
CONTRIBUTED RESEARCH ARTICLE 421

pdp: An R Package for Constructing
Partial Dependence Plots
by Brandon M. Greenwell

Abstract Complex nonparametric models—like neural networks, random forests, and support vector
machines—are more common than ever in predictive analytics, especially when dealing with large
observational databases that don’t adhere to the strict assumptions imposed by traditional statistical
techniques (e.g., multiple linear regression which assumes linearity, homoscedasticity, and normality).
Unfortunately, it can be challenging to understand the results of such models and explain them to
management. Partial dependence plots offer a simple solution. Partial dependence plots are low-
dimensional graphical renderings of the prediction function so that the relationship between the
outcome and predictors of interest can be more easily understood. These plots are especially useful in
explaining the output from black box models. In this paper, we introduce pdp, a general R package
for constructing partial dependence plots.

Introduction

Harrison and Rubinfeld (1978) were among the first to analyze the well-known Boston housing data.
One of their goals was to find a housing value equation using data on median home values from
n = 506 census tracts in the suburbs of Boston from the 1970 census; see Harrison and Rubinfeld (1978,
Table IV) for a description of each variable. The data violate many classical assumptions like linearity,
normality, and constant variance. Nonetheless, Harrison and Rubinfeld—using a combination of
transformations, significance testing, and grid searches—were able to find a reasonable fitting model
(R2 = 0.81). Part of the payoff for there time and efforts was an interpretable prediction equation
which is reproduced in Equation (1).

̂log (MV) = 9.76 + 0.0063RM2 + 8.98× 10−5 AGE− 0.19 log (DIS) + 0.096 log (RAD)

− 4.20× 10−4TAX− 0.031PTRATIO + 0.36 (B− 0.63)2 − 0.37 log (LSTAT)

− 0.012CRIM + 8.03× 10−5ZN + 2.41× 10−4 INDUS + 0.088CHAS

− 0.0064NOX2.

(1)

Nowadays, many supervised learning algorithms can fit the data automatically in seconds—
typically with higher accuracy. (We will revisit the Boston housing data in Section 2.2.) The downfall,
however, is some loss of interpretation since these algorithms typically do not produce simple predic-
tion formulas like Equation (1). These models can still provide insight into the data, but it is not in the
form of simple equations. For example, quantifying predictor importance has become an essential task
in the analysis of "big data", and many supervised learning algorithms, like tree-based methods, can
naturally assign variable importance scores to all of the predictors in the training data.

While determining predictor importance is a crucial task in any supervised learning problem,
ranking variables is only part of the story and once a subset of "important" features is identified
it is often necessary to assess the relationship between them (or subset thereof) and the response.
This can be done in many ways, but in machine learning it is often accomplished by constructing
partial dependence plots (PDPs); see Friedman (2001) for details. PDPs help visualize the relationship
between a subset of the features (typically 1-3) and the response while accounting for the average
effect of the other predictors in the model. They are particularly effective with black box models like
random forests and support vector machines.

Let x =
{

x1, x2, . . . , xp
}

represent the predictors in a model whose prediction function is f̂ (x). If
we partition x into an interest set, zs, and its compliment, zc = x \ zs, then the "partial dependence" of
the response on zs is defined as

fs (zs) = Ezc

[
f̂ (zs, zc)

]
=
∫

f̂ (zs, zc) pc (zc) dzc, (2)

where pc (zc) is the marginal probability density of zc: pc (zc) =
∫

p (x) dzs. Equation (2) can be
estimated from a set of training data by

f̄s (zs) =
1
n

n

∑
i=1

f̂
(
zs, zi,c

)
, (3)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

Brandon Greenwell
Note: the pdp package has received several enhancements since the original publication of this article. For example, ICE plots can be obtained automatically in most cases by setting ice = TRUE in the call to partial(). See the NEWS file for full details.

CONTRIBUTED RESEARCH ARTICLE 422

where zi,c (i = 1, 2, . . . , n) are the values of zc that occur in the training sample; that is, we average out
the effects of all the other predictors in the model.

Constructing a PDP (3) in practice is rather straightforward. To simplify, let zs = x1 be the predictor
variable of interest with unique values {x11, x12, . . . , x1k}. The partial dependence of the response on
x1 can be constructed as follows:

1. For i ∈ {1, 2, . . . , k}:
(a) Copy the training data and replace the original values of x1 with the constant x1i.

(b) Compute the vector of predicted values from the modified copy of the training
data.

(c) Compute the average prediction to obtain f̄1 (x1i).

2. Plot the pairs
{

x1i, f̄1 (x1i)
}

for i = 1, 2, . . . , k.

Algorithm 1: A simple algorithm for constructing the partial dependence of the response
on a single predictor x1.

Algorithm 1 can be quite computationally intensive since it involves k passes over the training
records. Fortunately, the algorithm can be parallelized quite easily (more on this in Section 2.2.4). It
can also be easily extended to larger subsets of two or more features as well.

Limited implementations of Friedman’s PDPs are available in packages randomForest (Liaw and
Wiener, 2002) and gbm (Ridgeway, 2017), among others; these are limited in the sense that they
only apply to the models fit using the respective package. For example, the partialPlot function
in randomForest only applies to objects of class "randomForest" and the plot function in gbm only
applies to "gbm" objects. While the randomForest implementation will only allow for a single predictor,
the gbm implementation can deal with any subset of the predictor space. Partial dependence functions
are not restricted to tree-based models; they can be applied to any supervised learning algorithm
(e.g., generalized additive models and neural networks). However, to our knowledge, there is no
general package for constructing PDPs in R. For example, PDPs for a conditional random forest as
implemented by the cforest function in the party and partykit packages; see Hothorn et al. (2017)
and Hothorn and Zeileis (2016), respectively. The pdp (Greenwell, 2017) package tries to close this gap
by offering a general framework for constructing PDPs that can be applied to several classes of fitted
models.

