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FUNCTIONALITY

1. Constructs tables of counts and proportions out of data sets.
2. Inserts table into Excel and Word documents using clipboard, into LaTeX, HTML, Markdown and
reStructuredText documents by the knitr::kable agency.

3. Moulds table into acceptable for log-linear modeling data.frame.
4. Performs log-linear modeling.
5. Performs power analysis.

This version is coded in R language exclusively to support across system transportability
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Construction of tables of counts

and proportions out of data sets

Use function table_f():

table_f(data, datavars, type = 1, digits =

2, extended = FALSE, MV = FALSE, cb =

FALSE)

Examples:

data(sdata, package="ltable")

sdata

## a b c d

## 1 TRUE NA male A

## 2 NA 1 male B

## 3 FALSE 1 male A

## 4 TRUE 1 male <NA>

## 5 TRUE 1 male A

## 6 TRUE 2 female B

## 7 FALSE 2 female A

## 8 FALSE 2 female B

## 9 TRUE 2 female A

## 10 FALSE 2 female B

## 11 NA NA <NA> <NA>

## 12 TRUE 1 male A

## 13 FALSE 1 male B

## 14 FALSE 1 male A

## 15 TRUE 1 male B

## 16 TRUE 1 male A

## 17 TRUE 2 female B

## 18 FALSE 2 female A

## 19 FALSE 2 female B

## 20 TRUE 2 female A

## 21 FALSE 2 female B

## 22 NA NA <NA> <NA>

lapply(sdata,class)

## $a

## [1] "logical"

##

## $b

## [1] "numeric"

##

## $c

## [1] "factor"

##

## $d

## [1] "character"

I built data.frame sdatawith fields of different basic
classes just for demonstration. No other meaning
applies. Let’s build a simple table across levels of
a:

ltable::table_f(sdata, "a")

## a:FALSE a:TRUE Total, N

## 1 9 10 19

One might have interest in NA values for there may
be quite informative pattern across levels or levels
combinations. Use MV=TRUE. It’s a part of data
exploration:

ltable::table_f(sdata, "a", MV=TRUE, ext=TRUE)

## a:FALSE a:TRUE NA Total, N

## 1 9 10 3 22

Unrelated option extended=TRUE is used just to
demonstrate that abundant args have no effect. If
one wants to tabulate numerous factors it’s impor-
tant to arrange them properly in sequence of pre-
sentation delimited with comma “,”. Sorted levels
of all but last variable are rolled out vertically in
indicated sequence, the last has its sorted levels
spread by columns.
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ltable::table_f(sdata, "b,c")

## b c:female c:male Total, N

## 1 1 0 9 9

## 2 2 10 0 10

## sum Total, N 10 9 19

One can also obtain the table of frequencies by
choosing arg type values { 2, 3, 4 } as shown below:

ltable::table_f(sdata, "a,c",

type=2, digits=3)

## a c:female c:male Total, p

## 1 FALSE 0.667 0.333 1

## 2 TRUE 0.4 0.6 1

## sum Total, p 0.534 0.466 1

ltable::table_f(sdata, "a,c",

type=3, digits=2)

## a c:female c:male Total, p

## 1 FALSE 0.6 0.33 0.47

## 2 TRUE 0.4 0.67 0.53

## sum Total, p 1 1 1

ltable::table_f(sdata, "a,c",

type=4, digits=3)

## a c:female c:male Total, p

## 1 FALSE 0.316 0.158 0.474

## 2 TRUE 0.211 0.316 0.527

## sum Total, p 0.527 0.474 1.001

One can include number of fields (variables):

options(width=40)

ltable::table_f(sdata, "a,b,c,d",

type=2, digits=3)

