The Org Manual

Release 9.3

The Org Mode Developers

This manual is for Org version 9.3.
Copyright (©) 20042020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual.”

Table of Contents

1 Introduction.................., 1
1.1 SUIMINATY . ettt e e e e e e e e 1
1.2 Installation 1
1.3 Activationoui 2
1.4 Feedback.........ooiiii e 3
1.5 Typesetting Conventions Used in this Manual 4

2 Document Structure............................ 6
2.1 Headlineso 6
2.2 Visibility Cycling. ... 6

2.2.1 Global and local cyclingo i 6
2.2.2 Initial visibility..........c o 8
2.2.3 Catching invisible edits......... i 8
2.3 MoOtION. ..ot 8
2.4 Structure Editingo 9
2.5 Sparse Trees ...t 11
2.6 Plain Lists.....ooouiiiii 12
2.7 DIaAWETS. .ottt e 15
2.8 BlocKS . oo 15

3 Tables......... ... 16
3.1 Built-in Table Editor.............. o i i 16
3.2 Column Width and Alignmentooioa.. 20
3.3 Column GIoUPSottt 21
3.4 The Orgtbl Minor Mode ...t 21
3.5 The Spreadsheet 21

3.5.1 Referencesoo i 22
3.5.2 Formula syntax for Calc................o.ooiiiiiit. 24
3.5.3 Emacs Lisp forms as formulas 26
3.5.4 Durations and time values..............l 26
3.5.5 Field and range formulas.............. ool 27
3.5.6 Column formulas............ ... 28
3.5.7 Lookup functions. 28
3.5.8 Editing and debugging formulas............... 29
3.5.9 Updating the table........... o i 31
3.5.10 Advanced features................ i 32
3.6 Org Plot.o 33

4 Hyperlinks.......... 36
4.1 Link Format ... 36
4.2 Internal Links....... ... 37
4.3 Radio Targets.o e 38
4.4 External Links......... . 38
4.5 Handling Links o 40
4.6 Using Links Outside Org ..., 43
4.7 Link Abbreviations.o 43
4.8 Search Options in File Links 44
4.9 Custom Searches........ ..o 45

TODO Items...................... 46
5.1 Basic TODO Functionality oL, 46
5.2 Extended Use of TODO Keywordscoooiiiiii.. 47

5.2.1 TODO keywords as workflow states 47
5.2.2 TODO keywords as typesvvevriieiiiieainannn 47
5.2.3 Multiple keyword sets in one file.......................... 48
5.2.4 Fast access to TODO states ..., 49
5.2.5 Setting up keywords for individual files................... 49
5.2.6 Faces for TODO keywords...........ocoviiiiiiiiiiiinn. 49
5.2.7 TODO dependenciesoouuieeiirinenninannnnn... 50
5.3 Progress Logging. ... 51
5.3.1 Closing itemsttt 51
5.3.2 Tracking TODO state changes............................ 51
5.3.3 Tracking your habits i 53
5.4 Prioritieso 54
5.5 Breaking Down Tasks into Subtasks.................. 55
5.6 CheckboXest 56

Tags . oo 58
6.1 Tag Inheritance....... i 58
6.2 Setting Tags . ..ot 58
6.3 Tag Hierarchy........ ..o 61
6.4 Tag Searches...... ... i 62

Properties and Columns 63
7.1 Property Syntaxcoouuiiinii e 63
7.2 Special Properties.o 65
7.3 Property Searches......... ... 65
7.4 Property Inheritance......... ... 66
7.5 Column VIew 66

7.5.1 Defining columns. ... 67
7.5.1.1 Scope of column definitions.......................... 67
7.5.1.2 Column attributes........... ..., 67
7.5.2 Using column View ..., 69

7.5.3 Capturing column view......... ..., 70

ii

8 Datesand Times 72
8.1 Timestamps.uuit 72
8.2 Creating Timestampsouutiiniii i 73

8.2.1 The date/time promptc..oviiiiiiiiiiii... 74
8.2.2 Custom time format.............. ... i i 76
8.3 Deadlines and Schedulingl 76
8.3.1 Inserting deadlines or schedules........................... 77
8.3.2 Repeated tasks.........cc i 78
8.4 Clocking Work Time 80
8.4.1 Clocking commands.............oiiiiiiiiiiiii.. 80
8.4.2 Theclock table........ ... 82
8.4.3 Resolving idle time and continuous clocking............... 85
8.5 Effort Estimates i 86
8.6 Taking Notes with a Relative Timer................... 87

9 Refiling and Archiving................... 89
9.1 Refile and Copyvviniiii i 89
9.2 Archivingo 90

9.2.1 Moving a tree to an archive file........................... 90
9.2.2 Internal archiving i il 90

10 Capture and Attachments................... 92

10.1 Caplture ..ottt 92
10.1.1 Setting up captureooiiiiiii i 92
10.1.2 USIng Capturettt 92
10.1.3 Capture templates ... 93

10.1.3.1 Template elements, 93
10.1.3.2 Template expansionooeiiieeeeenann.. 96
10.1.3.3 Templates in contextscooiiiiiinnn. ... 98

10.2 Attachments........ ... 98
10.2.1 Attachment defaults and dispatcher 98
10.2.2 Attachment options..............ccoviiiiiiiiinnnna.... 100
10.2.3 Attachment links........ ... i i 101
10.2.4 Automatic version-control with Git..................... 101
10.2.5 Attach from Dired i 101

10.3 RSS Feeds 102

11 Agenda Views............................... 103
11.1 Agenda Files ... 103
11.2 The Agenda Dispatcher......... i i 104
11.3 The Built-in Agenda Views 105

11.3.1 Weekly/daily agenda.............ocoiiiiiiiiiiia.. 105
11.3.2 The global TODO list. ..., 108
11.3.3 Matching tags and properties 109
11.3.4 Search view..........oiiiiii e 111
11.3.5 Stuck projectso 111

11.4 Presentation and Sorting..............oooiiiiiiiiiiii.. 112

iii

11.4.1 Categories . ..ottt 112

11.4.2 Time-of-day specifications................, 112
11.4.3 Sorting of agenda itemsl 113
11.4.4 Filtering/limiting agenda items......................... 114
11.5 Commands in the Agenda Buffer............................ 117
11.6 Custom Agenda VIewsS........ciiiiiiitiiiiiiiiennn. 124
11.6.1 Storing searches........ ..., 125
11.6.2 Block agenda 126
11.6.3 Setting options for custom commands 126
11.7 Exporting Agenda Views....... ..., 127
11.8 Using Column View in the Agenda.......................... 129
12 Markup for Rich Contents................. 131
12.1 Paragraphs ... 131
12.2 Emphasis and Monospaceccoviiiiiiiiiiennie... 131
12.3 Subscripts and Superscripts. ..., 132
12.4 Special Symbols ... 132
12.5 Embedded IXTEX . ..o 133
12.5.1 ITEX fragmentso.vvtiiiiii i 133
12.5.2 Previewing ITEX fragments. ..., 134
12.5.3 Using CDIXTEX to enter math............. 134
12.6 Literal Examples. ... 135
12,7 IMAGES . oottt 137
12.8 Captions. ..ottt 138
12.9 Horizontal Rules. i 138
12.10 Creating Footnotes, 138
13 Exporting............. ..., 140
13.1 The Export Dispatcher, 140
13.2 Export Settings........oooeiiiiiii i 141
13.3 Table of Contents.couiuiiiiiiiii .. 144
13.4 Include Files..... ..o 145
13.5 Macro Replacement. ..., 146
13.6 Comment Lines...........ooiiiiiiii ., 148
13.7 ASCII/Latin-1/UTF-8 export............coooiuiii ... 148
13.8 Beamer Exporto 150
13.8.1 Beamer export commands.......... ... 150
13.8.2 Beamer specific export settings......................... 150
13.8.3 Frames and Blocks in Beamer.......................... 151
13.8.4 Beamer specific syntax........... ... o i 152
13.8.5 Editing support....... ..o 153
13.8.6 A Beamer example...............o i 153
13.9 HTML Export e 153
13.9.1 HTML export commands ..., 154
13.9.2 HTML specific export settings 154
13.9.3 HTML doctypes . ..o vvnniiiii e 155
13.9.4 HTML preamble and postamble........................ 156

13.9.5 Quoting HTML tagscovvirieiiiiiiii ... 156

13.9.6 Headlines in HTML export.................ccoiii.. ... 156

13.9.7 Links in HTML export ..., 157
13.9.8 Tables in HTML export.........ccooiiiiiiiiiiii... 157
13.9.9 Images in HTML exportcooviiiiiiiiiiiio... 158
13.9.10 Math formatting in HTML export..................... 158
13.9.11 Text areas in HTML export........................... 159
13.9.12 CSS SUPPOTt .« v vv ettt et 159
13.9.13 JavaScript supported display of web pages............. 160
13.10 IMTEX EXport....c.ooooi e 161
13.10.1 KIEX/PDF export commands 162
13.10.2 ITRX specific export settingscccovvini. .. 162
13.10.3 HKTEX header and sectioning structure................. 163
13.10.4 Quoting BTEX code.o 164
13.10.5 Tables in ITEX eXport.......c.coovviiiviinenon... 164
13.10.6 Images in ITEX exportoooviiiiiiii .. 166
13.10.7 Plain lists in INTEX export, 167
13.10.8 Source blocks in ITEX export.......ccooovvinan... 167
13.10.9 Example blocks in BTEX export...........c.ooovuee... 168
13.10.10 Special blocks in TEX exportocooeivio... 168
13.10.11 Horizontal rules in INTEX export 169
13.11 Markdown Exporto i 169
13.12 OpenDocument Text Export...............oooiiiiiiia... 169
13.12.1 Pre-requisites for ODT export......................... 170
13.12.2 ODT export commands.............coooiiiiiie .. 170
13.12.3 ODT specific export settings...........ccovvvinea..n. 170
13.12.4 Extending ODT exportccooeiiiiiiiiiiean... 170
13.12.5 Applying custom styles i 171
13.12.6 Links in ODT export ...t 172
13.12.7 Tables in ODT export ..., 172
13.12.8 TImages in ODT export........cooiiiiiii i 172
13.12.9 Math formatting in ODT export 174
13.12.9.1 KTEX math snippets.........ooooiiiiii. 174
13.12.9.2 MathML and OpenDocument formula files 175
13.12.10 Labels and captions in ODT export.................. 175
13.12.11 Literal examples in ODT export 175
13.12.12 Advanced topics in ODT export 176
13.13 Org EXport. ..o 180
13.14 Texinfo Export ... 180
13.14.1 Texinfo export commands..................ooiiia... 180
13.14.2 Texinfo specific export settings........................ 181
13.14.3 Texinfo file header L. 181
13.14.4 Texinfo title and copyright page....................... 182
13.14.5 Info directory file i 182
13.14.6 Headings and sectioning structure..................... 182
13.14.7 Indices. ...ooooiii e 183
13.14.8 Quoting Texinfo code ool 183
13.14.9 Plain lists in Texinfo export................ 184

13.14.10 Tables in Texinfo export, 184

13.14.11 Images in Texinfo export.............cooviviini. .. 184

13.14.12 Quotations in Texinfo export......................... 185
13.14.13 Special blocks in Texinfo export...................... 185
13.14.14 A Texinfo example. ..., 185
13.15 iCalendar Export....... ..o 187
13.16 Other Built-in Back-ends 188
13.17 Advanced Export Configuration............................ 188
13.18 Export in Foreign Buffers..........l 191
14 Publishing............... L. 192
14.1 Configuration........ ... 192
14.1.1 The variable org-publish-project-alist............. 192
14.1.2 Sources and destinations for files....................... 192
14.1.3 Selecting files 193
14.1.4 Publishing action o i i 193
14.1.5 Options for the exporters oot 194
14.1.6 Publishing links....... o i i 198
14.1.7 Generating a sitemap ..., 198
14.1.8 Generating an index ...t 199
14.2 Uploading Files...... ..ot 200
14.3 Sample Configuration............ ..., 200
14.3.1 Example: simple publishing configuration 200
14.3.2 Example: complex publishing configuration............. 201
14.4 Triggering Publication L 202
15 Working with Source Code 203
15.1 Structure of Code Blocks i 204
15.2 Using Header Arguments......... 205
15.3 Environment of a Code Block 207
15.4 Evaluating Code Blocks. ...t 213
15.5 Results of Evaluation i i 216
15.6 Exporting Code Blocks ... 221
15.7 Extracting Source Code. ...t 222
15.8 Languagesovinnttt et e 224
15.9 Editing Source Code.ot 225
15.10 Noweb Reference Syntax................ oo .. 226
15.11 Library of Babel..... o 229
15.12 Key bindings and Useful Functions......................... 229