The plotmo package (Milborrow, 2017b) is one alternative to pdp. According to Milborrow, plotmo
constructs "a poor man’s partial dependence plot." In particular, it plots a model’s response when
varying one or two predictors while holding the other predictors in the model constant (continuous
features are fixed at their median value, while factors are held at their first level). These plots allow for
up to two variables at a time. They are also less accurate than PDPs, but are faster to construct. For
additive models (i.e., models with no interactions), these plots are identical in shape to PDPs. As of
plotmo version 3.3.0, there is now support for constructing PDPs, but it is not the default. The main
difference is that plotmo, rather than applying step 1. (a)-(c) in Algorithm 1, accumulates all the data
at once thereby reducing the number of internal calls to predict. The trade-off is a slight increase in
speed at the expense of using more memory. So, why use the pdp package? As will be discussed in
the upcoming sections, pdp:

• contains only a few functions with relatively few arguments;

• does not produce a plot by default;

• can be used more efficiently with "gbm" objects (see Section 2.2.4);

• produces graphics based on lattice (Sarkar, 2008), which are more flexible than base R graphics;

• defaults to using false color level plots for multivariate displays (see Section 2.2.2);

• contains options to mitigate the risks associated with extrapolation (see Section 2.2.4);

• has the option to display progress bars (see Section 2.2.4);

• has the option to construct PDPs in parallel (see Section 2.2.4);

• is extremely flexible in the types of PDPs that can be produced (see Section 2.2.6),

PDPs can be misleading in the presence of substantial interactions (Goldstein et al., 2015). To
overcome this issue Goldstein, Kapelner, Bleich, and Pitkin developed the concept of individual
conditional expectation (ICE) plots—available in the ICEbox package. ICE plots display the estimated
relationship between the response and a predictor of interest for each observation. Consequently, the

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 423

PDP for a predictor of interest can be obtained by averaging the corresponding ICE curves across
all observations. In Section 2.2.6, it is shown how to obtain ICE curves using the pdp package. It is
also possible to display the PDP for a single predictor with ICEbox; see ?ICEbox::plot.ice for an
example. ICEbox only allows for one variable at a time (i.e., no multivariate displays), though color
can be used effectively to display information about an additional predictor. The ability to construct
centered ICE (c-ICE) plots and derivative ICE (d-ICE) plots is also available in ICEbox; c-ICE plots
help visualize heterogeneity in the modeled relationship between observations, and d-ICE plots help
to explore interaction effects.

Many other techniques exist for visualizing relationships between the predictors and the response
based on a fitted model. For example, the car package (Fox and Weisberg, 2011) contains many
functions for constructing partial-residual and marginal-model plots. Effect displays , available in the
effects package (Fox, 2003), provide tabular and graphical displays for the terms in parametric models
while holding all other predictors at some constant value—similar in spirit to plotmo’s marginal
model plots. However, these methods were designed for simpler parametric models (e.g., linear and
generalized linear models), whereas plotmo, ICEbox, and pdp are more useful for black box models
(although, they can be used for simple parametric models as well).

Constructing PDPs in R

The pdp package is useful for constructing PDPs for many classes of fitted models in R. PDPs are
especially useful for visualizing the relationships discovered by complex machine learning algorithms
such as a random forest. The latest stable release is available from CRAN. The development ver-
sion is located on GitHub: https://github.com/bgreenwell/pdp. Bug reports and suggestions are
appreciated and should be submitted to https://github.com/bgreenwell/pdp/issues. The two most
important functions exported by pdp are:

• partial

• plotPartial

The partial function evaluates the partial dependence (3) from a fitted model over a grid of pre-
dictor values; the fitted model and predictors are specified using the object and pred.var arguments,
respectively—these are the only required arguments. If plot = FALSE (the default), partial returns
an object of class "partial" which inherits from the class "data.frame"; put another way, by default,
partial returns a data frame with an additional class that is recognized by the plotPartial function.
The columns of the data frame are labeled in the same order as the features supplied to pred.var, and
the last column is labeled yhat1 and contains the values of the partial dependence function f̄s (zs). If
plot = TRUE, then partial makes an internal call to plotPartial (with fewer plotting options) and
returns the PDP in the form of a lattice plot (i.e., a "trellis" object). Note: it is recommended to call
partial with plot = FALSE and store the results; this allows for more flexible plotting, and the user
will not have to waste time calling partial again if the default plot is not sufficient.

The plotPartial function can be used for displaying more advanced PDPs; it operates on objects
of class "partial" and has many useful plotting options. For example, plotPartial makes it straight
forward to add a LOESS smooth, or produce a 3-D surface instead of a false color level plot (the
default). Of course, since the default output produced by partial is still a data frame, the user can
easily use any plotting package he/she desires to visualize the results—ggplot2 (Wickham, 2009), for
instance (see Section 2.2.5 and Section 2.2.6 for examples).

Note: as mentioned above, pdp relies on lattice for its graphics. lattice itself is built on top of grid
(R Core Team, 2017). grid graphics behave a little differently than traditional R graphics, and two
points are worth making (see ?lattice for more details):

1. lattice functions return a "trellis" object, but do not display it; the print method produces the
actual display. However, due to R’s automatic printing rule, the result is automatically printed
when using these functions in the command line. If plotPartial is called inside of source or
inside a loop (e.g., for or while), an explicit print statement is required to display the resulting
graph; hence, the same is true when using partial with plot = TRUE.

2. Setting graphical parameters via par typically has no effect on lattice plots. Instead, lattice
provides its own trellis.par.set function for modifying graphical parameters.

A consequence of the second point is that the par function cannot be used to control the layout of
multiple lattice (and hence pdp) plots. Simple solutions are available in packages latticeExtra (Sarkar
and Andrews, 2016) and gridExtra (Auguie, 2016). For convenience, pdp imports the grid.arrange

1There is one exception to this. When a function supplied via the pred.fun argument returns multiple predic-
tions, the second to last and last columns will be labeled yhat and yhat.id, respectively (see Section 2.2.6).