## a b c d:A

## 1 FALSE 1 female 0

## 2 FALSE 1 male 0.667

## 3 FALSE 2 female 0.333

## 4 FALSE 2 male 0

## 5 TRUE 1 female 0

## 6 TRUE 1 male 0.75

## 7 TRUE 2 female 0.5

## 8 TRUE 2 male 0

## sum Total, p Total, p Total, p 0.562

## d:B Total, p

## 1 0 0

## 2 0.333 1

## 3 0.667 1

## 4 0 0

## 5 0 0

## 6 0.25 1

## 7 0.5 1

## 8 0 0

## sum 0.438 1

arg value extended=TRUE adds margins of counts,
applied only for proportions and frequencies, value
is FALSE by default. In last two examples op-
tions(width) was used to accommodate tables:

options(width=40)

ltable::table_f(sdata, "b,c,a,d", type=2,

digits=3, extended=TRUE)

## b c a d:A

## 1 1 female FALSE 0

## 2 1 female TRUE 0

## 3 1 male FALSE 0.667

## 4 1 male TRUE 0.75

## 5 2 female FALSE 0.333

## 6 2 female TRUE 0.5

## 7 2 male FALSE 0

## 8 2 male TRUE 0

## sum Total, p Total, p Total, p 0.562

## Total, N Total, N Total, N 9
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## d:B Total, p Total, N

## 1 0 0 0

## 2 0 0 0

## 3 0.333 1 3

## 4 0.25 1 4

## 5 0.667 1 6

## 6 0.5 1 4

## 7 0 0 0

## 8 0 0 0

## sum 0.438 1 17

## 8 17 17

Transporting table into docu-

ments

One can paste table into clipboard by using arg
cb=TRUE. To insert table into Word document
one should first open Excel, choose left high cor-
ner of placement by mouse click and use copy
and paste key combinations or click on the Copy
and Paste icons (the clipboard), then open Word
document, use Copy icon to place the table.
table_f(sdata, ”a, c”, type = 2, digits = 3, cb =

TRUE)

Use knitr::kable() to import table to other available
formats through .Rmd or other engines:

t < −table_f(sdata, ”a, c”, type = 2, digits = 3)

knitr :: kable(t)

Transforming table into acceptable for
log-linear modelling data.frame.

Use function tableToData():

tableToData( tname, numerictype =

””, orderedtype = ”” )

Example:

data(sdata, package="ltable")

stab<-ltable::table_f(sdata, "a,b,c")

sdat<-ltable::tableToData(stab,

numerictype ="b",

orderedtype="a,c")

sdat

## a b c Counts

## 1 FALSE 1 female 0

## 2 FALSE 2 female 6

## 3 TRUE 1 female 0

## 4 TRUE 2 female 4

## 5 FALSE 1 male 3

## 6 FALSE 2 male 0

## 7 TRUE 1 male 5

## 8 TRUE 2 male 0

lapply(sdat,class)

## $a

## [1] "ordered" "factor"

##

## $b

## [1] "numeric"

##

## $c

## [1] "ordered" "factor"

##

## $Counts

## [1] "numeric"

Arg tname is the name of table created by func-
tion table_f(). In both next args numerictype and
orderedtype variable names separated by comma
to be transformed to numeric or ordered factor
classes. Variable “Counts” shouldn’t be listed in
both.



LOG-LINEAR MODELING 5

Log-linear modeling

Use function MCLogLin():

MCLogLin(formula, data, contrasts =

NULL, XLB = −100, XUB = 100, a = 0.1, b =

0.1, DIC = FALSE, pcov = FALSE, draw =

10000, burnin = 3000)

Log-linear analysis features some advantages
against glm{stats}, first of all due to stability of
GSL IWLS algorithms that insures distinctly less
biased covariances estimates, the pivot issue for
implemented power analysis. In some instances
hypothesis testing of higher order effects disagrees
with that of glm on account of larger GSL estimated
errors. Another though related enhancement is
distinct better fit assessed by sum of squared dif-
ferences between observed and expected counts.