15.13 Batch Execution. 230

vii

16 Miscellaneous 231
16.1 Completion. ..o 231
16.2 Structure Templatesco i 231
16.3 Speed Keys. ... 232
16.4 A Cleaner Outline View........ ..., 232

16.4.1 OrglIndent Mode ..., 233
16.4.2 Hard indentation.......... i il 233
16.5 Dynamic Headline Numbering..............t 234
16.6 The Very Busy C-c C-c Key ..., 234
16.7 Summary of In-Buffer Settings.............. 234
16.8 Org Symtax . ..ottt e 238
16.9 Context Dependent Documentation 238
16.10 Escape Character......... ..., 238
16.11 Code Evaluation and Security Issues....................... 239
16.12 Interaction with Other Packages 239
16.12.1 Packages that Org cooperates with.................... 240
16.12.2 Packages that conflict with Org mode 241
16.13 Using Orgon a TTY ... e 242
16.14 Protocols for External Access............coooiiiiiiiii.. 243
16.14.1 The store-link protocol................. 243
16.14.2 The capture protocol.............. ... i, 243
16.14.3 The open-source protocol.....................o.o ... 244
16.15 Org Crypte et 245
16.16 Org Mobile. ... e 246
16.16.1 Setting up the staging area............. 246
16.16.2 Pushing to the mobile application..................... 246
16.16.3 Pulling from the mobile application 247

Appendix A Hacking.......................... 248
AL HOOKS. .o 248
A2 Add-on Packages..........c. i 248
A.3 Adding Hyperlink Types ... 248
A.4 Adding Export Back-ends L. 249
A.5 Tables in Arbitrary Syntaxcoiiiiiiiiiii ... 250

AB5.1 Radiotables........ ..o 250
A.5.2 A ETEX example of radio tables........................ 251
A.5.3 Translator functions............. i, 252
A.6 Dynamic Blocks. 253
A.7 Special Agenda VIeWS 254
A.8 Speeding Up Your Agendas............ccovviiiiiinnninn.n. 256
A9 Extracting Agenda Information............. 256
A.10 Using the Property APT... i . 258

A.11 Using the Mapping APT....... ... i, 259

Appendix B History and Acknowledgments

... 201
B.l From Carsteno o e 261
B.2 From Bastien............o. 262
B.3 List of Contributionsuuiiiini i 262

Appendix C GNU Free Documentation License
... 266
C.1 ADDENDUM: How to use this License for your documents. .. 273

17 Main Index.......... 274
18 KeyIndex........... 283
19 Command and Function Index............. 288

20 Variable Index 292

viii

Chapter 1: Introduction 1

1 Introduction

1.1 Summary

Org is a mode for keeping notes, maintaining TODO lists, and project planning with a
fast and effective plain-text markup language. It also is an authoring system with unique
support for literate programming and reproducible research.

Org is implemented on top of Outline mode, which makes it possible to keep the content
of large files well structured. Visibility cycling and structure editing help to work with the
tree. Tables are easily created with a built-in table editor. Plain text URL-like links connect
to websites, emails, Usenet messages, BBDB entries, and any files related to the projects.

Org develops organizational tasks around notes files that contain lists or information
about projects as plain text. Project planning and task management make use of metadata
which is part of an outline node. Based on this data, specific entries can be extracted in
queries and create dynamic agenda views that also integrate the Emacs calendar and diary.
Org can be used to implement many different project planning schemes, such as David
Allen’s GTD system.

Org files can serve as a single source authoring system with export to many different
formats such as HTML, ITEX, Open Document, and Markdown. New export backends can
be derived from existing ones, or defined from scratch.

Org files can include source code blocks, which makes Org uniquely suited for authoring
technical documents with code examples. Org source code blocks are fully functional; they
can be evaluated in place and their results can be captured in the file. This makes it possible
to create a single file reproducible research compendium.

Org keeps simple things simple. When first fired up, it should feel like a straightforward,
easy to use outliner. Complexity is not imposed, but a large amount of functionality is
available when needed. Org is a toolbox. Many users actually run only a—very personal—
fraction of Org’s capabilities, and know that there is more whenever they need it.

All of this is achieved with strictly plain text files, the most portable and future-proof
file format. Org runs in Emacs. Emacs is one of the most widely ported programs, so that
Org mode is available on every major platform.

There is a website for Org which provides links to the newest version of Org, as well as
additional information, frequently asked questions (FAQ), links to tutorials, etc. This page
is located at https://orgmode.org.

An earlier version (7.3) of this manual is available as a paperback book from Network
Theory Ltd..

1.2 Installation

Org is included in all recent distributions of GNU Emacs, so you probably do not need to
install it. Most users will simply activate Org and begin exploring its many features.

If, for one reason or another, you want to install Org on top of this pre-packaged version,
there are three ways to do it:

e by using the Emacs package system;

https://orgmode.org
http://www.network-theory.co.uk/org/manual/
http://www.network-theory.co.uk/org/manual/

Chapter 1: Introduction 2

e by downloading Org as an archive; or

e by using Org’s git repository.

We strongly recommend sticking to a single installation method.

Using Emacs packaging system
Recent Emacs distributions include a packaging system which lets you install Elisp libraries.
You can install Org with M-x package-install RET org.

Important: You need to do this in a session where no . org’ file has been visited,
i.e., where no Org built-in function have been loaded. Otherwise autoload Org
functions will mess up the installation.

If you want to use Org’s package repository, check out the Org ELPA page.

Downloading Org as an archive

You can download Org latest release from Org’s website. In this case, make sure you set
the load-path correctly in your Emacs init file:

(add-to-list 'load-path "~/path/to/orgdir/lisp")

The downloaded archive contains contributed libraries that are not included in Emacs.
If you want to use them, add the ‘contrib/’ directory to your load-path:

(add-to-1list 'load-path "~/path/to/orgdir/contrib/lisp" t)

Optionally, you can compile the files and/or install them in your system. Run ‘make
help’ to list compilation and installation options.

Using Org’s git repository
You can clone Org’s repository and install Org like this:

$ cd “/src/

$ git clone gitQ@code.orgmode.org:bzg/org-mode.git
$ cd org-mode/

$ make autoloads

Note that in this case, ‘make autoloads’ is mandatory: it defines Org’s version in
‘org-version.el’ and Org’s autoloads in ‘org-loaddefs.el’.

Remember to add the correct load-path as described in the method above.

You can also compile with ‘make’, generate the documentation with ‘make doc’, create
a local configuration with ‘make config’ and install Org with ‘make install’. Please run
‘make help’ to get the list of compilation/installation options.

For more detailed explanations on Org’s build system, please check the Org Build System
page on Worg.

1.3 Activation

Org mode buffers need Font Lock to be turned on: this is the default in Emacs?.

L If you do not use Font Lock globally turn it on in Org buffer with ‘(add-hook 'org-mode-hook
'turn-on-font-lock)’.

https://orgmode.org/elpa.html
https://orgmode.org/
https://orgmode.org/worg/dev/org-build-system.html

Chapter 1: Introduction 3

There are compatibility issues between Org mode and some other Elisp packages (see
Section 16.12.2 [Conflicts], page 241). Please take the time to check the list.

For a better experience, the three Org commands org-store-link, org-capture and
org-agenda ought to be accessible anywhere in Emacs, not just in Org buffers. To that
effect, you need to bind them to globally available keys, like the ones reserved for users (see
Section “Key Binding Conventions” in elisp). Here are suggested bindings, please modify
the keys to your own liking.

(global-set-key (kbd "C-c 1") 'org-store-link)
(global-set-key (kbd "C-c a") 'org-agenda)
(global-set-key (kbd "C-c c") 'org-capture)

Files with the ‘.org’ extension use Org mode by default. To turn on Org mode in a file
that does not have the extension ‘.org’, make the first line of a file look like this:

MY PROJECTS —*%— mode: org; —*-

which selects Org mode for this buffer no matter what the file’s name is. See also the
variable org-insert-mode-line-in-empty-file.

Many commands in Org work on the region if the region is active. To make use of this,
you need to have Transient Mark mode turned on, which is the default. If you do not like
it, you can create an active region by using the mouse to select a region, or pressing C-SPC
twice before moving point.

1.4 Feedback

If you find problems with Org, or if you have questions, remarks, or ideas about it, please
send an email to the Org mailing list emacs-orgmode@gnu.org. You can subscribe to the
list from this web page. If you are not a member of the mailing list, your mail will be passed
to the list after a moderator has approved it?.

For bug reports, please first try to reproduce the bug with the latest version of Org
available—if you are running an outdated version, it is quite possible that the bug has been
fixed already. If the bug persists, prepare a report and provide as much information as
possible, including the version information of Emacs (M-x emacs-version) and Org (M-x
org-version), as well as the Org related setup in the Emacs init file. The easiest way to
do this is to use the command

M-x org-submit-bug-report <RET>

which puts all this information into an Emacs mail buffer so that you only need to add your
description. If you are not sending the Email from within Emacs, please copy and paste
the content into your Email program.

Sometimes you might face a problem due to an error in your Emacs or Org mode setup.
Before reporting a bug, it is very helpful to start Emacs with minimal customizations and
reproduce the problem. Doing so often helps you determine if the problem is with your
customization or with Org mode itself. You can start a typical minimal session with a
command like the example below.

2 Please consider subscribing to the mailing list in order to minimize the work the mailing list moderators
have to do.

mailto:emacs-orgmode@gnu.org
https://lists.gnu.org/mailman/listinfo/emacs-orgmode

Chapter 1: Introduction 4

$ emacs -Q -1 /path/to/minimal-org.el

However if you are using Org mode as distributed with Emacs, a minimal setup is not
necessary. In that case it is sufficient to start Emacs as ‘emacs -Q’. The ‘minimal-org.el’
setup file can have contents as shown below.

;35 Minimal setup to load latest “org-mode'.

;3 Activate debugging.

(setq debug-on-error t
debug-on-signal nil
debug-on-quit nil)

;3 Add latest Org mode to load path.
(add-to-list 'load-path (expand-file-name "/path/to/org-mode/lisp"))
(add-to-list 'load-path (expand-file-name "/path/to/org-mode/contrib/lisp" t))

If an error occurs, a “backtrace” can be very useful—see below on how to create one.
Often a small example file helps, along with clear information about:

1. What exactly did you do?
2. What did you expect to happen?
3. What happened instead?

Thank you for helping to improve this program.

How to create a useful backtrace

If working with Org produces an error with a message you do not understand, you may have
hit a bug. The best way to report this is by providing, in addition to what was mentioned
above, a backtrace. This is information from the built-in debugger about where and how
the error occurred. Here is how to produce a useful backtrace:

1. Reload uncompiled versions of all Org mode Lisp files. The backtrace contains much
more information if it is produced with uncompiled code. To do this, use

C-u M-x org-reload <RET>
or, from the menu: Org — Refresh/Reload — Reload Org uncompiled.
2. Then, activate the debugger:
M-x toggle-debug-or-error <RET>
or, from the menu: Options — Enter Debugger on Error.

3. Do whatever you have to do to hit the error. Do not forget to document the steps you
take.

4. When you hit the error, a ‘*Backtracex*’ buffer appears on the screen. Save this buffer
to a file—for example using C-x C-w—and attach it to your bug report.

1.5 Typesetting Conventions Used in this Manual

TODO keywords, tags, properties, etc.

Org uses various syntactical elements: TODO keywords, tags, property names, keywords,
blocks, etc. In this manual we use the following conventions:

Chapter 1: Introduction 5

“TODO’
‘WAITING’ TODO keywords are written with all capitals, even if they are user-defined.

‘boss’

‘ARCHIVE’ Tags are case-sensitive. User-defined tags are written in lowercase; built-in
tags with special meaning are written as they should appear in the document,
usually with all capitals.

‘Release’

‘PRIORITY’
User-defined properties are capitalized; built-in properties with special meaning
are written with all capitals.

‘TITLE’

‘BEGIN’ ... ‘END’

Keywords and blocks are written in uppercase to enhance their readability, but
you can use lowercase in your Org files.

Key bindings and commands

The manual lists both the keys and the corresponding commands for accessing a function-
ality. Org mode often uses the same key for different functions, depending on context.
The command that is bound to such keys has a generic name, like org-metaright. In the
manual we will, wherever possible, give the function that is internally called by the generic
command. For example, in the chapter on document structure, M-RIGHT will be listed to
call org-do-demote, while in the chapter on tables, it will be listed to call org-table-
move-column-right.

Chapter 2: Document Structure 6

2 Document Structure

Org is an outliner. Outlines allow a document to be organized in a hierarchical structure,
which, least for me, is the best representation of notes and thoughts. An overview of this
structure is achieved by folding, i.e., hiding large parts of the document to show only the
general document structure and the parts currently being worked on. Org greatly simplifies
the use of outlines by compressing the entire show and hide functionalities into a single
command, org-cycle, which is bound to the TAB key.