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 424

function from gridExtra which makes it easy to display multiple grid-based graphical objects on
a single plot (these include graphics produced using lattice (hence, pdp) and ggplot2). This is
demonstrated in multiple examples throughout this paper.

Currently supported models are described in Table 1. In these cases, the user does not need to
supply a prediction function (more on this in Section 2.2.6) or a value for the type argument (i.e.,
"regression" or "classification"). In other situations, the user may need to specify one or both of
these arguments. This allows partial to be flexible enough to handle many of the model types not
listed in Table 1; for example, neural networks from the nnet package (Venables and Ripley, 2002).

Type of model R package Object class

Decision tree C50 (Kuhn et al., 2015) "C5.0"
party "BinaryTree"
partykit "party"
rpart (Therneau et al., 2017) "rpart"

Bagged decision trees adabag (Alfaro et al., 2013) "bagging"
ipred (Peters and Hothorn, 2017) "classbagg",

"regbagg"
Boosted decision trees adabag (Alfaro et al., 2013) "boosting"

gbm "gbm"
xgboost "xgb.Booster"

Cubist Cubist (Kuhn et al., 2016) "cubist"
Discriminant analysis MASS (Venables and Ripley, 2002) "lda", "qda"
Generalized linear model stats "glm", "lm"
Linear model stats "lm"
Nonlinear least squares stats "nls"
Multivariate adaptive re-
gression splines (MARS)

earth (Milborrow, 2017a) "earth"

mda (Leisch et al., 2016) "mars"
Projection pursuit regres-
sion

stats "ppr"

Random forest randomForest "randomForest"
party "RandomForest"
partykit "cforest"
ranger (Wright, 2017) "ranger"

Support vector machine e1071 (Meyer et al., 2017) "svm"
kernlab (Karatzoglou et al., 2004) "ksvm"

Table 1: Models specifically supported by the pdp package. Note: for some of these cases, the user
may still need to supply additional arguments in the call to partial.

The partial function also supports objects of class "train" produced using the train function
from the well-known caret package (Kuhn, 2017). This means that partial can be used with any classi-
fication or regression model that has been fit using caret’s train function; see http://topepo.github.
io/caret/available-models.html for a current list of models supported by caret. An example is
given in Section 2.2.7.

Another important argument to partial is train. If train = NULL (the default), partial tries
to extract the original training data from the fitted model object. For objects that typically store a
copy of the training data (e.g., objects of class "BinaryTree", "RandomForest", and "train"), this is
straightforward. Otherwise, partial will attempt to extract the call stored in object (if available) and
use that to evaluate the training data in the same environment from which partial was called. This
can cause problems when, for example, the training data have been changed after fitting the model,
but before calling partial. Hence, it is good practice to always supply the training data via the train
argument in the call to partial2. If train = NULL and the training data can not be extracted from
the fitted model, the user will be prompted with an informative error message (this will occur, for
example, when using partial with "ksvm" and "xgb.Booster" objects):

Error: The training data could not be extracted from object. Please supply
the raw training data using the `train` argument in the call to `partial`.

2For brevity, we ignore this option in most of the examples in this paper.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 425

For illustration, we will use a corrected version of the Boston housing data analyzed in Harrison
and Rubinfeld (1978); the data are available in the pdp package (see ?pdp::boston for details). We
begin by loading the data and fitting a random forest with default tuning parameters and 500 trees:

data(boston, package = "pdp") # load the (corrected) Boston housing data
library(randomForest) # for randomForest, partialPlot, and varImpPlot functions
set.seed(101) # for reproducibility
boston.rf <- randomForest(cmedv ~ ., data = boston, importance = TRUE)
varImpPlot(boston.rf) # Figure 1

The model fit is reasonable, with an out-of-bag (pseudo) R2 of 0.89. The variable importance scores are
displayed in Figure 1. Both plots indicate that the percentage of lower status of the population (lstat)
and the average number of rooms per dwelling (rm) are highly associated with the median value of
owner-occupied homes (cmedv). The question then arises, "What is the nature of these associations?"
To help answer this, we can look at the partial dependence of cmedv on lstat and rm, both individually
and together.

zn
chas
rad
b
indus
lat
age
tax
nox
ptratio
crim
lon
dis
lstat
rm

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30 35
%IncMSE

zn
chas
rad
lat
b
age
tax
crim
ptratio
dis
indus
nox
lon
rm
lstat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2000 6000 10000
IncNodePurity

boston.rf

Figure 1: Dotchart of variable importance scores for the Boston housing data based on a random forest
with 500 trees.

Single predictor PDPs

As previously mentioned, the randomForest package has its own partialPlot function for visualizing
the partial dependence of the response on a single predictor—the keywords here are "single predictor".
For example, the following snippet of code plots the partial dependence of cmedv on lstat:

partialPlot(boston.rf, pred.data = boston, x.var = "lstat")

The same plot can be achieved using the partial function and setting plot = TRUE (see the left side of
Figure 2):

library(pdp) # for partial, plotPartial, and grid.arrange functions
partial(boston.rf, pred.var = "lstat", plot = TRUE) # Figure 2 (left)

The only difference is that pdp uses the lattice graphics package to produce all of its displays.

For a more customizable plot, we can set plot = FALSE in the call to partial and then use the
plotPartial function on the resulting data frame. This is illustrated in the example below which
increases the line width, adds a LOESS smooth, and customizes the y-axis label. The result is displayed

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 426

in the right side of Figure 2. Note: to encourage writing more readable code, the pipe operator %>%
provided by the magrittr package (Bache and Wickham, 2014) is exported whenever pdp is loaded.