Example

Let’s begin with historical example of log-linear
modeling with Tromboembolism Data. This case–
control data first considered by Worcester, J. (1971).
The data y[ijk] cross-classify thromboembolism
and control patients (i=1 and 2 respectively) by
two risk factors: oral contraceptive user (j =1 for
user, j = 2 for non-user) and smoking (k=1 for
smokers, k =2 for non-smokers). Test quantifies
boosting effect of contraceptive on odds of throm-
boembolism using log-linear analysis. Reproduced
grouped data frame with 8 rows of factors’ levels
combinations is given below. Factors are: smok-
ing status (Yes, No), contraceptive usage (Yes, No),
thromboembolism status (Trombol, Control).

data(tdata, package="ltable")

tdata

smoker contraceptive tromb Counts

1 Yes Yes Trombol 14

2 Yes Yes Control 2

3 Yes No Trombol 7

4 Yes No Control 22

5 No Yes Trombol 12

6 No Yes Control 8

7 No No Trombol 25

8 No No Control 84

Data has been used in subsequent model choice
studies, such as Spiegelhalter and Smith (1982), Pet-
tit and Young (1990), Congdon (2005).

Under the potentially informative priors used, the
Bayes factor estimate was B21 = 23.8, quite strongly
in favour of the smaller model with single inter-
action effect contraceptive*thromboembolism that
was opted for consideration in example. The fact
that the reduced model gives a close fit implies
that the use of oral contraceptives indeed instigates
the odds of thromboembolism, effect significancy
supported by classical and MCMC based log-linear
estimates. Further inclusion of third order interac-
tion indicated that the use of oral contraceptives
particularly among those who smoke, is a risk for
thromboembolism, but for smokers who do not
take the pill there is no excess risk.

Let’s check hypothesis by compare output
of MCLogLin{ltable} function with that of
glm{stats} function:

resglm<-glm(Counts~ smoker +contraceptive +

tromb + contraceptive*tromb,

family="poisson",

data=tdata)

Results of MCLogLin {ltable} modeling

resMCLogLin<-ltable::MCLogLin(Counts~smoker +

contraceptive +tromb +contraceptive*tromb,

data=tdata)

Call:



6 PACKAGE LTABLE 2.0.2

ltable::MCLogLin(formula = Counts ~ smoker + contraceptive +

tromb + contraceptive * tromb, data = tdata)

Coefficients:

Estimate Std.Error |z-score| Pr(>|z|)

(Intercept) 4.425e+00 3.855e-01 1.148e+01 1.715e-30

smokerYes -9.759e-01 3.873e-01 2.520e+00 1.174e-02

contraceptiveYes -2.400e+00 5.796e-01 4.142e+00 3.445e-05

trombTrombol -1.199e+00 5.090e-01 2.356e+00 1.846e-02

contraceptiveYes:trombTrombol 2.436e+00 7.894e-01 3.087e+00 2.025e-03

phi 4.870e+00 7.571e-01 6.433e+00 1.251e-10

Model fit:

MCMC fitting

Samplers : Gibbs for expected counts, Slice for regr. coeff. and inv.var.par. phi

Language: R

Jacobian reciprocal condition number = 0.09201567

chisq/n = 0.02360806

Deviance= 0.0002946049

NULL Deviance= 12.7355

Log.likelihood= -23.53307

AIC(1) = 57.06613

AIC(n) = 7.133267

BIC = 57.46334

Residuals report:

Row Ovserved Y Predicted Y Raw Residual Pearson Residual Anscombe Residual

1 14 12.324 1.676 0.254 0.957

2 2 2.423 -0.423 -0.222 -0.563

3 7 7.451 -0.451 -0.104 -0.347

4 22 22.708 -0.708 -0.062 -0.289

5 12 13.632 -1.632 -0.227 -0.911

6 8 7.629 0.371 0.084 0.278

7 25 24.513 0.487 0.040 0.189

8 84 83.332 0.668 0.017 0.120
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Output also conveys info:

Jacobian reciprocal condition number measures the inverse sensitivity of the solution to small
perturbations in the input data. It tends to zero as J tends to singularity indicating solution
instability.”)

