aleksey@jabber.ru
xmpp:badlop@jabberes.org
xmpp:xram@jabber.ru
xmpp:florz@florz.de
xmpp:lbocquet@jabber.org
xmpp:marcin.owsiany@gmail.com
xmpp:migri@jabber.i-pobox.net
xmpp:mremond@process-one.net
xmpp:s.devrieze@gmail.com
xmpp:sgolovan@nes.ru
xmpp:vsevoload@jabber.ru

142 C. Acknowledgements

Appendix D

Copyright Information

Ejabberd Installation and Operation Guide.
Copyright c© 2003 — 2014 ProcessOne

This document is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this document;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

143

Index

access, 46
Access Control List, 43, 46
access rules, 43
ACL, 43, 46
announcements, 67
anonymous login, 40
authentication, 38

Bandersnatch, 96
Blocking Communication, 86

captcha, 48
Client State Indication, 69
clustering, 129

how it works, 129
local router, 129
ports, 125
router, 129
s2s manager, 130
session manager, 130
setup, 130

component load-balancing, 131
conferencing, 77
configuration file, 23

database, 55
databases

Active Directory, 61
LDAP, 57
Riak, 62

debugging, 71, 133
watchdog, 135

ejabberdctl, 20, 84
export mnesia data to SQL files, 119
external authentication, 40

features
additional features, 11
key features, 10

firewall, 125

Git repository, 15

host names, 24

i18n, 137
includeconfigfile, 52
install, 15

bsd, 18
compile, 16
download, 15
install, 17
solaris, 18
start, 17
windows, 19

installation
requirements, 15

internal authentication, 39
internationalization, 137
IRC, 75

Jabber User Directory, 108, 109
jabberd14, 37
JUD, 108, 109
JWChat, 29

l10n, 137
language, 48
LDAP, 25
localization, 137

message auditing, 96
message of the day, 67
migrate between servers, 119
migration from other software, 119
Mnesia, 39
modfail2ban, 72
modhttpbind, 72
modhttpfileserver, 73
modules, 63

mod announce, 67
mod client state, 69

144

INDEX 145

mod disco, 69
mod echo, 67, 71
mod fail2ban, 72
mod http bind, 72
mod http fileserver, 73
mod irc, 75
mod last, 76
mod muc log, 82
mod muc, 77
mod offline, 67, 84
mod ping, 85
mod pres counter, 86
mod privacy, 86
mod private, 87
mod pubsub, 89
mod register web, 94
mod register, 91
mod roster, 95
mod service log, 96
mod shared roster ldap, 98
mod shared roster, 97
mod sip, 105
mod stats, 105, 107
mod time, 107
mod vcard ldap, 109
mod vcard xupdate, 113
mod vcard, 108
mod version, 88, 113
ejabberd c2s, 27
ejabberd http, 27
ejabberd s2s in, 27
ejabberd service, 27
overview, 64

MOTD, 67

ODBC
storage, 57

odbc, 25, 56
optionmacros, 53
options

access, 28, 68, 75, 77, 88, 91, 95
access admin, 78
access create, 77
access createnode, 90
access from, 91
access log, 82
access max user messages, 84
access persistent, 77
accesslog, 74

acl, 43, 46
allow return all, 108
always record route, 106
auth method, 38
auth type, 88
backlog, 28
captcha, 48
captcha protected, 92
contenttypes, 74
count, 86
cssfile, 82
customheaders, 74
dbtype, 68, 75–77, 84, 87, 95, 97, 108, 113
default room options, 79
defaultcontenttype, 74
defaultencoding, 75
directoryindices, 74
dirname, 82
dirtype, 83
docroot, 73
domain balancing, 131
domain balancing component number, 132
domain certfile, 32
drop chat states, 69
extra domains, 70
file format, 83
file permissions, 83
history size, 78
host, 67, 71, 75, 77, 88, 89, 108, 109
host config, 24
hostname, 88
hosts, 24, 29
http-captcha, 28
http bind, 29
http poll, 29
ignore pep from offline, 90
includeconfigfile, 52
interval, 86
ip, 88
ip access, 92
iqdisc, 66, 70, 76, 87, 92, 95, 105, 107–109,

113
language, 48
last item cache, 90
ldap base, 58
ldap deref aliases, 58
ldap dn filter, 59
ldap encrypt, 57
ldap filter, 59

146 Index

ldap local filter, 59
ldap password, 58
ldap port, 58
ldap rootdn, 58
ldap search fields, 110
ldap search reported, 110
ldap server, 57
ldap tls cacertfile, 58
ldap tls depth, 58
ldap tls verify, 58
ldap uidattr, 59
ldap uidattr format, 59
ldap uids, 58
ldap vcard map, 109
listen, 26
loggers, 96
managers, 95
matches, 108, 109
max connections, 88
max inactivity, 73
max items node, 90
max room desc, 78
max room id, 78
max room name, 78
max s2s connections, 47
max stanza size, 30
max user conferences, 78
max user sessions, 46
max users, 78
max users admin threshold, 78
min message interval, 78
min presence interval, 78
name, 88
nodetree, 90
optionmacros, 53
outdir, 83
outgoing s2s families, 32
outgoing s2s timeout, 32
pam service, 42
pam userinfotype, 42
password strength, 92
ping interval, 85
plugins, 90
port, 88
protocol options, 28
queue presence, 69
record route, 106
registratimeout, 92
routes, 106

rwatchers, 92, 94
s2s certificate, 31
s2s ciphers, 32
s2s dns retries, 32
s2s dns timeout, 32
s2s max retry delay, 32
s2s policy, 32
s2s protocol options, 32
s2s use starttls, 31
search, 108, 109
search all hosts, 108
send pings, 85
server info, 70
service check from, 30
shaper, 30, 47, 88
shaperrule, 30
showos, 113
sip, 51
spam prevention, 83
starttls, 31
starttls required, 31
store empty body, 85
storecurrentid, 95
stun, 49
timeout, 31
timeout action, 85
timezone, 83
tls, 31
top link, 83
trusted proxies, 31
versioning, 95
via, 106
watchdog admins, 135
web admin, 31
welcomem, 92
zlib, 31