Figure 2 (right)
boston.rf %>% # the %>% operator is read as "and then"
partial(pred.var = "lstat") %>%
plotPartial(smooth = TRUE, lwd = 2, ylab = expression(f(lstat)))

lstat

yh
at

20

22

24

26

28

30

10 20 30

lstat

f(l
st

at
)

20

22

24

26

28

30

10 20 30

Figure 2: Partial dependence of cmedv on lstat based on a random forest. Left: Default plot. Right:
Customized plot obtained using the plotPartial function.

Multi-predictor PDPs

The benefit of using partial is threefold: (1) it is a flexible, generic function that can be used to obtain
different kinds of PDPs for various types of fitted models (not just random forests), (2) it will allow
for any number of predictors to be used (e.g., multivariate displays), and (3) it can utilize any of the
parallel backends supported by the foreach package (Revolution Analytics and Weston, 2015c); we
discuss parallel execution in a later section. For example, the following code chunk uses the random
forest model to assess the joint effect of lstat and rm on cmedv. The grid.arrange function is used to
display three PDPs, which make use of various plotPartial options3, on the same graph. The results
are displayed in Figure 3.

Compute partial dependence data for lstat and rm
pd <- partial(boston.rf, pred.var = c("lstat", "rm"))

Default PDP
pdp1 <- plotPartial(pd)

Add contour lines and use a different color palette
rwb <- colorRampPalette(c("red", "white", "blue"))
pdp2 <- plotPartial(pd, contour = TRUE, col.regions = rwb)

3-D surface
pdp3 <- plotPartial(pd, levelplot = FALSE, zlab = "cmedv", drape = TRUE,

colorkey = TRUE, screen = list(z = -20, x = -60))

Figure 3
grid.arrange(pdp1, pdp2, pdp3, ncol = 3)

Note: the default color map for level plots is the color blind-friendly matplotlib (Hunter, 2007) ’viridis’
color map provided by the viridis package (Garnier, 2017).

3See Section 2.2.4 for an example of how to add a label to the colorkey in these types of graphs.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 427

lstat

rm

4

5

6

7

8

10 20 30

20

25

30

35

40

lstat
rm

4

5

6

7

8

10 20 30

20

25

30

35

40

lstat

rm

cmedv

Figure 3: Partial dependence of cmedv on lstat and rm based on a random forest. Left: Default plot.
Middle: With contour lines and a different color palette. Right: Using a 3-D surface.

Avoiding extrapolation

It is not wise to draw conclusions from PDPs in regions outside the area of the training data. Here
we describe two ways to mitigate the risk of extrapolation in PDPs: rug displays and convex hulls.
Rug displays are one-dimensional plots added to the axes. Both partial and plotPartial have a rug
option that, when set to TRUE, will display the deciles of the distribution (as well as the minimum and
maximum values) for the predictors on the horizontal and vertical axes. The following snippet of code
produces the left display in Figure 4.

Figure 4 (left)
partial(boston.rf, pred.var = "lstat", plot = TRUE, rug = TRUE)

In two or more dimensions, plotting the convex hull is more informative; it outlines the region of
the predictor space that the model was trained on. When chull = TRUE, the convex hull of the first
two dimensions of zs (i.e., the first two variables supplied to pred.var) is computed; for example, if
you set chull = TRUE in the call to partial only the region within the convex hull of the first two
variables is plotted. Over interpreting the PDP outside of this region is considered extrapolation and
is ill-advised. The right display in Figure 4 was produced using:

Figure 4 (right)
partial(boston.rf, pred.var = c("lstat", "rm"), plot = TRUE, chull = TRUE)

lstat

yh
at

20

22

24

26

28

30

10 20 30

lstat

rm

4

5

6

7

8

10 20 30

20

25

30

35

40

Figure 4: Examples of PDPs with the addition of a rug display (left) and a convex hull (right).

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 428

Addressing computational concerns

Constructing PDPs can be quite computationally expensive4 Several strategies are available to ease
the computational burden in larger problems. For example, there is no need to compute partial
dependence of cmedv using each unique value of rm in the training data (which would require k = 446
passes over the data!). We could get very reasonable results using a reduced number of points. Current
options are to use a grid of equally spaced values in the range of the variable of interest; the number
of points can be controlled using the grid.resolution option in the call to partial. Alternatively, a
user-specified grid of values (e.g., containing specific quantiles of interest) can be supplied through the
pred.grid argument. To demonstrate, the following snippet of code computes the partial dependence
of cmedv on rm using each option; grid.arrange is used to display all three PDPs on the same graph,
side by side. The results are displayed in Figure 5.

Figure 5
grid.arrange(
partial(boston.rf, "rm", plot = TRUE),
partial(boston.rf, "rm", grid.resolution = 30, plot = TRUE),
partial(boston.rf, "rm", pred.grid = data.frame(rm = 3:9), plot = TRUE),
ncol = 3

)

rm

yh
at

20

22

24

26

28

30

4 5 6 7 8 9

rm

yh
at

20

22

24

26

28

30

4 5 6 7 8 9

rm

yh
at

20

22

24

26

28

30

3 4 5 6 7 8 9

Figure 5: Partial dependence of cmedv on rm. Left: Default plot. Middle: Using a reduced grid size.
Right: Using a user-specified grid.

The partial function relies on the plyr package (Wickham, 2011), rather than R’s built-in for
loops. This makes it easy to request progress bars (e.g., progress = "text") or run partial in parallel.
In fact, partial can use any of the parallel backends supported by the foreach package. To use this
functionality, we must first load and register a supported parallel backend [e.g., doMC (Revolution
Analytics and Weston, 2015a) or doParallel (Revolution Analytics and Weston, 2015b)].