The value of ch-squared per number of counts (chisq/n) approximately 1 indicates a good fit.) If
chisq/n » 1 the error estimates obtained from the covariance matrix will be too small and should
be multiplied by square root of chisq/dof .

Poor fit will result from the use of an inappropriate model, and the scaled error estimates may
then be outside the range of validity for Gaussian errors.

BEWARE: Poor fit jeopardizes the validity of power analysis.

Results of glm {stats} modeling

options(width=80)

summary(resglm)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.364196 0.1069522 40.805108 0.000000e+00

smokerYes -1.053150 0.1731305 -6.082984 1.179660e-09

contraceptiveYes -2.360854 0.3308080 -7.136628 9.564814e-13

trombTrombol -1.197703 0.2017027 -5.937964 2.885828e-09

contraceptiveYes:trombTrombol 2.153215 0.4232558 5.087265 3.632639e-07

cat("Predicted Y:", sprintf("%.2f", resglm$fitted.values), "\n

Deviance residuals:", sprintf("%.2f", summary(resglm)$deviance.resid))

Predicted Y: 6.72 2.59 8.28 27.41 19.28 7.41 23.72 78.59

Deviance residuals: 2.45 -0.38 -0.46 -1.07 -1.78 0.21 0.26 0.60

Juxtaposing two results we have the same conclusion on effects, specifically on hypothesized second
order interaction term contraceptive*tromb, though differences are conspicuous on a part of error terms,
higher order effect in particular. Checking with other data sets the regularity holds, that is higher order
effects estimates feature larger errors against glm {stats} counterparts due to handling overdispersion.
The same rests with chisq/n statistic, predicted counts, and residuals (deviance residuals are larger in
glm {stats} than Anscombe Residuals). Repercussion on power analysis is about to be demonstrated.
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Power analysis

Outlines of offered power study methodology can
be found in ISDSA1 paper.

Use function MCPower():

MCPower(formula, data, contrasts =

NULL, XLB = −100, XUB = 100, a =

0.1, b = 0.1, scale_min = 1, scale_max =

5, effect, p_alpha = 0.05, draw =

10000, burnin = 3000)

formula

• Incorporation of formula based approach fa-
cilitates extracting true influence of hypothe-
sized effect by catching other intermingled in-
fluences. It’s up to investigator’s acumen and
experience in process under study to delineate
and separate hypothesized effect by appropri-
ate data collection design and model formula-
tion.

• The issue resolved is contrasts that constitute
effect. Mostly investigator is interested in con-
trasts rather than effect. Say, if one proceeds
with clinical trial to test medicines A, B, C, D
it’s A (new drug) against traditional set that
usually implied. If the optimal dosage is under
consideration, they are contrasts that help out
(average against min, max; max against others,
etc.).

scale_min, scale_max

Indicate the range of sample sizes. scale_min is the
smallest number of sample size scale range, 1 sig-
nifies the given data sample size (observed total
counts). scale_max is maximal sample size consid-
ered in power analysis. 5 by default means 5 times
observed counts. The inspected sample size range

1https://meeting.isdsa.org/index.php/isdsa/2019/paper/
viewPaper/3

defined by scale_min - scale_max automatically is
divided into 11 consecutive values investigated by
function. Given the results one can change sample
size range, for example to scrutinize some partic-
ular interval to ensure power and p-value.

effect

Represents quoted effect tested by hypothesis; it
should be one from the model formula, of sec-
ond or higher order, introduced by * delimiter, i.e.,
“y*x”, “y1*y2*x1*x2”, “y1*y2”, etc.

p_alpha

Serves to signify Z to check simulated z-scores
against in power analysis, 0.05 by default.

contrasts

Serves to choose types of contrasts to study ef-
fects of factors, the same with glm {stats}, or-
thogonal polynomials by default.

draw

Indicate number of samples to draw (chain length)

burnin

Indicate number of initial samples to discard. draw
should exceed burnin by at least 3000.