2.1 Headlines

Headlines define the structure of an outline tree. The headlines in Org start with one or
more stars, on the left margin®. For example:

* Top level headline
** Second level
**%x Third level
some text
**%x Third level
more text
* Another top level headline

The name defined in org-footnote-section is reserved. Do not use it as a title for
your own headings.

Some people find the many stars too noisy and would prefer an outline that has white-
space followed by a single star as headline starters. This can be achieved using a Org Indent
minor mode. See Section 16.4 [Clean View|, page 232 for more information.

Headlines are not numbered. However, you may want to dynamically number some, or
all, of them. See Section 16.5 [Dynamic Headline Numbering|, page 234.

An empty line after the end of a subtree is considered part of it and is hidden when the
subtree is folded. However, if you leave at least two empty lines, one empty line remains
visible after folding the subtree, in order to structure the collapsed view. See the variable

org-cycle-separator-lines to modify this behavior.
2.2 Visibility Cycling

2.2.1 Global and local cycling

Outlines make it possible to hide parts of the text in the buffer. Org uses just two commands,
bound to TAB and S-TAB to change the visibility in the buffer.

TAB (org-cycle)
Subtree cycling: Rotate current subtree among the states
,—> FOLDED -> CHILDREN -> SUBTREE --.

1 See the variables org-special-ctrl-a/e, org-special-ctrl-k, and org-ctrl-k-protect-subtree to
configure special behavior of C-a, C-e, and C-k in headlines. Note also that clocking only works with
headings indented less than 30 stars.

Chapter 2: Document Structure 7

Point must be on a headline for this to work?.

S-TAB (org-global-cycle)
C-u TAB Global cycling: Rotate the entire buffer among the states

,—> OVERVIEW -> CONTENTS -> SHOW ALL --.

When S-TAB is called with a numeric prefix argument N, the CONTENTS view
up to headlines of level N are shown. Note that inside tables (see Chapter 3
[Tables|, page 16), S-TAB jumps to the previous field instead.

You can run global cycling using TAB only if point is at the very beginning of
the buffer, but not on a headline, and org-cycle-global-at-bob is set to a
non-nil value.

C-u C-u TAB (org-set-startup-visibility)
Switch back to the startup visibility of the buffer (see Section 2.2.2 [Initial
visibility], page 8).

C-u C-u C-u TAB (outline-show-all)
Show all, including drawers.

C-c C-r (org-reveal)
Reveal context around point, showing the current entry, the following heading
and the hierarchy above. Useful for working near a location that has been
exposed by a sparse tree command (see Section 2.5 [Sparse Trees|, page 11) or
an agenda command (see Section 11.5 [Agenda Commands|, page 117). With a
prefix argument show, on each level, all sibling headings. With a double prefix
argument, also show the entire subtree of the parent.

C-c C-k (outline-show-branches)
Expose all the headings of the subtree, CONTENTS view for just one subtree.

C-c TAB (outline-show-children)
Expose all direct children of the subtree. With a numeric prefix argument N,
expose all children down to level N.

C-c C-x b (org-tree-to-indirect-buffer)
Show the current subtree in an indirect buffer®. With a numeric prefix argu-
ment, N, go up to level N and then take that tree. If N is negative then go up
that many levels. With a C-u prefix, do not remove the previously used indirect
buffer.

C-c C-x v (org-copy-visible)
Copy the wvisible text in the region into the kill ring.

2 See, however, the option org-cycle-emulate-tab.

3 The indirect buffer contains the entire buffer, but is narrowed to the current tree. Editing the indirect
buffer also changes the original buffer, but without affecting visibility in that buffer. For more information
about indirect buffers, see Section “Indirect Buffers” in emacs.

Chapter 2: Document Structure 8

2.2.2 Initial visibility

When Emacs first visits an Org file, the global state is set to OVERVIEW, i.e., only the
top level headlines are visible*. This can be configured through the variable org-startup-
folded, or on a per-file basis by adding one of the following lines anywhere in the buffer:

#+STARTUP: overview
#+STARTUP: content
#+STARTUP: showall
#+STARTUP: showeverything

Furthermore, any entries with a ‘VISIBILITY’ property (see Chapter 7 [Properties and
Columns]|, page 63) get their visibility adapted accordingly. Allowed values for this property
are ‘folded’, ‘children’, ‘content’, and ‘all’.

C-u C-u TAB (org-set-startup-visibility)
Switch back to the startup visibility of the buffer, i.e., whatever is requested by
startup options and ‘VISIBILITY properties in individual entries.

2.2.3 Catching invisible edits

Sometimes you may inadvertently edit an invisible part of the buffer and be confused on
what has been edited and how to undo the mistake. Setting org-catch-invisible-edits
to non-nil helps preventing this. See the docstring of this option on how Org should catch
invisible edits and process them.

2.3 Motion
The following commands jump to other headlines in the buffer.

C-c C-n (org-next-visible-heading)
Next heading.

C-c C-p (org-previous-visible-heading)
Previous heading.

C-c C-f (org-forward-heading-same-level)
Next heading same level.

C-c C-b (org-backward-heading-same-level)
Previous heading same level.

C-c C-u (outline-up-heading)
Backward to higher level heading.

C-c C-j (org-goto)
Jump to a different place without changing the current outline visibility. Shows
the document structure in a temporary buffer, where you can use the following
keys to find your destination:
TAB Cycle visibility.
DOWN / UP Next/previous visible headline.

4 When org-agenda-inhibit-startup is non-nil, Org does not honor the default visibility state when
first opening a file for the agenda (see Section A.8 [Speeding Up Your Agendas|, page 256).

Chapter 2: Document Structure 9

RET Select this location.
/ Do a Sparse-tree search

The following keys work if you turn off org-goto-auto-isearch

n/p Next /previous visible headline.
f/b Next /previous headline same level.
u One level up.

0...9 Digit argument.

q Quit.

See also the variable org-goto-interface.

2.4 Structure Editing

M-RET (org-meta-return)
Insert a new heading, item or row.

If the command is used at the beginning of a line, and if there is a heading
or a plain list item (see Section 2.6 [Plain Lists|, page 12) at point, the new

heading/item is created before the current line. When used at the beginning of
a regular line of text, turn that line into a heading.

When this command is used in the middle of a line, the line is split and the
rest of the line becomes the new item or headline. If you do not want the line
to be split, customize org-M-RET-may-split-1line.

Calling the command with a C-u prefix unconditionally inserts a new heading
at the end of the current subtree, thus preserving its contents. With a double
C-u C-u prefix, the new heading is created at the end of the parent subtree
instead.

C-RET (org-insert-heading-respect-content)
Insert a new heading at the end of the current subtree.

M-S-RET (org-insert-todo-heading)
Insert new TODO entry with same level as current heading. See also the vari-
able org-treat-insert-todo-heading-as-state-change.

C-S-RET (org-insert-todo-heading-respect-content)
Insert new TODO entry with same level as current heading. Like C-RET, the
new headline is inserted after the current subtree.

TAB (org-cycle)
In a new entry with no text yet, the first TAB demotes the entry to become a
child of the previous one. The next TAB makes it a parent, and so on, all the
way to top level. Yet another TAB, and you are back to the initial level.

M-LEFT (org-do-promote)
Promote current heading by one level.

M-RIGHT (org-do-demote)
Demote current heading by one level.

M-S-LEFT (org-promote-subtree)
Promote the current subtree by one level.

Chapter 2: Document Structure 10

M-S-RIGHT (org-demote-subtree)
Demote the current subtree by one level.

M-UP (org-move-subtree-up)
Move subtree up, i.e., swap with previous subtree of same level.

M-DOWN (org-move-subtree-down)
Move subtree down, i.e., swap with next subtree of same level.

C-c @ (org-mark-subtree)
Mark the subtree at point. Hitting repeatedly marks subsequent subtrees of
the same level as the marked subtree.

C-c C-x C-w (org-cut-subtree)
Kill subtree, i.e., remove it from buffer but save in kill ring. With a numeric
prefix argument N, kill N sequential subtrees.

C-c C-x M-w (org-copy-subtree)
Copy subtree to kill ring. With a numeric prefix argument N, copy the N
sequential subtrees.

C-c C-x C-y (org-paste-subtree)
Yank subtree from Kkill ring. This does modify the level of the subtree to make
sure the tree fits in nicely at the yank position. The yank level can also be
specified with a numeric prefix argument, or by yanking after a headline marker
like ‘s’

C-y (org-yank)

Depending on the variables org-yank-adjusted-subtrees and org-yank-
folded-subtrees, Org’s internal yank command pastes subtrees folded and
in a clever way, using the same command as C-c C-x C-y. With the default
settings, no level adjustment takes place, but the yanked tree is folded unless
doing so would swallow text previously visible. Any prefix argument to this
command forces a normal yank to be executed, with the prefix passed along.
A good way to force a normal yank is C-u C-y. If you use yank-pop after a
yank, it yanks previous kill items plainly, without adjustment and folding.

C-c C-x c (org-clone-subtree-with-time-shift)
Clone a subtree by making a number of sibling copies of it. You are prompted
for the number of copies to make, and you can also specify if any timestamps
in the entry should be shifted. This can be useful, for example, to create a
number of tasks related to a series of lectures to prepare. For more details, see
the docstring of the command org-clone-subtree-with-time-shift.

C-c C-w (org-refile)
Refile entry or region to a different location. See Section 9.1 [Refile and Copy],
page 89.

C-c ~ (org-sort)
Sort same-level entries. When there is an active region, all entries in the region
are sorted. Otherwise the children of the current headline are sorted. The com-
mand prompts for the sorting method, which can be alphabetically, numerically,

Chapter 2: Document Structure 11

by time—first timestamp with active preferred, creation time, scheduled time,
deadline time—by priority, by TODO keyword—in the sequence the keywords
have been defined in the setup—or by the value of a property. Reverse sorting
is possible as well. You can also supply your own function to extract the sorting
key. With a C-u prefix, sorting is case-sensitive.

C-x n s (org-narrow-to-subtree)
Narrow buffer to current subtree.

C-x n b (org-narrow-to-block)
Narrow buffer to current block.

C-x n w (widen)
Widen buffer to remove narrowing.

C-c * (org-toggle-heading)
Turn a normal line or plain list item into a headline—so that it becomes a
subheading at its location. Also turn a headline into a normal line by removing
the stars. If there is an active region, turn all lines in the region into headlines.
If the first line in the region was an item, turn only the item lines into headlines.
Finally, if the first line is a headline, remove the stars from all headlines in the
region.

When there is an active region—i.e., when Transient Mark mode is active—promotion
and demotion work on all headlines in the region. To select a region of headlines, it is best
to place both point and mark at the beginning of a line, mark at the beginning of the first
headline, and point at the line just after the last headline to change. Note that when point
is inside a table (see Chapter 3 [Tables|, page 16), the Meta-Cursor keys have different
functionality.

2.5 Sparse Trees

An important feature of Org mode is the ability to construct sparse trees for selected
information in an outline tree, so that the entire document is folded as much as possible,
but the selected information is made visible along with the headline structure above it®.
Just try it out and you will see immediately how it works.

Org mode contains several commands creating such trees, all these commands can be
accessed through a dispatcher:

C-c / (org-sparse-tree)
This prompts for an extra key to select a sparse-tree creating command.

C-c / ror C-c / / (org-occur)
Prompts for a regexp and shows a sparse tree with all matches. If the match is in
a headline, the headline is made visible. If the match is in the body of an entry,
headline and body are made visible. In order to provide minimal context, also
the full hierarchy of headlines above the match is shown, as well as the headline
following the match. Each match is also highlighted; the highlights disappear
when the buffer is changed by an editing command, or by pressing C-c C-cS.

5 See also the variable org-show-context-detail to decide how much context is shown around each match.
6 This depends on the option org-remove-highlights-with-change.

Chapter 2: Document Structure 12

When called with a C-u prefix argument, previous highlights are kept, so several
calls to this command can be stacked.

M-g n or M-g M-n (next-error)
Jump to the next sparse tree match in this buffer.

M-g p or M-g M-p (previous-error)
Jump to the previous sparse tree match in this buffer.

For frequently used sparse trees of specific search strings, you can use the variable
org-agenda-custom-commands to define fast keyboard access to specific sparse trees. These
commands will then be accessible through the agenda dispatcher (see Section 11.2 [Agenda
Dispatcher|, page 104). For example:

(setq org-agenda-custom-commands
"(("f" occur-tree "FIXME")))
defines the key f as a shortcut for creating a sparse tree matching the string ‘FIXME’.

The other sparse tree commands select headings based on TODO keywords, tags, or

properties and are discussed later in this manual.