To illustrate, we will use the Los Angeles ozone pollution data described in Breiman and Fried-
man (1985). The data contain daily measurements of ozone concentration (ozone) along with eight
meteorological quantities for 330 days in the Los Angeles basin in 1976.5 The following code chunk
loads the data into R:

ozone <- read.csv(paste0("http://statweb.stanford.edu/~tibs/ElemStatLearn/",
"datasets/LAozone.data"), header = TRUE)

Next, we use the multivariate adaptive regression splines (MARS) algorithm introduced in Fried-
man (1991) to model ozone concentration as a nonlinear function of the eight meteorological variables
plus day of the year; we allow for up to three-way interactions.

library(earth) # for earth function (i.e., MARS algorithm)
ozone.mars <- earth(ozone ~ ., data = ozone, degree = 3)
summary(ozone.mars)

The MARS model produced a generalized R2 of 0.79, similar to what was reported in Breiman and
Friedman (1985). A single three-way interaction was found involving the predictors

4The exception is regression trees based on single-variable splits which can make use of the efficient weighted
tree traversal method described in Friedman (2001), however, only the gbm package seems to make use of this
approach; consequently, pdp can also exploit this strategy when used with gbm models (see ?partial for details).

5The data are available from http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/LAozone.data.
Details, including variable information, are available from http://statweb.stanford.edu/~tibs/ElemStatLearn/
datasets/LAozone.info.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 429

• wind: wind speed (mph) at Los Angeles International Airport (LAX)

• temp: temperature (oF) at Sandburg Air Force Base

• dpg: the pressure gradient (mm Hg) from LAX to Dagget, CA

To understand this interaction, we can use a PDP. However, since the partial dependence between
three continuous variables can be computationally expensive, we will run partial in parallel.

Setting up a parallel backend is rather straightforward. To demonstrate, the following snippet of
code sets up the partial function to run in parallel on both Windows and Unix-like systems using the
doParallel package.

library(doParallel) # load the parallel backend
cl <- makeCluster(4) # use 4 workers
registerDoParallel(cl) # register the parallel backend

Now, to run partial in parallel, all we have to do is invoke the parallel = TRUE and paropts options
and the rest is taken care of by the internal call to plyr and the parallel backend we loaded6. This
is illustrated in the code chunk below which obtains the partial dependence of ozone on wind, temp,
and dpg in parallel. The last three lines of code add a label to the colorkey. The result is displayed in
Figure 6. Note: it is considered good practice to shut down the workers by calling stopCluster when
finished.

partial(ozone.mars, pred.var = c("wind", "temp", "dpg"), plot = TRUE,
chull = TRUE, parallel = TRUE, paropts = list(.packages = "earth")) # Figure 6

stopCluster(cl) # good practice

Add a label to the colorkey
lattice::trellis.focus("legend", side = "right", clipp.off = TRUE, highlight = FALSE)
grid::grid.text("ozone", x = 0.2, y = 1.05, hjust = 0.5, vjust = 1)
lattice::trellis.unfocus()

wind

te
m

p

30

40

50

60

70

80

90

5 10 15

dpg dpg

dpg

5 10 15

30

40

50

60

70

80

90
dpg

−30

−20

−10

0

10

ozone

Figure 6: Partial dependence of ozone on wind, temp, and dpg. Since dpg is continuous, it is first
converted to a shingle; in this case, four groups with 10% overlap.

It is important to note that when using more than two predictor variables, plotPartial produces
a trellis display. The first two variables given to pred.var are used for the horizontal and vertical axes,
and additional variables define the panels. If the panel variables are continuous, then shingles7 are
produced first using the equal count algorithm (see, for example, ?lattice::equal.count). Hence, it
will be more effective to use categorical variables to define the panels in higher dimensional displays
when possible.

6Notice we have to pass the names of external packages that the tasks depend on via the paropts argument; in
this case, "earth". See ?plyr::adply for details.

7A shingle is a special Trellis data structure that consists of a numeric vector along with intervals that define the
"levels" of the shingle. The intervals may be allowed to overlap.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 430

Classification problems

Traditionally, for classification problems, partial dependence functions are on a scale similar to the
logit; see, for example, Hastie et al. (2009, pp. 369—370). Suppose the response is categorical with K
levels, then for each class we compute

fk(x) = log [pk(x)]− 1
K

K

∑
k=1

log [pk(x)] , k = 1, 2, . . . , K, (4)

where pk(x) is the predicted probability for the k-th class. Plotting fk(x) helps us understand how the
log-odds for the k-th class depends on different subsets of the predictor variables.

To illustrate, we consider Edgar Anderson’s iris data from the datasets package. The iris data
frame contains the sepal length, sepal width, petal length, and petal width (in centimeters) for 50
flowers from each of three species of iris: setosa, versicolor, and virginica. We fit a support vector
machine with a Gaussian radial basis function kernel to the data using the svm function in the e1071
package (the tuning parameters were determined using 5-fold cross-validation).

library(e1071) # for svm function
iris.svm <- svm(Species ~ ., data = iris, kernel = "radial", gamma = 0.75,

cost = 0.25, probability = TRUE)

Note: the partial function has to be able to extract the predicted probabilities for each class, so it is
necessary to set probability = TRUE in the call to svm.

Next, we plot the partial dependence of Species on both Petal.Width and Petal.Length for each
of the three classes. The result is displayed in Figure 7.

pd <- NULL
for (i in 1:3) {
tmp <- partial(iris.svm, pred.var = c("Petal.Width", "Petal.Length"),

which.class = i, grid.resolution = 101, progress = "text")
pd <- rbind(pd, cbind(tmp, Species = levels(iris$Species)[i]))

}

Figure 7
library(ggplot2)
ggplot(pd, aes(x = Petal.Width, y = Petal.Length, z = yhat, fill = yhat)) +
geom_tile() +
geom_contour(color = "white", alpha = 0.5) +
scale_fill_distiller(name = "Centered\nlogit", palette = "Spectral") +
theme_bw() +
facet_grid(~ Species)

setosa versicolor virginica

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5

2

4

6

Petal.Width

P
et

al
.L

en
gt

h

−1

0

1

2

Centered
logit

Figure 7: Partial dependence of Species on Petal.Width and Petal.Length for the iris data.