PAM authentication, 42
pep mapping, 90
Pluggable Authentication Modules, 42
ports, 125
Privacy Rules, 86
protocols

groupchat 1.0, 75
RFC 2426: vCard MIME Directory Pro-

file, 109
RFC 3921: XMPP IM, 86, 95
RFC 4515: LDAP String Representation

of Search Filters, 59

INDEX 147

RFC 5122: Internationalized Resource Iden-
tifiers (IRIs) and Uniform Resource Iden-
tifiers (URIs) for the Extensible Mes-
saging and Presence Protocol (XMPP),
82

XEP-0011: Jabber Browsing, 69
XEP-0012: Last Activity, 76
XEP-0025: HTTP Polling, 29, 121
XEP-0030: Service Discovery, 69
XEP-0039: Statistics Gathering, 107
XEP-0045: Multi-User Chat, 75, 77
XEP-0048: Bookmark Storage, 87
XEP-0049: Private XML Storage, 87
XEP-0054: vcard-temp, 108, 109
XEP-0060: Publish-Subscribe, 89
XEP-0065: SOCKS5 Bytestreams, 88
XEP-0077: In-Band Registration, 91
XEP-0092: Software Version, 113
XEP-0094: Agent Information, 69
XEP-0114: Jabber Component Protocol,

27
XEP-0138: Stream Compression, 31
XEP-0153: vCard-Based Avatars, 113
XEP-0157: Contact Addresses for XMPP

Services, 69
XEP-0202: Entity Time, 107
XEP-0206: HTTP Binding, 29
XEP-0279: Server IP Check, 105
XEP-0352: Client State Indication, 69

public registration, 91

release notes, 139
riak

configuration, 63
connection, 62
storage, 62

roster management, 95

SASL, 125
sasl anonymous, 40
shapers, 47
shared roster groups, 97
shared roster groups ldap, 98
sip, 51
STARTTLS, 31
statistics, 107
stun, 49

Tkabber, 107
TLS, 31, 125

traffic speed, 47
transports

AIM, 34
email notifier, 35
Gadu-Gadu, 35
ICQ, 34
MSN, 35
Yahoo, 35

vCard, 108, 109
virtual domains, 24
virtual hosting, 24
virtual hosts, 24

web admin, 31, 121
web-based XMPP client, 29
WPJabber, 37

XDB, 37
xml:lang, 137
XMPP compliancy, 64

Zlib, 31

	Introduction
	Key Features
	Additional Features

	Installing ejabberd
	Installing ejabberd with Binary Installer
	Installing ejabberd with Operating System Specific Packages
	Installing ejabberd with CEAN
	Installing ejabberd from Source Code
	Requirements
	Download Source Code
	Compile
	Install
	Start
	Specific Notes for BSD
	Specific Notes for Sun Solaris
	Specific Notes for Microsoft Windows

	Create an XMPP Account for Administration
	Upgrading ejabberd

	Configuring ejabberd
	Basic Configuration
	Legacy Configuration File
	Host Names
	Virtual Hosting
	Listening Ports
	Authentication
	Access Rules
	Shapers
	Default Language
	CAPTCHA
	STUN and TURN
	SIP
	Include Additional Configuration Files
	Option Macros in Configuration File

	Database and LDAP Configuration
	ODBC
	LDAP
	Riak

	Modules Configuration
	Modules Overview
	Common Options
	mod_announce
	mod_client_state
	mod_disco
	mod_echo
	mod_fail2ban
	mod_http_bind
	mod_http_fileserver
	mod_irc
	mod_last
	mod_muc
	mod_muc_log
	mod_offline
	mod_ping
	mod_pres_counter
	mod_privacy
	mod_private
	mod_proxy65
	mod_pubsub
	mod_register
	mod_register_web
	mod_roster
	mod_service_log
	mod_shared_roster
	mod_shared_roster_ldap
	mod_sic
	mod_sip
	mod_stats
	mod_time
	mod_vcard
	mod_vcard_ldap
	mod_vcard_xupdate
	mod_version

	Managing an ejabberd Server
	ejabberdctl
	ejabberdctl Commands
	Erlang Runtime System

	ejabberd Commands
	List of ejabberd Commands
	Restrict Execution with AccessCommands

	Web Admin
	Ad-hoc Commands
	Change Computer Hostname

	Securing ejabberd
	Firewall Settings
	epmd
	Erlang Cookie
	Erlang Node Name
	Securing Sensitive Files

	Clustering
	How it Works
	Router
	Local Router
	Session Manager
	s2s Manager

	Clustering Setup
	Service Load-Balancing
	Domain Load-Balancing Algorithm
	Load-Balancing Buckets

	Debugging
	Log Files
	Debug Console
	Watchdog Alerts

	Internationalization and Localization
	Release Notes
	Acknowledgements
	Copyright Information