To print a sparse tree, you can use the Emacs command ps-print-buffer-with-faces
which does not print invisible parts of the document. Or you can use the command C-c
C-e v to export only the visible part of the document and print the resulting file.

2.6 Plain Lists

Within an entry of the outline tree, hand-formatted lists can provide additional structure.
They also provide a way to create lists of checkboxes (see Section 5.6 [Checkboxes], page 56).
Org supports editing such lists, and every exporter (see Chapter 13 [Exporting], page 140)
can parse and format them.

Org knows ordered lists, unordered lists, and description lists.
e Unordered list items start with ‘=, ‘+’, or ‘*’” as bullets.

e Ordered list items start with a numeral followed by either a period or a right paren-
thesis®, such as ‘1.” or ‘1)’ If you want a list to start with a different value—e.g.,
20—start the text of the item with ‘[@20]"1°. Those constructs can be used in any
item of the list in order to enforce a particular numbering.

e Description list items are unordered list items, and contain the separator ‘::’ to dis-
tinguish the description term from the description.

Items belonging to the same list must have the same indentation on the first line. In
particular, if an ordered list reaches number ‘10.°, then the 2-digit numbers must be written

" When using ‘*’ as a bullet, lines must be indented so that they are not interpreted as headlines. Also,
when you are hiding leading stars to get a clean outline view, plain list items starting with a star may
be hard to distinguish from true headlines. In short: even though ‘*’ is supported, it may be better to
not use it for plain list items.

You can filter out any of them by configuring org-plain-list-ordered-item-terminator.

You can also get ‘a.’, ‘A.’, ‘a)” and ‘A)’ by configuring org-list-allow-alphabetical. To minimize con-
fusion with normal text, those are limited to one character only. Beyond that limit, bullets automatically

become numbers.

10 1f there’s a checkbox in the item, the cookie must be put before the checkbox. If you have activated

alphabetical lists, you can also use counters like ‘[@b]’.

Chapter 2: Document Structure 13

left-aligned with the other numbers in the list. An item ends before the next line that is
less or equally indented than its bullet/number.

A list ends whenever every item has ended, which means before any line less or equally
indented than items at top level. It also ends before two blank lines. In that case, all items
are closed. Here is an example:

* Lord of the Rings
My favorite scenes are (in this order)
1. The attack of the Rohirrim
2. Eowyn's fight with the witch king
+ this was already my favorite scene in the book
+ I really like Miranda Otto.
3. Peter Jackson being shot by Legolas
- on DVD only
He makes a really funny face when it happens.
But in the end, no individual scenes matter but the film as a whole.
Important actors in this film are:
- Elijah Wood :: He plays Frodo
- Sean Astin :: He plays Sam, Frodo's friend. I still remember him
very well from his role as Mikey Walsh in /The Goonies/.

Org supports these lists by tuning filling and wrapping commands to deal with them
correctly, and by exporting them properly (see Chapter 13 [Exporting], page 140). Since
indentation is what governs the structure of these lists, many structural constructs like
‘#+BEGIN_’ blocks can be indented to signal that they belong to a particular item.

If you find that using a different bullet for a sub-list—than that used for the current
list-level—improves readability, customize the variable org-list-demote-modify-bullet.
To get a greater difference of indentation between items and theirs sub-items, customize
org-list-indent-offset.

The following commands act on items when point is in the first line of an item—the
line with the bullet or number. Some of them imply the application of automatic rules to
keep list structure intact. If some of these actions get in your way, configure org-list-
automatic-rules to disable them individually.

TAB (org-cycle)

Items can be folded just like headline levels. Normally this works only if point
is on a plain list item. For more details, see the variable org-cycle-include-
plain-lists. If this variable is set to integrate, plain list items are treated
like low-level headlines. The level of an item is then given by the indentation of
the bullet /number. Items are always subordinate to real headlines, however; the
hierarchies remain completely separated. In a new item with no text yet, the
first TAB demotes the item to become a child of the previous one. Subsequent
TABs move the item to meaningful levels in the list and eventually get it back
to its initial position.

M-RET (org-insert-heading)
Insert new item at current level. With a prefix argument, force a new heading
(see Section 2.4 [Structure Editing], page 9). If this command is used in the
middle of an item, that item is split in two, and the second part becomes the

Chapter 2:

M-S-RET

S-UP
S-DOWN

M-UP
M-DOWN

M-LEFT

M-RIGHT

M-S-LEFT
M-S-RIGHT

C-c C-c

C-c *

C-c C-*

Document Structure 14

new item!!. If this command is executed before item’s body, the new item is
created before the current one.

Insert a new item with a checkbox (see Section 5.6 [Checkboxes], page 56).

Jump to the previous/next item in the current list, but only if org-support-
shift-select is off!2. If not, you can still use paragraph jumping commands
like C-UP and C-DOWN to quite similar effect.

Move the item including subitems up/down'®; i.e., swap with previous/next

item of same indentation. If the list is ordered, renumbering is automatic.

Decrease/increase the indentation of an item, leaving children alone.

Decrease/increase the indentation of the item, including subitems. Initially, the
item tree is selected based on current indentation. When these commands are
executed several times in direct succession, the initially selected region is used,
even if the new indentation would imply a different hierarchy. To use the new
hierarchy, break the command chain by moving point.

As a special case, using this command on the very first item of a list moves the
whole list. This behavior can be disabled by configuring org-list-automatic-
rules. The global indentation of a list has no influence on the text after the
list.

If there is a checkbox (see Section 5.6 [Checkboxes|, page 56) in the item line,
toggle the state of the checkbox. In any case, verify bullets and indentation
consistency in the whole list.

)

Cycle the entire list level through the different itemize/enumerate bullets (
“+70 47 41,7, 41)7) or a subset of them, depending on org-plain-list-ordered-
item-terminator, the type of list, and its indentation. With a numeric prefix
argument N, select the Nth bullet from this list. If there is an active region
when calling this, selected text is changed into an item. With a prefix argument,
all lines are converted to list items. If the first line already was a list item, any
item marker is removed from the list. Finally, even without an active region, a
normal line is converted into a list item.

Turn a plain list item into a headline—so that it becomes a subheading at its
location. See Section 2.4 [Structure Editing], page 9, for a detailed explanation.

Turn the whole plain list into a subtree of the current heading. Checkboxes (see
Section 5.6 [Checkboxes], page 56) become ‘TODQ’, respectively ‘DONE’, keywords
when unchecked, respectively checked.

g you do not want the item to be split, customize the variable org-M-RET-may-split-1line.

12 15 you want to cycle around items that way, you may customize org-list-use-circular-motion.

13 See org-list-use-circular-motion for a cyclic behavior.

Chapter 2: Document Structure 15

S-LEFT
S-RIGHT This command also cycles bullet styles when point is in on the bullet or any-
where in an item line, details depending on org-support-shift-select.

C-c~ Sort the plain list. Prompt for the sorting method: numerically, alphabetically,
by time, or by custom function.

2.7 Drawers

Sometimes you want to keep information associated with an entry, but you normally do not
want to see it. For this, Org mode has drawers. They can contain anything but a headline
and another drawer. Drawers look like this:

** This is a headline
Still outside the drawer
:DRAWERNAME :

This is inside the drawer.
:END:

After the drawer.

You can interactively insert a drawer at point by calling org-insert-drawer, which is
bound to C-c C-x d. With an active region, this command puts the region inside the drawer.
With a prefix argument, this command calls org-insert-property-drawer, which creates
a ‘PROPERTIES’ drawer right below the current headline. Org mode uses this special drawer
for storing properties (see Chapter 7 [Properties and Columns|, page 63). You cannot use
it for anything else.

Completion over drawer keywords is also possible using M-TAB.

Visibility cycling (see Section 2.2 [Visibility Cycling|, page 6) on the headline hides and

shows the entry, but keep the drawer collapsed to a single line. In order to look inside the
drawer, you need to move point to the drawer line and press TAB there.

You can also arrange for state change notes (see Section 5.3.2 [Tracking TODO state
changes|, page 51) and clock times (see Section 8.4 [Clocking Work Time], page 80) to be
stored in a ‘LOGBOOK’ drawer. If you want to store a quick note there, in a similar way to
state changes, use

C-c C-z Add a time-stamped note to the ‘LOGBOOK’ drawer.

2.8 Blocks

Org mode uses ‘#+BEGIN’ ... ‘#+END’ blocks for various purposes from including source
code examples (see Section 12.6 [Literal Examples|, page 135) to capturing time logging
information (see Section 8.4 [Clocking Work Timel, page 80). These blocks can be folded
and unfolded by pressing TAB in the ‘#+BEGIN’ line. You can also get all blocks folded at
startup by configuring the variable org-hide-block-startup or on a per-file basis by using

#+STARTUP: hideblocks
#+STARTUP: nohideblocks

14 Many desktops intercept M-TAB to switch windows. Use C-M-i or ESC TAB instead.

Chapter 3: Tables 16

3 Tables

Org comes with a fast and intuitive table editor. Spreadsheet-like calculations are supported
using the Emacs Calc package (see calc).

3.1 Built-in Table Editor

Org makes it easy to format tables in plain ASCII. Any line with ‘|’ as the first non-
whitespace character is considered part of a table. ‘|’ is also the column separator!. More-
over, a line starting with ‘|-’ is a horizontal rule. It separates rows explicitly. Rows before
the first horizontal rule are header lines. A table might look like this:

| Name | Phone | Age |
[-====== Fo—————— o |
| Peter | 1234 | 17 |
| Anna | 4321 | 25 |

A table is re-aligned automatically each time you press TAB, RET or C-c C-c inside the
table. TAB also moves to the next field—RET to the next row—and creates new table rows
at the end of the table or before horizontal lines. The indentation of the table is set by the
first line. Horizontal rules are automatically expanded on every re-align to span the whole
table width. So, to create the above table, you would only type

| Name | Phone | Age |

I -
and then press TAB to align the table and start filling in fields. Even faster would be to
type ‘| Name | Phone | Age’ followed by C-c RET.

When typing text into a field, Org treats DEL, Backspace, and all character keys in a
special way, so that inserting and deleting avoids shifting other fields. Also, when typing
immediately after point was moved into a new field with TAB, S-TAB or RET, the field is
automatically made blank. If this behavior is too unpredictable for you, configure the
option org-table-auto-blank-field.

Creation and conversion

C-c | (org-table-create-or-convert-from-region)

Convert the active region to table. If every line contains at least one TAB
character, the function assumes that the material is tab separated. If every line
contains a comma, comma-separated values (CSV) are assumed. If not, lines
are split at whitespace into fields. You can use a prefix argument to force a
specific separator: C-u forces CSV, C-u C-u forces TAB, C-u C-u C-u prompts
for a regular expression to match the separator, and a numeric argument N
indicates that at least N consecutive spaces, or alternatively a TAB will be the
separator.

If there is no active region, this command creates an empty Org table. But it
is easier just to start typing, like | Name | Phone | AgeRET| - TAB.

I To insert a vertical bar into a table field, use ‘\vert’ or, inside a word ‘abc\vert{}def’.

Chapter 3: Tables 17

Re-aligning and field motion

C-c C-c (org-table-align)
Re-align the table without moving point.

TAB (org-table-next-field)
Re-align the table, move to the next field. Creates a new row if necessary.

C-c SPC (org-table-blank-field)
Blank the field at point.

S-TAB (org-table-previous-field)
Re-align, move to previous field.

RET (org-table-next-row)
Re-align the table and move down to next row. Creates a new row if necessary.
At the beginning or end of a line, RET still inserts a new line, so it can be used
to split a table.

M-a (org-table-beginning-of-field)
Move to beginning of the current table field, or on to the previous field.

M-e (org-table-end-of-field)
Move to end of the current table field, or on to the next field.

Column and row editing

M-LEFT (org-table-move-column-left)
Move the current column left.

M-RIGHT (org-table-move-column-right)
Move the current column right.

M-S-LEFT (org-table-delete-column)
Kill the current column.

M-S-RIGHT (org-table-insert-column)
Insert a new column to the left of point position.
M-UP (org-table-move-row-up)
Move the current row up.
M-DOWN (org-table-move-row-down)
Move the current row down.
M-S-UP (org-table-kill-row)
Kill the current row or horizontal line.
S-UP (org-table-move-cell-up)
Move cell up by swapping with adjacent cell.

S-DOWN (org-table-move-cell-down)
Move cell down by swapping with adjacent cell.

S-LEFT (org-table-move-cell-left)
Move cell left by swapping with adjacent cell.

Chapter 3: Tables 18

S-RIGHT (org-table-move-cell-right)
Move cell right by swapping with adjacent cell.

M-S-DOWN (org-table-insert-row)
Insert a new row above the current row. With a prefix argument, the line is
created below the current one.