User-defined prediction functions

PDPs are essentially just averaged predictions; this is apparent from step 1. (c) in Algorithm 1.
Consequently, as pointed out by Goldstein et al. (2015), strong heterogeneity can conceal the complexity
of the modeled relationship between the response and predictors of interest. This was part of the
motivation behind Goldstein, Kapelner, Bleich, and Pitkin’s ICE plot procedure.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 431

With partial it is possible to replace the mean in step 1. (c) of Algorithm 1 with any other function
(e.g., the median or trimmed mean), or obtain PDPs for classification problems on the probability
scale. It is even possible to obtain ICE curves. This flexibility is due to the new pred.fun argument in
partial (starting with pdp version 0.4.0). This argument accepts an optional prediction function that
requires two arguments: object and newdata. The supplied prediction function must return either a
single prediction or a vector of predictions. Returning the mean of all the predictions will result in the
traditional PDP. Returning a vector of predictions (i.e., one for each observation) will result in a set of
ICE curves. The examples below illustrate.

Using the pred.fun argument, it is possible to obtain PDPs for classification problems on the
probability scale. We just need to write a function that computes the predicted class probability of
interest averaged across all observations. The function below can be used with the fitted SVM from
the iris example of Section 2.2.5 to extract the average predicted probability of belonging to the Setosa
class.

pred.prob <- function(object, newdata) { # see ?predict.svm
pred <- predict(object, newdata, probability = TRUE)
prob.setosa <- attr(pred, which = "probabilities")[, "setosa"]
mean(prob.setosa)

}

Next, we simply pass this function via the pred.fun argument in the call to partial. The following
chunk of code uses pred.prob to obtain PDPs for Petal.Width and Petal.Length on the probability
scale. The results are displayed in Figure 8.

PDPs for Petal.Width and Petal.Length on the probability scale
pdp.pw <- partial(iris.svm, pred.var = "Petal.Width", pred.fun = pred.prob,

plot = TRUE)
pdp.pl <- partial(iris.svm, pred.var = "Petal.Length", pred.fun = pred.prob,

plot = TRUE)
pdp.pw.pl <- partial(iris.svm, pred.var = c("Petal.Width", "Petal.Length"),

pred.fun = pred.prob, plot = TRUE)

Figure 8
grid.arrange(pdp.pw, pdp.pl, pdp.pw.pl, ncol = 3)

Petal.Width

yh
at

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5 2.0 2.5

Petal.Length

yh
at

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7

Petal.Width

P
et

al
.L

en
gt

h

2

3

4

5

6

0.5 1.0 1.5 2.0 2.5

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8: Partial dependence of Species on Petal.Width and Petal.Length plotted on the probability
scale; in this case, the probability of belonging to the setosa species.

For regression problems, the default prediction function is essentially

pred.fun <- function(object, newdata) {
mean(predict(object, newdata), na.rm = TRUE)

}

This corresponds to step step 1. (c) in Algorithm 1. Suppose we would like ICE curves instead. To
accomplish this we need to pass a prediction function that returns a vector of predictions, one for
each observation in newdata (i.e., just remove the call to mean in pred.fun). The code snippet below
illustrates this for the Boston housing example using the predictor rm. The result is displayed in
Figure 9. Note: when the function supplied to pred.fun returns multiple predictions, the data frame
returned by partial includes an additional column, yhat.id, that indicates which curve a point
belongs to; in the following code chunk, there will be one curve for each observation in boston.

Use partial to obtain ICE curves
pred.ice <- function(object, newdata) predict(object, newdata)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 432

rm.ice <- partial(boston.rf, pred.var = "rm", pred.fun = pred.ice)

Figure 9
plotPartial(rm.ice, rug = TRUE, train = boston, alpha = 0.3)

rm

yh
at

10

20

30

40

50

4 5 6 7 8 9

Figure 9: ICE curves depicting the relationship between cmedv and rm for the Boston housing example.
Each curve corresponds to a different observation.

The curves in Figure 9 indicate some heterogeneity in the fitted model (i.e., some of the curves
depict the opposite relationship). Such heterogeneity can be easier to spot using c-ICE curves; see
Equation (4) on page 49 of Goldstein et al. (2015). Using dplyr (Wickham and Francois, 2016), it is
rather straightforward to post-process the output from partial to obtain c-ICE curves (similar to the
construction of raw change scores (Fitzmaurice et al., 2011, pg. 130) for longitudinal data). This is
shown below.

Post-process rm.ice to obtain c-ICE curves
library(dplyr) # for group_by and mutate functions
rm.ice <- rm.ice %>%
group_by(yhat.id) %>% # perform next operation within each yhat.id
mutate(yhat.centered = yhat - first(yhat)) # so each curve starts at yhat = 0

Since the PDP is just the average of the corresponding ICE curves, it is quite simple to display
both on the same plot. This is easily accomplished using the stat_summary function from the ggplot2
package to average the ICE curves together. The code snippet below plots the ICE curves and c-ICE
curves, along with their averages, for the predictor rm in the Boston housing example. The results are
displayed in Figure 10.

ICE curves with their average
p1 <- ggplot(rm.ice, aes(rm, yhat)) +
geom_line(aes(group = yhat.id), alpha = 0.2) +
stat_summary(fun.y = mean, geom = "line", col = "red", size = 1)

c-ICE curves with their average
p2 <- ggplot(rm.ice, aes(rm, yhat.centered)) +
geom_line(aes(group = yhat.id), alpha = 0.2) +
stat_summary(fun.y = mean, geom = "line", col = "red", size = 1)

Figure 10
grid.arrange(p1, p2, ncol = 2)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 433

10

20

30

40

50

4 5 6 7 8 9

rm

yh
at

−5

0

5

10

15

4 5 6 7 8 9

rm

yh
at

.c
en

te
re

d

Figure 10: ICE curves (black curves) and their average (red curve) depicting the relationship between
cmedv and rm for the Boston housing example. Left: Uncentered (here the red curve is just the traditional
PDP). Right: Centered.