Example

Let’s begin with Tromboembolism Data.

options(width=40)

pres<-ltable::MCPower(Counts~

smoker +contraceptive +tromb +

contraceptive*tromb, data=tdata,

effect="contraceptive*tromb",

scale_min=0.4, scale_max=1.5)

ltable::print(pres, choice="power")

Effect: contraceptiveYes:trombTrombol

https://meeting.isdsa.org/index.php/isdsa/2019/paper/viewPaper/3
https://meeting.isdsa.org/index.php/isdsa/2019/paper/viewPaper/3
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Test statistic Z: Quantiles

Sample size: Q0.025 Q0.05 Q0.1 Q0.2 Q0.3 Q0.4 Q0.5

70 0.929 1.203 1.532 1.810 2.102 2.479 2.722

89 1.151 1.264 1.663 1.933 2.200 2.452 2.735

108 0.738 0.901 1.512 2.116 2.367 2.672 2.898

127 1.315 1.403 1.597 2.286 2.589 2.883 3.053

146 1.059 1.509 1.754 2.211 2.658 2.845 2.988

165 1.380 1.615 1.938 2.248 2.528 2.850 3.080

184 1.255 1.592 1.899 2.404 2.759 3.089 3.315

204 1.153 1.365 1.693 2.385 2.694 3.002 3.148

223 0.981 1.695 2.001 2.343 2.718 2.923 3.214

242 1.461 1.633 2.075 2.455 2.908 3.163 3.395

261 1.287 1.498 1.852 2.104 2.685 3.138 3.354

Power: Quantiles

Sample size: Q0.025 Q0.05 Q0.1 Q0.2 Q0.3 Q0.4 Q0.5

70 0.75 0.78 0.80 0.82 0.83 0.84 0.86

89 0.77 0.80 0.80 0.82 0.84 0.86 0.86

108 0.80 0.82 0.84 0.86 0.88 0.90 0.90

127 0.84 0.84 0.86 0.90 0.90 0.92 0.92

146 0.86 0.88 0.88 0.90 0.92 0.92 0.92

165 0.86 0.88 0.88 0.90 0.92 0.93 0.94

184 0.87 0.88 0.90 0.92 0.92 0.94 0.94

204 0.88 0.90 0.90 0.92 0.92 0.94 0.94

223 0.90 0.90 0.90 0.92 0.94 0.94 0.96

242 0.88 0.88 0.90 0.92 0.94 0.96 0.96

261 0.90 0.92 0.92 0.94 0.94 0.96 0.96



10 PACKAGE LTABLE 2.0.2

What we can deduce from the result is that 235 total counts is enough to secure alpha and beta errors.
I suggest the most secure Q0.025 quantile to weight decision on. So 235 secures Z=1.96 and power
0.9 given Q0.025 estimates. Results of power analysis backed up with MCMC delivered approach, see
Ocheredko O.M. MCMC Bootstrap Based Approach to Power and Sample Size Evaluation.2.

Discussion
The log-linear estimates of contraceptiveYes*trombTrombol effect tested to be significant. Is it not strong
enough evidence of association? Why should we collect almost 1.5-fold as many data? The answer of
course is related to the specifics of the sample. The basic design itself is a sample, not status quo that
represents true frequencies ratios in population. Therefore, we have to secure that the sample data
brings in enough information to overpower sample specifics. Of course, the more complex design is
the larger sample variation has to be outbalanced by signal, the larger sample size is required.

The original data is one of the random snapshots of reality and we have to put as much credit as
sensible to it. Not all snapshots of size 174 guarantee a 95% CI with zero excluded. Using BUGS MCMC
realization it was indicated that the sample size of 260 affords enough power to assure the significance
of the association in practically all samples. The same logic is behind any application of power analysis.