C-c - (org-table-insert-hline)
Insert a horizontal line below current row. With a prefix argument, the line is
created above the current line.

C-c RET (org-table-hline-and-move)
Insert a horizontal line below current row, and move point into the row below
that line.

C-c ~ (org-table-sort-1lines)

Sort the table lines in the region. The position of point indicates the column
to be used for sorting, and the range of lines is the range between the nearest
horizontal separator lines, or the entire table. If point is before the first column,
you are prompted for the sorting column. If there is an active region, the mark
specifies the first line and the sorting column, while point should be in the last
line to be included into the sorting. The command prompts for the sorting
type, alphabetically, numerically, or by time. You can sort in normal or reverse
order. You can also supply your own key extraction and comparison functions.
When called with a prefix argument, alphabetic sorting is case-sensitive.

Regions

C-c C-x M-w (org-table-copy-region)
Copy a rectangular region from a table to a special clipboard. Point and mark
determine edge fields of the rectangle. If there is no active region, copy just the
current field. The process ignores horizontal separator lines.

C-c C-x C-w (org-table-cut-region)
Copy a rectangular region from a table to a special clipboard, and blank all
fields in the rectangle. So this is the “cut” operation.

C-c C-x C-y (org-table-paste-rectangle)
Paste a rectangular region into a table. The upper left corner ends up in the
current field. All involved fields are overwritten. If the rectangle does not fit
into the present table, the table is enlarged as needed. The process ignores
horizontal separator lines.

M-RET (org-table-wrap-region)
Split the current field at point position and move the rest to the line below.
If there is an active region, and both point and mark are in the same column,
the text in the column is wrapped to minimum width for the given number of
lines. A numeric prefix argument may be used to change the number of desired
lines. If there is no region, but you specify a prefix argument, the current field
is made blank, and the content is appended to the field above.

Chapter 3: Tables 19

Calculations

C-c + (org-table-sum)
Sum the numbers in the current column, or in the rectangle defined by the
active region. The result is shown in the echo area and can be inserted with
C-y.

S-RET (org-table-copy-down)
When current field is empty, copy from first non-empty field above. When not
empty, copy current field down to next row and move point along with it.

Depending on the variable org-table-copy-increment, integer and time
stamp field values, and fields prefixed or suffixed with a whole number, can be
incremented during copy. Also, a 0 prefix argument temporarily disables the
increment.

This key is also used by shift-selection and related modes (see Section 16.12.2
[Conflicts], page 241).

Miscellaneous

C-c ~ (org-table-edit-field)

Edit the current field in a separate window. This is useful for fields that are
not fully visible (see Section 3.2 [Column Width and Alignment]|, page 20).
When called with a C-u prefix, just make the full field visible, so that it can be
edited in place. When called with two C-u prefixes, make the editor window
follow point through the table and always show the current field. The follow
mode exits automatically when point leaves the table, or when you repeat this
command with C-u C-u C-c ~

M-x org-table-import
Import a file as a table. The table should be TAB or whitespace separated. Use,
for example, to import a spreadsheet table or data from a database, because
these programs generally can write TAB-separated text files. This command
works by inserting the file into the buffer and then converting the region to
a table. Any prefix argument is passed on to the converter, which uses it to
determine the separator.

C-c | (org-table-create-or-convert-from-region)
Tables can also be imported by pasting tabular text into the Org buffer, se-
lecting the pasted text with C-x C-x and then using the C-c | command (see
[Creation and conversion], page 16).

M-x org-table-export

Export the table, by default as a TAB-separated file. Use for data exchange
with, for example, spreadsheet or database programs. The format used
to export the file can be configured in the variable org-table-export-
default-format. You may also use properties ‘TABLE_EXPORT_FILE’ and
‘TABLE_EXPORT_FORMAT’ to specify the file name and the format for table
export in a subtree. Org supports quite general formats for exported tables.
The exporter format is the same as the format used by Orgtbl radio tables,
see Section A.5.3 [Translator functions|, page 252, for a detailed description.

Chapter 3: Tables 20

3.2 Column Width and Alignment

The width of columns is automatically determined by the table editor. The alignment of
a column is determined automatically from the fraction of number-like versus non-number
fields in the column.

Editing a field may modify alignment of the table. Moving a contiguous row or column—
i.e., using TAB or RET—automatically re-aligns it. If you want to disable this behavior, set
org-table-automatic-realign tonil. In any case, you can always align manually a table:

C-c C-c (org-table-align)
Align the current table.
Setting the option org-startup-align-all-tables re-aligns all tables in a file upon
visiting it. You can also set this option on a per-file basis with:
#+STARTUP: align
#+STARTUP: noalign
Sometimes a single field or a few fields need to carry more text, leading to inconveniently

wide columns. Maybe you want to hide away several columns or display them with a fixed
width, regardless of content, as shown in the following example.

R ittt to—mmm | e it +o0
| | <6> | | | | <6> R |
| 1 | one | some | --—-\ | 1 | one (I
| 2 | two | boring | ----/ | 2 | two ...
| 3 | This is a long text | column | | 3 | This i [...]
| -——4-———m to—mmm | | ———4-—————= coete|

To set the width of a column, one field anywhere in the column may contain just the
string ‘<N>” where N specifies the width as a number of characters. You control displayed
width of columns with the following tools:

C-c TAB (org-table-toggle-column-width)
Shrink or expand current column.
If a width cookie specifies a width W for the column, shrinking it displays the
first W visible characters only. Otherwise, the column is shrunk to a single
character.

When called before the first column or after the last one, ask for a list of column
ranges to operate on.

C-u C-c TAB (org-table-shrink)
Shrink all columns with a column width. Expand the others.

C-u C-u C-c TAB (org-table-expand)
Expand all columns.

To see the full text of a shrunk field, hold the mouse over it: a tool-tip window then
shows the full contents of the field. Alternatively, C-h . (display-local-help) reveals
them, too. For convenience, any change near the shrunk part of a column expands it.

Setting the option org-startup-shrink-all-tables shrinks all columns containing a
width cookie in a file the moment it is visited. You can also set this option on a per-file
basis with:

Chapter 3: Tables 21

#+STARTUP: shrink

If you would like to overrule the automatic alignment of number-rich columns to the
right and of string-rich columns to the left, you can use ‘<r>’; ‘<c>’ or ‘<1>’ in a similar
fashion. You may also combine alignment and field width like this: ‘<r10>’.

Lines which only contain these formatting cookies are removed automatically upon ex-
porting the document.

3.3 Column Groups

When Org exports tables, it does so by default without vertical lines because that is visually
more satisfying in general. Occasionally however, vertical lines can be useful to structure
a table into groups of columns, much like horizontal lines can do for groups of rows. In
order to specify column groups, you can use a special row where the first field contains only
‘/’. The further fields can either contain ‘<’ to indicate that this column should start a
group, >’ to indicate the end of a column, or ‘<>’ (no space between ‘<’ and ‘>’) to make
a column a group of its own. Upon export, boundaries between column groups are marked
with vertical lines. Here is an example:

| N | N°2 | N°3 | N"4 | sqrt(n)

I
| ———4————- +————= +———— +o———— o ———— |
L/ 1 < | > < > |
11 1 | 1 | 1 | 1] 1]
21 4 | 8 | 16 | 1.4142 | 1.1892 |
| 31 9 |27 |81 | 1.7321 | 1.3161 |
| ———4————- - +————= o B ittt |

#+TBLFM: $2=$1"2::$3=$1"3::$4=$1"4::$5=sqrt($1) : : $6=sqrt (sqrt (($1)))

It is also sufficient to just insert the column group starters after every vertical line you
would like to have:

3.4 The Orgtbl Minor Mode

If you like the intuitive way the Org table editor works, you might also want to use it
in other modes like Text mode or Mail mode. The minor mode Orgtbl mode makes this
possible. You can always toggle the mode with M-x orgtbl-mode. To turn it on by default,
for example in Message mode, use

(add-hook 'message-mode-hook 'turn-on-orgtbl)

Furthermore, with some special setup, it is possible to maintain tables in arbitrary
syntax with Orgtbl mode. For example, it is possible to construct KTEX tables with the
underlying ease and power of Orgtbl mode, including spreadsheet capabilities. For details,
see Section A.5 [Tables in Arbitrary Syntax], page 250.

3.5 The Spreadsheet

The table editor makes use of the Emacs Calc package to implement spreadsheet-like ca-
pabilities. It can also evaluate Emacs Lisp forms to derive fields from other fields. While

Chapter 3: Tables 22

fully featured, Org’s implementation is not identical to other spreadsheets. For example,
Org knows the concept of a column formula that will be applied to all non-header fields
in a column without having to copy the formula to each relevant field. There is also a
formula debugger, and a formula editor with features for highlighting fields in the table
corresponding to the references at point in the formula, moving these references by arrow
keys.

3.5.1 References

To compute fields in the table from other fields, formulas must reference other fields or
ranges. In Org, fields can be referenced by name, by absolute coordinates, and by relative
coordinates. To find out what the coordinates of a field are, press C-c ? in that field, or
press C-c } to toggle the display of a grid.

Field references

Formulas can reference the value of another field in two ways. Like in any other spreadsheet,
you may reference fields with a letter/number combination like ‘B3’, meaning the second
field in the third row. However, Org prefers to use another, more general representation
that looks like this:?

QROW$COLUMN

Column specifications can be absolute like ‘$1’, ‘$2’, ..., ‘$N’, or relative to the current
column, i.e., the column of the field which is being computed, like ‘$+1’ or ‘$-2’. ‘$<’ and
‘$>’ are immutable references to the first and last column, respectively, and you can use
‘$>>>’ to indicate the third column from the right.

The row specification only counts data lines and ignores horizontal separator lines, or
“hlines”. Like with columns, you can use absolute row numbers ‘@1’, ‘@2’°, ..., ‘@N’, and
row numbers relative to the current row like ‘@+3’ or ‘@-1’. ‘@<’ and ‘@>’ are immutable
references the first and last row in the table, respectively. You may also specify the row
relative to one of the hlines: ‘@I’ refers to the first hline, ‘@II’ to the second, etc. ‘@-I’
refers to the first such line above the current line, ‘@+I’ to the first such line below the
current line. You can also write ‘@III+2’ which is the second data line after the third hline
in the table.

‘@0’ and ‘$0’ refer to the current row and column, respectively, i.e., to the row/column
for the field being computed. Also, if you omit either the column or the row part of the
reference, the current row/column is implied.

Org’s references with unsigned numbers are fixed references in the sense that if you
use the same reference in the formula for two different fields, the same field is referenced
each time. Org’s references with signed numbers are floating references because the same
reference operator can reference different fields depending on the field being calculated by
the formula.

Here are a few examples:

‘@2$3’ 2nd row, 3rd column (same as ‘C2’)
‘$5’ column 5 in the current row (same as ‘E&’)

2 Org understands references typed by the user as ‘B4’ but it does not use this syntax when offering
a formula for editing. You can customize this behavior using the variable org-table-use-standard-
references.

Chapter 3: Tables 23

‘@2’ current column, row 2

‘e-1$-3’ field one row up, three columns to the left

‘@-I1$2’ field just under hline above current row, column 2
‘@>$5’ field in the last row, in column 5

Range references

You may reference a rectangular range of fields by specifying two field references connected
by two dots ‘. .’. If both fields are in the current row, you may simply use ‘$2..$7’, but
if at least one field is in a different row, you need to use the general ‘@ROWSCOLUMN’ format
at least for the first field, i.e., the reference must start with ‘@’ in order to be interpreted
correctly. Examples:

‘$1..$3 first three fields in the current row

‘$P..$Q range, using column names (see Section 3.5.10 [Advanced features],
page 32)

‘Pec<. L > start in third column, continue to the last but one

‘@2$1..04$3’ six fields between these two fields (same as ‘A2..C4")

‘e-1$-2..0-1’ 3 fields in the row above, starting from 2 columns on the left

‘eI..IT’ between first and second hline, short for ‘@I..@IT’

Range references return a vector of values that can be fed into Calc vector functions. Empty
fields in ranges are normally suppressed, so that the vector contains only the non-empty
fields. For other options with the mode switches ‘E’, ‘N’ and examples, see Section 3.5.2
[Formula syntax for Calc|, page 24.

Field coordinates in formulas

One of the very first actions during evaluation of Calc formulas and Lisp formulas is to
substitute ‘@#’ and ‘$#’ in the formula with the row or column number of the field where
the current result will go to. The traditional Lisp formula equivalents are org-table-
current-dline and org-table-current-column. Examples:

‘if(o# % 2, $#, string(""))’
Insert column number on odd rows, set field to empty on even rows.