Using partial with the XGBoost library

To round out our discussion, we provide one last example using a recently popular (and successful!)
machine learning tool. XGBoost, short for eXtreme Gradient Boosting, is a popular library providing
optimized distributed gradient boosting that is specifically designed to be highly efficient, flexible and
portable. The associated R package xgboost has been used to win a number of Kaggle competitions. It
has been shown to be many times faster than the well-known gbm package. However, unlike gbm,
xgboost does not have built-in functions for constructing PDPs. Fortunately, the pdp package can be
used to fill this gap.

For illustration, we return to the Boston housing example. The code chunk below uses caret to tune
an xgboost model using 10-fold cross-validation. (After loading caret, use getModelInfo("xgbTree")
for information on tuning xgboost models.) Warning: The following code chunk may take a few
minutes to run.

Tune an XGBoost model using 10-fold cross-validation
library(caret) # functions related to classification and regression training
set.seed(202) # for reproducibility
boston.xgb <- train(x = data.matrix(subset(boston, select = -cmedv)),

y = boston$cmedv, method = "xgbTree", metric = "Rsquared",
trControl = trainControl(method = "cv", number = 10),
tuneLength = 10)

The optimal model had a cross-validated R2 of 0.902 (use print(boston.xgb$bestTune) to view the
optimum tuning parameters). The next snippet of code computes the partial dependence of cmedv on
both rm and lstat, individually and together. The results are displayed in Figure 11.

PDPs for lstat and rm
pdp.lstat <- partial(boston.xgb, pred.var = "lstat", plot = TRUE, rug = TRUE)
pdp.rm <- partial(boston.xgb, pred.var = "rm", plot = TRUE, rug = TRUE)
pdp.lstat.rm <- partial(boston.xgb, pred.var = c("lstat", "rm"),

plot = TRUE, chull = TRUE)

Figure 11
grid.arrange(pdp.lstat, pdp.rm, pdp.lstat.rm, ncol = 3)

The train function creates objects of class "train", whereas the xgboost function creates objects of
class "xgb.Booster". Since train defaults to storing a copy of the training data as part of the "train"
object, there is no need to supply it in the call to partial in this example. However, this is not the
case when using the xgboost package directly. To illustrate, we fit the same model using the xgboost
function with the optimum tuning parameters found previously using caret.

library(xgboost) # for xgboost function
set.seed(203) # for reproducibility

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 434

lstat

yh
at

20

25

30

10 20 30

rm

yh
at

20

22

24

26

28

30

4 5 6 7 8 9

lstat

rm

4

5

6

7

8

10 20 30

15

20

25

30

35

40

Figure 11: PDPs for the top two most important variables in the Boston housing data using xgboost.
Compare this to the random forest results displayed in Figures 4-5.

boston.xgb <- xgboost(data = data.matrix(subset(boston, select = -cmedv)),
label = boston$cmedv, objective = "reg:linear",
nrounds = 100, max_depth = 5, eta = 0.3, gamma = 0,
colsample_bytree = 0.8, min_child_weight = 1,
subsample = 0.9444444)

To use partial with "xgb.Booster" objects, we need to supply the original training data (minus the
response) in the call to partial. The following snippet of code computes the partial dependence of
cmedv on rm (plot not shown). (Make sure you are using version 0.6-0 or later of xgboost: https://
github.com/dmlc/xgboost/tree/master/R-package.) Note: while xgboost requires the training data
to be an object of class "matrix", "dgCMatrix", or "xgb.DMatrix", partial requires a "data.frame"
that does not contain the response column.

partial(boston.xgb, pred.var = "rm", plot = TRUE, rug = TRUE,
train = subset(boston, select = -cmedv))

Summary

PDPs can be used to graphically examine the dependence of the response on low cardinality subsets
of the features, accounting for the average effect of the other predictors. In this paper, we showed how
to construct PDPs for various types of black box models in R using the pdp package. We also briefly
discussed related approaches available in other R packages. Suggestions to avoid extrapolation and
high execution times were discussed and demonstrated via examples.

This paper is based on pdp version 0.4.0. For updates that have occurred since then, see the
package’s NEWS file. In terms of future development, pdp can be expanded in a number of ways. For
example, it would be useful to have the ability to construct PDPs for black box survival models—like
conditional random forests with censored response. It would also be worthwhile to implement the
partial dependence-based H-statistic (Friedman and Popescu, 2008) for assessing the strength of
interaction between predictors.

Acknowledgments

The author would like to thank two anonymous reviewers and the Editor for their helpful comments
and suggestions.

Bibliography

E. Alfaro, M. Gámez, and N. García. adabag: An R package for classification with boosting and bagging.
Journal of Statistical Software, 54(2):1–35, 2013. URL https://doi.org/10.18637/jss.v054.i02.
[p424]

B. Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2016. URL https://CRAN.R-project.
org/package=gridExtra. R package version 2.2.1. [p423]

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2014. URL https://CRAN.R-
project.org/package=magrittr. R package version 1.5. [p426]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 435

L. Breiman and J. H. Friedman. Estimating optimal transformations for multiple regression and
correlation. Journal of the American Statistical Association, 80(391):580–598, 1985. URL https://doi.
org/10.1080/01621459.1985.10478157. [p428]

G. M. Fitzmaurice, N. M. Laird, and J. H. Ware. Applied Longitudinal Analysis. Wiley Series in Probability
and Statistics. John Wiley & Sons, 2011. [p432]

J. Fox. Effect displays in R for generalised linear models. Journal of Statistical Software, 8(15):1–27, 2003.
URL https://doi.org/10.18637/jss.v008.i15. [p423]