The other lay belief is that with the increase of sample size any association is doomed to be significant.
For sure, it is not, and the strength of power analysis is to determine the optimal sample size of
hypothesis testing. The power analysis assures that given H0 is true there is no prospect of decisive
augmentation of power and significance following the increase in sample size that will shortly be
demonstrated. Before turning to another example the graphic output produced by function plot {ltable}
is paneled:

ltable::plot(pres, stencil=1)
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2https://www.amazon.com/gp/product/1946728039/

https://www.amazon.com/gp/product/1946728039/
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ltable::plot(pres, stencil=2)
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ltable::plot(pres, stencil=3)
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Effect: contraceptiveYes:trombTrombol

Example

This is example of no observed association

TitanicData<-as.data.frame(datasets::Titanic)

names(TitanicData)[5]<-"Counts"

pres<-ltable::MCPower(Counts~Class+Age+Survived+Class*Survived, a=0.1, b=0.1,

draw=10000, data=TitanicData, effect="Class*Survived")

ltable::plot(pres, stencil=3)



12 PACKAGE LTABLE 2.0.2

2000 4000 6000 8000 10000

0
1

2
3

4

z−score

sample size

median
0.1 quantile
0.05 quantile

2000 4000 6000 8000 10000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

power

sample size

median
0.2 quantile
0.05 quantile

Effect: Class2nd:SurvivedYes

2000 4000 6000 8000 10000

0
1

2
3

4
5

6

z−score

sample size

median
0.1 quantile
0.05 quantile

2000 4000 6000 8000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

power

sample size

median
0.2 quantile
0.05 quantile

Effect: Class3rd:SurvivedYes

2000 4000 6000 8000 10000

0
1

2
3

4
5

z−score

sample size

median
0.1 quantile
0.05 quantile

2000 4000 6000 8000 10000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

power

sample size

median
0.2 quantile
0.05 quantile

Effect: ClassCrew:SurvivedYes



POWER ANALYSIS 13

Let’s consider Titanic data, available in package
datasets and accessible by datasets::Titanic. This
data set provides information on the fate of pas-
sengers on the fatal maiden voyage of the ocean
liner ‘Titanic’, summarized according to economic
status (class), sex, age and survival. Many well-
known facts—from the proportions of first-class
passengers to the ‘women and children first’ pol-
icy, and the fact that that policy was not entirely
successful in saving the women and children in the
third class—are reflected in the survival rates for
various classes of passenger. Let’s conduct power
analysis focused on effect of Class (1st, 2nd, 3rd,
crew ) of passenger on Survival (Yes, No). From the
graphical output it’s obvious that survival doesn’t
show significant difference between 3rd and 2nd
passengers accommodations and there is no way
to prove its significance by augmenting the sam-
ple. Indeed this is example of impossibility to con-
sider sample size expansion. So why not to put
it to rest? Just because absence of significance
can be ascribe to small sample size. Having sup-
port of power analysis we are perfectly aware that
should we have opportunity to enlarge the sample
test would not change. The opposite conclusion is
driven by power analysis on survival differences
between 3rd class and 1st class passengers as well
as between 3rd class passengers and crew. In par-
ticular illustrative is 3rd class and 1st class pas-
sengers difference which non-significance indeed
can be explained by sheer paucity of information.
Should we be able to expand sample the difference
would augment its significance to the point of be-
ing significant. As demonstrated by power curve
the chance to detect it would be around 80% .

What do we make of it?

1. There is no chance to observe significant as-
sociation by accumulating data if used tab-
ulated design reproduces natural frequencies

that indicate no natural relationship.
2. There is no increase in both significance and

power with sample size growth given H0 is
true.

3. Power and significance may behave differently
with sample size dynamic, so that we can’t
play one against the other as classical power
methodology implies. Usually one is less re-
sponsive than another and it is former that
defines necessary data load.