‘$2 = ' (identity remote(FO0, Q@#$1))’
Copy text or values of each row of column 1 of the table named FOO into
column 2 of the current table.

‘@3 = 2 * remote (FOO, @1$$#)’
Insert the doubled value of each column of row 1 of the table named FOO into
row 3 of the current table.

For the second and third examples, table FOO must have at least as many rows or columns
as the current table. Note that this is inefficient?® for large number of rows.
Named references

‘$name’ is interpreted as the name of a column, parameter or constant. Constants are
defined globally through the variable org-table-formula-constants, and locally—for the
file—through a line like this example:

3 The computation time scales as O(N~2) because table FOO is parsed for each field to be copied.

Chapter 3: Tables 24

#+CONSTANTS: c=299792458. pi=3.14 eps=2.4e-6

Also, properties (see Chapter 7 [Properties and Columns|, page 63) can be used as
constants in table formulas: for a property ‘Xyz’ use the name ‘$PROP_Xyz’, and the property
will be searched in the current outline entry and in the hierarchy above it. If you have
the ‘constants.el’ package, it will also be used to resolve constants, including natural
constants like ‘$h’ for Planck’s constant, and units like ‘$km’ for kilometers?. Column
names and parameters can be specified in special table lines. These are described below,
see Section 3.5.10 [Advanced features], page 32. All names must start with a letter, and
further consist of letters and numbers.

Remote references

You may also reference constants, fields and ranges from a different table, either in the
current file or even in a different file. The syntax is

remote (NAME,REF)

where NAME can be the name of a table in the current file as set by a ‘#+NAME:’ line
before the table. It can also be the ID of an entry, even in a different file, and the reference
then refers to the first table in that entry. REF is an absolute field or range reference as
described above for example ‘@3$3’ or ‘$somename’, valid in the referenced table.

When NAME has the format ‘@ROW$COLUMN’, it is substituted with the name or ID found
in this field of the current table. For example ‘remote($1, €@>$2)’ = ‘remote(year_2013,
©@>$1)’. The format ‘B3’ is not supported because it can not be distinguished from a plain
table name or ID.

3.5.2 Formula syntax for Calc

A formula can be any algebraic expression understood by the Emacs Calc package. Note
that Calc has the non-standard convention that ‘/’ has lower precedence than ‘*’, so that
‘a/bxc’ is interpreted as ‘(a/ (bxc))’. Before evaluation by calc-eval (see Section “Calling
Calc from Your Programs” in calc), variable substitution takes place according to the rules
described above.

The range vectors can be directly fed into the Calc vector functions like vmean and vsum.

A formula can contain an optional mode string after a semicolon. This string consists of
flags to influence Calc and other modes during execution. By default, Org uses the standard
Calc modes (precision 12, angular units degrees, fraction and symbolic modes off). The
display format, however, has been changed to ‘(float 8)’ to keep tables compact. The
default settings can be configured using the variable org-calc-default-modes.

‘p20’ Set the internal Calc calculation precision to 20 digits.
‘n3’, ‘s3’, ‘e2’, ‘f4’
Normal, scientific, engineering or fixed format of the result of Calc passed back

to Org. Calc formatting is unlimited in precision as long as the Calc calculation
precision is greater.

‘D’, ‘R’ Degree and radian angle modes of Calc.

4 The file ‘constants.el’ can supply the values of constants in two different unit systems, ‘SI’ and ‘cgs’.
Which one is used depends on the value of the variable constants-unit-system. You can use the
‘STARTUP’ options ‘constSI’ and ‘constcgs’ to set this value for the current buffer.

Chapter 3: Tables 25

4F7 Ls7

4T7’ ‘t,’ tU?
6E7

‘N’

(L7

Fraction and symbolic modes of Calc.

Duration computations in Calc or Lisp, Section 3.5.4 [Durations and time
values|, page 26.

If and how to consider empty fields. Without ‘E’ empty fields in range references
are suppressed so that the Calc vector or Lisp list contains only the non-empty
fields. With ‘E’ the empty fields are kept. For empty fields in ranges or empty
field references the value ‘nan’ (not a number) is used in Calc formulas and
the empty string is used for Lisp formulas. Add ‘N’ to use 0 instead for both
formula types. For the value of a field the mode ‘N’ has higher precedence than
‘E’.

Interpret all fields as numbers, use 0 for non-numbers. See the next section to
see how this is essential for computations with Lisp formulas. In Calc formulas
it is used only occasionally because there number strings are already interpreted
as numbers without ‘N’.

Literal, for Lisp formulas only. See the next section.

Unless you use large integer numbers or high-precision calculation and display for floating
point numbers you may alternatively provide a printf format specifier to reformat the Calc
result after it has been passed back to Org instead of letting Calc already do the formatting®.
A few examples:

L$1+$27

Sum of first and second field

‘$1+%$2;% .21’ Same, format result to two decimals
‘exp ($2) +exp($1)’ Math functions can be used

‘$0;%. 1’ Reformat current cell to 1 decimal

‘($3-32)%5/9’ Degrees F — C conversion

‘$c/$1/$cm’ Hz — cm conversion, using ‘constants.el’
‘tan($1) ;Dp3sl’ Compute in degrees, precision 3, display SCI 1
‘sin($1) ;Dp3%. 1€’ Same, but use printf specifier for display

‘vmean ($2..$7)’ Compute column range mean, using vector function

‘vmean ($2..87);EN’ Same, but treat empty fields as 0
‘taylor($3,x=7,2)’ Taylor series of $3, at x=7, second degree

Calc also contains a complete set of logical operations (see Section “Logical Operations”
in calc). For example

‘if ($1 < 20, teen, string(""))’
‘“"teen"’ if age ‘$1’ is less than 20, else the Org table result field is set to empty
with the empty string.

‘if("$1" == llnanu I I ||$2" R nnanu’ string(" n) , $1 + $2)’ E f—l,

Sum of the first two columns. When at least one of the input fields is empty
the Org table result field is set to empty. ‘E’ is required to not convert empty
fields to 0. ‘f-1’ is an optional Calc format string similar to ‘%.1£’ but leaves
empty results empty.

5 The printf
or “double

reformatting is limited in precision because the value passed to it is converted into an “integer”
”. The “integer” is limited in size by truncating the signed value to 32 bits. The “double” is

limited in precision to 64 bits overall which leaves approximately 16 significant decimal digits.

Chapter 3: Tables 26

‘if (typeof (vmean($1..$7)) == 12, string(""), vmean($1..$7); E’
Mean value of a range unless there is any empty field. Every field in the range
that is empty is replaced by ‘nan’ which lets ‘vmean’ result in ‘nan’. Then
‘typeof =" 12= detects the ‘nan’ from vmean and the Org table result field is
set to empty. Use this when the sample set is expected to never have missing
values.

Af("$1. .87 == "[1", string(""), vmean($1..$7))’
Mean value of a range with empty fields skipped. Every field in the range that
is empty is skipped. When all fields in the range are empty the mean value is
not defined and the Org table result field is set to empty. Use this when the
sample set can have a variable size.

‘vmean($1..$7); EN’
To complete the example before: Mean value of a range with empty fields
counting as samples with value 0. Use this only when incomplete sample sets
should be padded with 0 to the full size.

You can add your own Calc functions defined in Emacs Lisp with defmath and use them
in formula syntax for Calc.

3.5.3 Emacs Lisp forms as formulas

It is also possible to write a formula in Emacs Lisp. This can be useful for string manipu-
lation and control structures, if Calc’s functionality is not enough.

If a formula starts with a single-quote followed by an opening parenthesis, then it is
evaluated as a Lisp form. The evaluation should return either a string or a number. Just
as with Calc formulas, you can specify modes and a printf format after a semicolon.

With Emacs Lisp forms, you need to be conscious about the way field references are
interpolated into the form. By default, a reference is interpolated as a Lisp string (in
double-quotes) containing the field. If you provide the ‘N’ mode switch, all referenced
elements are numbers—mnon-number fields will be zero—and interpolated as Lisp numbers,
without quotes. If you provide the ‘L’ flag, all fields are interpolated literally, without
quotes. For example, if you want a reference to be interpreted as a string by the Lisp form,
enclose the reference operator itself in double-quotes, like ‘"$3"’. Ranges are inserted as
space-separated fields, so you can embed them in list or vector syntax.

9

Here are a few examples—note how the ‘N’ mode is used when we do computations in

Lisp:
‘' (concat (substring $1 1 2) (substring $1 0 1) (substring $1 2))’

Swap the first two characters of the content of column 1.

S+ 81 82) ;N
Add columns 1 and 2, equivalent to Calc’s ‘$1+$2’.

“'(apply '+ '($1..8$4));N’
Compute the sum of columns 1 to 4, like Calc’s ‘vsum($1..$4)".
3.5.4 Durations and time values

If you want to compute time values use the ‘T’, ‘t’, or ‘U’ flag, either in Calc formulas or
Elisp formulas:

Chapter 3: Tables 27

| Task 1 | Task 2 | Total |
| ————————- to—mm - to—mm |
2:12	1:47	03:59:00
2:12	1:47	03:59
3:02:20	-2:07:00	0.92

#+TBLFM: ©2$3=$1+$2;T::03$3=$1+$2;U::04$3=3$1+$2;t

Input duration values must be of the form ‘HH:MM[:SS]’, where seconds are optional.
With the ‘T’ flag, computed durations are displayed as ‘HH:MM:SS’ (see the first formula
above). With the ‘U’ flag, seconds are omitted so that the result is only ‘HH:MM’ (see second
formula above). Zero-padding of the hours field depends upon the value of the variable
org-table-duration-hour-zero-padding.

With the ‘t’ flag, computed durations are displayed according to the value of the option
org-table-duration-custom-format, which defaults to hours and displays the result as
a fraction of hours (see the third formula in the example above).

Negative duration values can be manipulated as well, and integers are considered as
seconds in addition and subtraction.

3.5.5 Field and range formulas

To assign a formula to a particular field, type it directly into the field, preceded by ‘:=’, for
example ‘vsum(@II..III)’. When you press TAB or RET or C-c C-c with point still in the
field, the formula is stored as the formula for this field, evaluated, and the current field is
replaced with the result.

Formulas are stored in a special ‘TBLFM’ keyword located directly below the table. If you
type the equation in the fourth field of the third data line in the table, the formula looks like
‘@3$4=$1+$2’. When inserting/deleting/swapping column and rows with the appropriate
commands, absolute references (but not relative ones) in stored formulas are modified in
order to still reference the same field. To avoid this from happening, in particular in range
references, anchor ranges at the table borders (using ‘@<’, ‘@>’, ‘$<’, ‘$>’), or at hlines using
the ‘@I’ notation. Automatic adaptation of field references does not happen if you edit the
table structure with normal editing commands—you must fix the formulas yourself.

Instead of typing an equation into the field, you may also use the following command

C-u C-c = (org-table-eval-formula)
Install a new formula for the current field. The command prompts for a formula
with default taken from the ‘TBLFM’ keyword, applies it to the current field, and
stores it.

The left-hand side of a formula can also be a special expression in order to assign the
formula to a number of different fields. There is no keyboard shortcut to enter such range
formulas. To add them, use the formula editor (see Section 3.5.8 [Editing and debugging
formulas], page 29) or edit the ‘TBLFM’ keyword directly.

‘$2= Column formula, valid for the entire column. This is so common that Org treats
these formulas in a special way, see Section 3.5.6 [Column formulas], page 28.

‘@3=’ Row formula, applies to all fields in the specified row. ‘@>=" means the last row.

Chapter 3: Tables 28

‘01%$2. .04$3=’
Range formula, applies to all fields in the given rectangular range. This can
also be used to assign a formula to some but not all fields in a row.

‘$NAME=" Named field, see Section 3.5.10 [Advanced features|, page 32.

3.5.6 Column formulas

When you assign a formula to a simple column reference like ‘$3=’, the same formula is used
in all fields of that column, with the following very convenient exceptions: (i) If the table
contains horizontal separator hlines with rows above and below, everything before the first
such hline is considered part of the table header and is not modified by column formulas.
Therefore a header is mandatory when you use column formulas and want to add hlines
to group rows, like for example to separate a total row at the bottom from the summand
rows above. (ii) Fields that already get a value from a field/range formula are left alone by
column formulas. These conditions make column formulas very easy to use.

To assign a formula to a column, type it directly into any field in the column, preceded
by an equal sign, like ‘=$1+$2’. When you press TAB or RET or C-c C-c with point still in
the field, the formula is stored as the formula for the current column, evaluated and the
current field replaced with the result. If the field contains only ‘=’ the previously stored
formula for this column is used. For each column, Org only remembers the most recently
used formula. In the ‘TBLFM’ keyword, column formulas look like ‘$4=$1+$2’. The left-hand
side of a column formula can not be the name of column, it must be the numeric column
reference or ‘$>’.