J. Fox and S. Weisberg. An R Companion to Applied Regression. Sage, Thousand Oaks CA, 2nd edition,
2011. URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. [p423]

J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–67, 1991. URL
https://doi.org/10.1214/aos/1176347963. [p428]

J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,
29:1189–1232, 2001. URL https://doi.org/10.1214/aos/1013203451. [p421, 428]

J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. Annals of Applied Statistics, 2
(3):916–954, 2008. URL https://doi.org/10.1214/07-aoas148. [p434]

S. Garnier. viridis: Default Color Maps from ’matplotlib’, 2017. URL https://CRAN.R-project.org/
package=viridis. R package version 0.4.0. [p426]

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visualizing statistical
learning with plots of individual conditional expectation. Journal of Computational and Graphical
Statistics, 24(1):44–65, 2015. URL https://doi.org/10.1080/10618600.2014.907095. [p422, 430,
432]

B. Greenwell. pdp: Partial Dependence Plots, 2017. URL https://CRAN.R-project.org/package=
partial. R package version 0.4.0. [p422]

D. Harrison and D. L. Rubinfeld. Hedonic housing prices and the demand for clean air. Journal of
Environmental Economics and Management, 5(1):81–102, 1978. URL https://doi.org/10.1016/0095-
0696(78)90006-2. [p421, 425]

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction, Second Edition. Springer Series in Statistics. Springer-Verlag, 2009. [p430]

T. Hothorn and A. Zeileis. partykit: A Laboratory for Recursive Partytioning, 2016. URL https://CRAN.R-
project.org/package=partykit. R package version 1.1-1. [p422]

T. Hothorn, K. Hornik, C. Strobl, and A. Zeileis. party: A Laboratory for Recursive Partytioning, 2017.
URL https://CRAN.R-project.org/package=party. R package version 1.2-3. [p422]

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):90–95,
2007. URL https://doi.org/10.1109/mcse.2007.55. [p426]

A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. Kernlab – an S4 package for kernel methods in
R. Journal of Statistical Software, 11(9):1–20, 2004. URL https://doi.org/10.18637/jss.v011.i09.
[p424]

M. Kuhn. caret: Classification and Regression Training, 2017. URL https://CRAN.R-project.org/
package=caret. R package version 6.0-76. [p424]

M. Kuhn, S. Weston, N. Coulter, and M. Culp. C50: C5.0 Decision Trees and Rule-Based Models, 2015.
URL https://CRAN.R-project.org/package=C50. R package version 0.1.0-24. [p424]

M. Kuhn, S. Weston, C. Keefer, and N. Coulter. Cubist: Rule- And Instance-Based Regression Modeling,
2016. URL https://CRAN.R-project.org/package=Cubist. R package version 0.0.19. [p424]

F. Leisch, K. Hornik, and B. D. Ripley. mda: Mixture and Flexible Discriminant Analysis, 2016. URL
https://CRAN.R-project.org/package=mda. R package version 0.4-9. [p424]

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22, 2002. URL
http://CRAN.R-project.org/doc/Rnews/. [p422]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071: Misc Functions of the
Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2017. URL https:
//CRAN.R-project.org/package=e1071. R package version 1.6-8. [p424]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 436

S. Milborrow. earth: Multivariate Adaptive Regression Splines, 2017a. URL https://CRAN.R-project.
org/package=earth. R package version 4.5.0. [p424]

S. Milborrow. plotmo: Plot a Model’s Response and Residuals, 2017b. URL https://CRAN.R-project.org/
package=plotmo. R package version 3.3.3. [p422]

A. Peters and T. Hothorn. ipred: Improved Predictors, 2017. URL https://CRAN.R-project.org/
package=ipred. R package version 0.9-6. [p424]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2017. URL https://www.R-project.org/. [p423]

Revolution Analytics and S. Weston. doMC: Foreach Parallel Adaptor for ’parallel’, 2015a. URL https:
//CRAN.R-project.org/package=doMC. R package version 1.3.4. [p428]

Revolution Analytics and S. Weston. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package, 2015b.
URL https://CRAN.R-project.org/package=doParallel. R package version 1.0.10. [p428]

Revolution Analytics and S. Weston. foreach: Provides Foreach Looping Construct for R, 2015c. URL
https://CRAN.R-project.org/package=foreach. R package version 1.4.3. [p426]

G. Ridgeway. gbm: Generalized Boosted Regression Models, 2017. URL https://CRAN.R-project.org/
package=gbm. R package version 2.1.3. [p422]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York, 2008. URL
http://lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p422]

D. Sarkar and F. Andrews. latticeExtra: Extra Graphical Utilities Based on Lattice, 2016. URL https:
//CRAN.R-project.org/package=latticeExtra. R package version 0.6-28. [p423]

T. Therneau, B. Atkinson, and B. Ripley. rpart: Recursive Partitioning and Regression Trees, 2017. URL
https://CRAN.R-project.org/package=rpart. R package version 4.1-11. [p424]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York, 4th
edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. [p424]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2009. ISBN 978-0-387-98140-6.
URL http://ggplot2.org. [p423]

H. Wickham. The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1):
1–29, 2011. URL https://doi.org/10.18637/jss.v040.i01. [p428]

H. Wickham and R. Francois. dplyr: A Grammar of Data Manipulation, 2016. URL https://CRAN.R-
project.org/package=dplyr. R package version 0.5.0. [p432]

M. N. Wright. ranger: A Fast Implementation of Random Forests, 2017. URL https://CRAN.R-project.
org/package=ranger. R package version 0.7.0. [p424]

Brandon M. Greenwell
Infoscitex, a DCS Company
4027 Colonel Glenn Highway
Suite 210
Dayton, OH 45431-1672
United States of America
greenwell.brandon@gmail.com

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