What is there under the hood?

The clue is Hessian estimate that provides error
terms (for testing complex effect relevant covari-
ance structure is used). The Hessian decomposition
can be shown is the sum of two components. The
first is

− ψ ∗ eβ∗X

(eβ∗X) + ψ
XXT

It helps to understand errors dynamic with grow-
ing sample size. The only growing constituent is
eβ∗X which substantiates slight (dependent on NB2
inverse dispersion par ψ and sample size) initial de-
crease and then flatten.
Second component is proportionate to ratio of dif-
ference between observed and expected counts to
expected counts. Therefore if the model leaves
small residuals or constant ratio with growing
sample size the addend has no influence on errors
dynamic.
If regression effect is influential and significant it
grows in magnitude with growing sample size. In
such case given stability of error we would have
increasing test Z-score. Effect would not gain mag-
nitude in the absence of influence and we would
have flatten test curve.
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Overview of approaches to power cal-
culus of tabulated data

Two approaches regularly suggested are:
1. Logistic regression approach with effect size log
odds ratio
2. Contingency table approach with effect size
based on noncentrality parameter for chi-square
distribution

1. Logistic regression approach
Formulas for sample size n use a guess for π̂ = π(x)

and the distribution of X. The effect size is the
log odds ratio τ comparing π(x) to π(x+ sx), the
probability at a standard deviation above the mean
of x. For a one-sided test when X is approximately
normal, Hsieh (1989)3 derived

n = [zα + zβ ∗ exp(−τ2/4)]2(1 + 2π̂δ)/(π̂τ2),

where

δ = [1 + (1 + τ2)exp(5τ2/4)]/[1 + exp(−τ2)/4].

The value n decreases as π̂ → 0.50 and as |τ | in-
creases.

Given several predictors first multiple correlation
R is calculated between the predictor X of interest
and the others in the model. Then formula for n
divides by (1−R2). In that formula, π̂ is evaluated
at the mean of all the explanatory variables, and
the odds ratio refers to the effect of X at the mean
level of the other predictors.

2. Contingency table approach4

When hypotheses are false, squared normal and
chi-square and G2 statistics have large-sample
noncentral chi-squared distributions. Suppose that
H0 is equivalent to model M for a contingency ta-
ble. Let πi for model M converges, where

∑
i πi =

3Hsieh, F. (1989). Sample size tables for logistic regression.
Statistics in Medicine. Volume 8, Issue 7. P. 795-802

4Agresti, A. (2013). Categorical Data Analysis. 3rd ed. (Wiley
series in prob. and stat.; 792).

∑
i πi(M) = 1. For a multinominal sample of size n,

the noncentrality parameter for chi-square statis-
tic equals

λ = n
∑
i

[πi − πi(M)]2

πi(M)

This has the same form as chi-square statistic,
with πi in place of the sample proportion pi and
πi(M) in place of π̂i. The noncentrality parameter
for G2 equals

λ = 2n
∑
i

πilog
πi

πi(M)

When H0 is true, all πi = πi(M). Then, for ei-
ther statistic, λ = 0 and the ordinary (central) chi-
squared distribution applies. Finally, power equals

P [χ2
ν,λ > χ2

ν(α)]

These two approaches to power calculus of tabu-
lated data suffer from important flaws:
1. No design information incorporated (XX)
2. No overdispersion/heterogeneity parameters
3. α and β errors are interchangeable
4. No accommodation of growing magnitude of ef-
fect size with growing sample

How to read power/test curves

See-saw dynamic of either power or test curves is
caused by Jacobian singularity, that indicates so-
lution instability.
Flat profiles given low test or power values are
indicative for insignificance of tested effect.
Flat profiles with z-values above 2 or power val-
ues that exceed 0.8 are indicative for significance
of tested effect. On such occasions decrease both
scale parameters to inspect smaller samples.
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