Instead of typing an equation into the field, you may also use the following command:

C-c = (org-table-eval-formula)
Install a new formula for the current column and replace current field with the
result of the formula. The command prompts for a formula, with default taken
from the ‘TBLFM’ keyword, applies it to the current field and stores it. With a
numeric prefix argument, e.g., C-5 C-c =, the command applies it to that many
consecutive fields in the current column.

3.5.7 Lookup functions

Org has three predefined Emacs Lisp functions for lookups in tables.

‘(org-lookup-first VAL S-LIST R-LIST &optional PREDICATE)’
Searches for the first element S in list S-LIST for which

(PREDICATE VAL S)
is non-nil; returns the value from the corresponding position in list R-LIST.
The default PREDICATE is equal. Note that the parameters VAL and S are
passed to PREDICATE in the same order as the corresponding parameters are

in the call to org-lookup-first, where VAL precedes S-LIST. If R-LIST is
nil, the matching element S of S-LIST is returned.

‘(org-lookup-last VAL S-LIST R-LIST &optional PREDICATE)’
Similar to org-lookup-first above, but searches for the last element for which
PREDICATE is non-nil.

Chapter 3: Tables 29

‘(org-lookup-all VAL S-LIST R-LIST &optional PREDICATE)’
Similar to org-lookup-first, but searches for all elements for which PRED-
ICATE is non-nil, and returns all corresponding values. This function can
not be used by itself in a formula, because it returns a list of values. However,
powerful lookups can be built when this function is combined with other Emacs
Lisp functions.

If the ranges used in these functions contain empty fields, the ‘E’ mode for the formula
should usually be specified: otherwise empty fields are not included in S-LIST and/or R-
LIST which can, for example, result in an incorrect mapping from an element of S-LIST to
the corresponding element of R-LIST.

These three functions can be used to implement associative arrays, count matching cells,
rank results, group data, etc. For practical examples see this tutorial on Worg.

3.5.8 Editing and debugging formulas

You can edit individual formulas in the minibuffer or directly in the field. Org can also
prepare a special buffer with all active formulas of a table. When offering a formula for
editing, Org converts references to the standard format (like ‘B3’ or ‘D&’) if possible. If
you prefer to only work with the internal format (like ‘@3$2’ or ‘$4’), configure the variable
org-table-use-standard-references.

C-c = or C-u C-c = (org-table-eval-formula)
Edit the formula associated with the current column/field in the minibuffer. See
Section 3.5.6 [Column formulas], page 28, and Section 3.5.5 [Field and range
formulas], page 27.

C-u C-u C-c¢ = (org-table-eval-formula)
Re-insert the active formula (either a field formula, or a column formula) into
the current field, so that you can edit it directly in the field. The advantage
over editing in the minibuffer is that you can use the command C-c 7.

C-c ? (org-table-field-info)
While editing a formula in a table field, highlight the field(s) referenced by the
reference at point position in the formula.

C-c } (org-table-toggle-coordinate-overlays)
Toggle the display of row and column numbers for a table, using overlays. These
are updated each time the table is aligned; you can force it with C-c C-c.

C-c { (org-table-toggle-formula-debugger)
Toggle the formula debugger on and off. See below.

C-c ' (org-table-edit-formulas)
Edit all formulas for the current table in a special buffer, where the formulas
are displayed one per line. If the current field has an active formula, point in
the formula editor marks it. While inside the special buffer, Org automatically
highlights any field or range reference at point position. You may edit, remove
and add formulas, and use the following commands:
C-c C-c or C-x C-s (org-table-fedit-finish)
Exit the formula editor and store the modified formulas. With C-u
prefix, also apply the new formulas to the entire table.

https://orgmode.org/worg/org-tutorials/org-lookups.html

Chapter 3: Tables 30

C-c C-q (org-table-fedit-abort)
Exit the formula editor without installing changes.
C-c C-r (org-table-fedit-toggle-ref-type)
Toggle all references in the formula editor between standard (like
‘B3’) and internal (like ‘@3$2’).
TAB (org-table-fedit-lisp-indent)
Pretty-print or indent Lisp formula at point. When in a line con-
taining a Lisp formula, format the formula according to Emacs Lisp
rules. Another TAB collapses the formula back again. In the open
formula, TAB re-indents just like in Emacs Lisp mode.
M-TAB (lisp-complete-symbol)
Complete Lisp symbols, just like in Emacs Lisp mode.
S-UP, S-DOWN, S-LEFT, S-RIGHT
Shift the reference at point. For example, if the reference is ‘B3’
and you press S-RIGHT, it becomes ‘C3’. This also works for relative
references and for hline references.
M-S-UP (org-table-fedit-line-up)
Move the test line for column formulas up in the Org buffer.
M-S-DOWN (org-table-fedit-line-down)
Move the test line for column formulas down in the Org buffer.
M-UP (org-table-fedit-scroll-up)
Scroll up the window displaying the table.

M-DOWN (org-table-fedit-scroll-down)
Scroll down the window displaying the table.

C-c } Turn the coordinate grid in the table on and off.

Making a table field blank does not remove the formula associated with the field, because
that is stored in a different line—the ‘TBLFM’ keyword line. During the next recalculation,
the field will be filled again. To remove a formula from a field, you have to give an empty

reply when

prompted for the formula, or to edit the ‘TBLFM’ keyword.

You may edit the ‘TBLFM’ keyword directly and re-apply the changed equations with C-c

C-c in that

line or with the normal recalculation commands in the table.

Using multiple ‘TBLFM’ lines

You may ap
applied to t
C-c C-c on

|2 |

ply the formula temporarily. This is useful when you want to switch the formula
he table. Place multiple ‘TBLFM’ keywords right after the table, and then press
the formula to apply. Here is an example:

#+TBLFM: $2=$1%1
#+TBLFM: $2=$1%2

Pressing C-

¢ C-c in the line of ‘#+TBLFM: $2=$1*2’ yields:

Chapter 3: Tables 31

l x| vy |
| ——=+-—-|
11 2|
21 4 |

#+TBLFM: $2=$1%1
#+TBLFM: $2=$1%2

If you recalculate this table, with C-u C-c *, for example, you get the following result from
applying only the first ‘TBLFM’ keyword.

x|y |
| ===
101
1212 |

#+TBLFM: $2=81x1
#+TBLFM: $2=$1%2

Debugging formulas

When the evaluation of a formula leads to an error, the field content becomes the string
‘#ERROR’. If you would like to see what is going on during variable substitution and calcu-
lation in order to find a bug, turn on formula debugging in the Tbl menu and repeat the
calculation, for example by pressing C-u C-u C-c = RET in a field. Detailed information are
displayed.

3.5.9 Updating the table

Recalculation of a table is normally not automatic, but needs to be triggered by a com-
mand. To make recalculation at least semi-automatic, see Section 3.5.10 [Advanced fea-
tures|, page 32.

In order to recalculate a line of a table or the entire table, use the following commands:

C-c * (org-table-recalculate)
Recalculate the current row by first applying the stored column formulas from
left to right, and all field /range formulas in the current row.

C-u C-c * or C-u C-c C-c
Recompute the entire table, line by line. Any lines before the first hline are left
alone, assuming that these are part of the table header.

C-u C-u C-c * or C-u C-u C-c C-c (org-table-iterate)
Iterate the table by recomputing it until no further changes occur. This may be
necessary if some computed fields use the value of other fields that are computed
later in the calculation sequence.

M-x org-table-recalculate-buffer-tables
Recompute all tables in the current buffer.

M-x org-table-iterate-buffer-tables
Iterate all tables in the current buffer, in order to converge table-to-table de-
pendencies.

Chapter 3: Tables 32

3.5.10 Advanced features

If you want the recalculation of fields to happen automatically, or if you want to be able to
assign names® to fields and columns, you need to reserve the first column of the table for
special marking characters.

C-# (org-table-rotate-recalc-marks)
Rotate the calculation mark in first column through the states ‘#’, ‘*’, ‘17, ‘§’".
When there is an active region, change all marks in the region.

Here is an example of a table that collects exam results of students and makes use of
these features:

| ———+————————- +————— e et +o— +—————— +————— |
[| Student | Prob 1 | Prob 2 | Prob 3 | Total | Note |
| =4 Fo—— R et o o o |
[! | P1 | P2 | P3 | Tot | |
I | Maximum | 10 | 15 | 25 | 50 | 10.0 |
[~ | ml | m2 | m3 | mt | |
| = o e et Fo—————— o o |
| # | Peter | 10 | 8 | 23 | 41 | 8.2 |
| # | Sam | 2 | 4 | 3 | 9] 1.8 |
| - +——————— +——————— +o————— +o—————— +————— |
| | Average | | | | 25.0 | |
[~ I I I | at | I
| $ | max=50 | | I | | |
| - === +——————— +————— +——————— +————— +————— |

#+TBLFM: $6=vsum($P1..$P3)::$7=10%Tot/Pmax;%.1f: :$at=vmean(@-II..0-I);%.1f
Important: Please note that for these special tables, recalculating the table

with C-u C-c * only affects rows that are marked ‘#” or ‘*’, and fields that have

a formula assigned to the field itself. The column formulas are not applied in

rows with empty first field.

The marking characters have the following meaning:

‘o The fields in this line define names for the columns, so that you may refer to a
column as ‘$Tot’ instead of ‘$6’.

e This row defines names for the fields above the row. With such a definition,
any formula in the table may use ‘$m1’ to refer to the value ‘10’. Also, if you

)

assign a formula to a names field, it is stored as ‘$name =
$ Similar to ‘*’, but defines names for the fields in the row below.

‘¢’ Fields in this row can define parameters for formulas. For example, if a field in
a ‘$’ row contains ‘max=50’, then formulas in this table can refer to the value
50 using ‘$max’. Parameters work exactly like constants, only that they can be
defined on a per-table basis.

‘@ Fields in this row are automatically recalculated when pressing TAB or RET or
S-TAB in this row. Also, this row is selected for a global recalculation with C-u
C-c *. Unmarked lines are left alone by this command.

6 Such names must start with an alphabetic character and use only alphanumeric/underscore characters.

Chapter 3: Tables 33

¥ Selects this line for global recalculation with C-u C-c *, but not for automatic
recalculation. Use this when automatic recalculation slows down editing too
much.

A Do not export this line. Useful for lines that contain the narrowing ‘<N>’ markers

or column group markers.

Finally, just to whet your appetite for what can be done with the fantastic Calc package,
here is a table that computes the Taylor series of degree n at location x for a couple of
functions.

| —————— to—— e e |
| | Func | n | x | Result

|——+——————— ot R e L e e e e |
| # | exp(x) 11 x | 1+x |
| # | exp(x) 21 x | 1+x+x"2/2

| # | exp(x) 31 x | 1+x+x%x2/2+%x"3/6

| # | x"2+sqrt(x) | 2 | x=0 | x%(0.5 / 0) + x°2 (2 - 0.25 /0) / 2 |
| # | x"2+sqrt(x) | 2 | x=1 | 2 + 2.5 x - 2.5 + 0.875 (x - 1)"2 |
| * | tan(x) | 3| x | 0.0175 x + 1.77e-6 x”3
|- o o |
#+TBLFM: $5=taylor($2,%$4,$3);n3

3.6 Org Plot

Org Plot can produce graphs of information stored in Org tables, either graphically or in
ASCII art.

Graphical plots using Gnuplot

Org Plot can produce 2D and 3D graphs of information stored in Org tables using Gnuplot
and Gnuplot mode. To see this in action, ensure that you have both Gnuplot and Gnuplot
mode installed on your system, then call C-c " gor M-x org-plot/gnuplot on the following
table.

#+PLOT: title:"Citas" ind:1 deps:(3) type:2d with:histograms set:"yrange [0:]"

| Sede | Max cites | H-index |
| ————————— o tom

Chile	257.72	21.39
Leeds	165.77	19.68
Sao Paolo	71.00	11.50
Stockholm	134.19	14.33
Morelia	257.56	17.67

Notice that Org Plot is smart enough to apply the table’s headers as labels. Further
control over the labels, type, content, and appearance of plots can be exercised through the
‘PLOT’ keyword preceding a table. See below for a complete list of Org Plot options. For
more information and examples see the Org Plot tutorial.

Plot options

3

set’ Specify any Gnuplot option to be set when graphing.

http://www.gnuplot.info/
http://cars9.uchicago.edu/~ravel/software/gnuplot-mode.html
https://orgmode.org/worg/org-tutorials/org-plot.html

Chapter 3:

‘title’
‘ind’

‘deps’

‘type’
‘with’
‘file’
‘labels’

‘line’

4map7

)

‘timefmt

‘script’

Tables 34

Specify the title of the plot.
Specify which column of the table to use as the ‘x’ axis.

Specify the columns to graph as a Lisp style list, surrounded by parentheses
and separated by spaces for example ‘dep: (3 4)’ to graph the third and fourth
columns. Defaults to graphing all other columns aside from the ‘ind’ column.

Specify whether the plot is ‘2d’, ‘3d’, or ‘grid’.

Specify a ‘with’ option to be inserted for every column being plotted, e.g.,
‘lines’, ‘points’, ‘boxes’, ‘impulses’. Defaults to ‘lines’.

If you want to plot to a file, specify ‘"path/to/desired/output-file"’.

List of labels to be used for the ‘deps’. Defaults to the column headers if they
exist.

Specify an entire line to be inserted in the Gnuplot script.

When plotting ‘3d’ or ‘grid’ types, set this to ‘t’ to graph a flat mapping rather
than a ‘3d’ slope.

Specify format of Org mode timestamps as they will be parsed by Gnuplot.
Defaults to ‘%Y-%m-%d-%H: %M: %S’.

If you want total control, you can specify a script file—place the file name
between double-quotes—which will be used to plot. Before plotting, every
instance of ‘$datafile’ in the specified script will be replaced with the path to
the generated data file. Note: even if you set this option, you may still want to
specify the plot type, as that can impact the content of the data file.

ASCII bar plots

While point is on a column, typing C-c ~~ a or M-x orgtbl-ascii-plot create a new col-
umn containing an ASCII-art bars plot. The plot is implemented through a regular column
formula. When the source column changes, the bar plot may be updated by refreshing the
table, for example typing C-u C-c *.

| Sede | Max cites | |
|- Fomm Fom e |
| Chile | 257.72 | WWWWWWWWWWWW |
| Leeds I 165.77 | WWWWWWWh I
Sao Paolo	71.00	WWw;
Stockholm	134.19	WWWWWW:
Morelia	257.56	WWWWWWWWWWWH
Rochefourchat	0.00	

#+TBLFM: $3='(orgtbl-ascii-draw $2 0.0 257.72 12)

The formula is an Elisp call.

orgtbl-ascii-draw value min max &optional width [Function]
Draw an ASCII bar in a table.

VALUE is the value to plot.

Chapter 3: Tables 35

MIN is the value displayed as an empty bar. MAX is the value filling all the WIDTH.
Sources values outside this range are displayed as ‘too small’ or ‘too large’.

WIDTH is the number of characters of the bar plot. It defaults to ‘12’.

Chapter 4: Hyperlinks 36

4 Hyperlinks

Like HTML, Org provides support for links inside a file, external links to other files, Usenet
articles, emails, and much more.

4.1 Link Format

Org recognizes plain URISs, possibly wrapped within angle brackets!, and activate them as
clickable links.

The general link format, however, looks like this:
[[LINK] [DESCRIPTION]]
or alternatively
[[LINK]]

Some ‘\’, ‘[’ and ‘]’ characters in the LINK part need to be “escaped”, i.e., preceded
by another ‘\’ character. More specifically, the following characters, and only them, must
be escaped:

1. all ‘[’ and ‘]’ characters,
2. every ‘\’ character preceding either ‘]’ or ‘[,

3. every ‘\’ character at the end of the link.

Functions inserting links (see Section 4.5 [Handling Links|, page 40) properly escape
ambiguous characters. You only need to bother about the rules above when inserting
directly, or yanking, a URI within square brackets. When in doubt, you may use the
function org-link-escape, which turns a link string into its escaped form.

Once a link in the buffer is complete, with all brackets present, Org changes the display so
that ‘DESCRIPTION’ is displayed instead of ‘ [[LINK] [DESCRIPTION]]’ and ‘LINK’ is displayed
instead of ‘[[LINK]]’. Links are highlighted in the org-link face, which, by default, is an
underlined face.

You can directly edit the visible part of a link. This can be either the LINK part, if
there is no description, or the DESCRIPTION part otherwise. To also edit the invisible
LINK part, use C-c C-1 with point on the link (see Section 4.5 [Handling Links|, page 40).

If you place point at the beginning or just behind the end of the displayed text and press
BS, you remove the—invisible—bracket at that location®?. This makes the link incomplete
and the internals are again displayed as plain text. Inserting the missing bracket hides
the link internals again. To show the internal structure of all links, use the menu: Org —
Hyperlinks — Literal links.

! Plain URIs are recognized only for a well-defined set of schemes. See Section 4.4 [External Links],
page 38. Unlike URI syntax, they cannot contain parenthesis or white spaces, either. URIs within angle
brackets have no such limitation.

2 More accurately, the precise behavior depends on how point arrived there—see Section “Invisible Text”
in elisp.

Chapter 4: Hyperlinks 37

4.2 Internal Links

A link that does not look like a URL—i.e., does not start with a known scheme or a file
name—refers to the current document. You can follow it with C-c C-o when point is on
the link, or with a mouse click (see Section 4.5 [Handling Links|, page 40).

Org provides several refinements to internal navigation within a document. Most notably,
a construct like ‘[[#my-custom-id]]’ specifically targets the entry with the ‘CUSTOM_ID’
property set to ‘my-custom-id’. Also, an internal link looking like ‘[[*Some section]]’

points to a headline with the name ‘Some section’.

When the link does not belong to any of the cases above, Org looks for a dedicated target:
the same string in double angular brackets, like ‘<<My Target>>’.

If no dedicated target exists, the link tries to match the exact name of an element within
the buffer. Naming is done, unsurprisingly, with the ‘NAME’ keyword, which has to be put
in the line before the element it refers to, as in the following example

#+NAME: My Target

| a | table |
| m oo |
| of | four cells |

Ultimately, if none of the above succeeds, Org searches for a headline that is exactly the
link text but may also include a TODO keyword and tags, or initiates a plain text search,
according to the value of org-link-search-must-match-exact-headline.

Note that you must make sure custom IDs, dedicated targets, and names are unique
throughout the document. Org provides a linter to assist you in the process, if needed. See
Section 16.8 [Org Syntax], page 238.

During export, internal links are used to mark objects and assign them a number.
Marked objects are then referenced by links pointing to them. In particular, links without a
description appear as the number assigned to the marked object*. In the following excerpt
from an Org buffer

1. one item
2. <<target>>another item
Here we refer to item [[target]].

The last sentence will appear as ‘Here we refer to item 2’ when exported.

In non-Org files, the search looks for the words in the link text. In the above example
the search would be for ‘target’.

Following a link pushes a mark onto Org’s own mark ring. You can return to the previous
position with C-c & Using this command several times in direct succession goes back to
positions recorded earlier.

3 To insert a link targeting a headline, in-buffer completion can be used. Just type a star followed by a
few optional letters into the buffer and press M-TAB. All headlines in the current buffer are offered as
completions.

4 When targeting a ‘NAME’ keyword, the ‘CAPTION’ keyword is mandatory in order to get proper numbering
(see Section 12.8 [Captions], page 138).

Chapter 4: Hyperlinks 38

4.3 Radio Targets

Org can automatically turn any occurrences of certain target names in normal text into
a link. So without explicitly creating a link, the text connects to the target radioing its
position. Radio targets are enclosed by triple angular brackets. For example, a target ‘<<<My
Target>>>’ causes each occurrence of ‘my target’ in normal text to become activated as
a link. The Org file is scanned automatically for radio targets only when the file is first
loaded into Emacs. To update the target list during editing, press C-c C-c with point on
or at a target.

4.4 External Links

Org supports links to files, websites, Usenet and email messages, BBDB database entries
and links to both IRC conversations and their logs. External links are URL-like locators.
They start with a short identifying string followed by a colon. There can be no space after
the colon.

Here is the full set of built-in link types:

‘file’ File links. File name may be remote, absolute, or relative.

Additionally, you can specify a line number, or a text search. In Org files, you
may link to a headline name, a custom ID, or a code reference instead.

As a special case, “file” prefix may be omitted if the file name is complete, e.g.,
it starts with ‘./’, or ‘/’.

‘attachment’
Same as file links but for files and folders attached to the current node (see
Section 10.2 [Attachments]|, page 98). Attachment links are intended to behave
exactly as file links but for files relative to the attachment directory.

‘bbdb’ Link to a BBDB record, with possible regexp completion.

‘docview’ Link to a document opened with DocView mode. You may specify a page
number.

‘doi’ Link to an electronic resource, through its handle.

‘elisp’ Execute an Elisp command upon activation.

‘gnus’, ‘rmail’, ‘mhe’
Link to messages or folders from a given Emacs’ MUA.

‘help’ Display documentation of a symbol in ‘*Help*’ buffer.
‘http’, ‘https’

Web links.
“id’ Link to a specific headline by its ID property, in an Org file.
‘info’ Link to an Info manual, or to a specific node.
‘irc’ Link to an IRC channel.
‘mailto’ Link to message composition.

‘news’ Usenet links.

Chapter 4: Hyperlinks 39

‘shell’ Execute a shell command upon activation.

The following table illustrates the link types above, along with their options:

Link Type Example

http ‘http://staff.science.uva.nl/c.dominik/’

https ‘https://orgmode.org/’

doi ‘doi:10.1000/182’

file ‘file:/home/dominik/images/jupiter. jpg’
‘/home/dominik/images/jupiter. jpg’ (same as above)
‘file:papers/last.pdf’
‘./papers/last.pdf’ (same as above)
‘file:/ssh:me@some.where:papers/last.pdf’ (remote)
‘/ssh:me@some.where:papers/last.pdf’ (same as above)
‘file:sometextfile: :NNN’ (jump to line number)
‘file:projects.org’
‘file:projects.org: :some words’ (text search)®
‘file:projects.org: :*task title’ (headline search)
‘file:projects.org: :#custom-id’ (headline search)

attachment ‘attachment:projects.org’
‘attachment :projects.org: : some words’ (text search)

docview ‘docview:papers/last.pdf: :NNN’

id ‘1d:B7423F4D-2E8A-471B-8810-C40F074717E9’

news ‘news:comp.emacs’

mailto ‘mailto:adent@galaxy.net’

mhe ‘mhe:folder’ (folder link)
‘mhe:folder#id’ (message link)

rmail ‘rmail:folder’ (folder link)
‘rmail:folder#id’ (message link)

gnus ‘gnus:group’ (group link)
‘gnus:group#id’ (article link)

bbdb ‘bbdb:R.*Stallman’ (record with regexp)

irc ‘irc:/irc.com/#emacs/bob’

help ‘help:org-store-link’

info ‘info:org#External links’

shell ‘shell:1s *.org’

elisp ‘elisp: (find-file "Elisp.org")’ (Elisp form to evaluate)

‘elisp:org-agenda’ (interactive Elisp command)

On top of these built-in link types, additional ones are available through the ‘contrib/’
directory (see Section 1.2 [Installation|, page 1). For example, these links to VM or Wander-
lust messages are available when you load the corresponding libraries from the ‘contrib/’

directory:

‘vm:folder’

VM folder link

5 The actual behavior of the search depends on the value of the variable org-1link-search-must-match-
exact-headline. If its value is nil, then a fuzzy text search is done. If it is t, then only the exact
headline is matched, ignoring spaces and statistic cookies. If the value is query-to-create, then an
exact headline is searched; if it is not found, then the user is queried to create it.

Chapter 4: Hyperlinks 40

‘vm:folder#id’ VM message link
‘vm://myself@some.where.org/folder#id’ VM on remote machine
‘vm-imap:account:folder’ VM IMAP folder link
‘vm-imap:account:folder#id’ VM IMAP message link
‘wl:folder’ Wanderlust folder link
‘wl:folder#id’ Wanderlust message link

For information on customizing Org to add new link types, see Section A.3 [Adding
Hyperlink Types|, page 248.

A link should be enclosed in double brackets and may contain descriptive text to be
displayed instead of the URL (see Section 4.1 [Link Format]|, page 36), for example:

[[http://www.gnu.org/software/emacs/] [GNU Emacs]]

If the description is a file name or URL that points to an image, HTML export (see
Section 13.9 [HTML Export]|, page 153) inlines the image as a clickable button. If there is
no description at all and the link points to an image, that image is inlined into the exported
HTML file.

Org also recognizes external links amid normal text and activates them as links. If spaces
must be part of the link (for example in ‘bbdb:R.*Stallman’), or if you need to remove
ambiguities about the end of the link, enclose the link in square or angular brackets.

4.5 Handling Links

Org provides methods to create a link in the correct syntax, to insert it into an Org file,
and to follow the link.

The main function is org-store-1link, called with M-x org-store-link. Because of its
importance, we suggest to bind it to a widely available key (see Section 1.3 [Activation],
page 2). It stores a link to the current location. The link is stored for later insertion into
an Org buffer—see below. The kind of link that is created depends on the current buffer:

Org mode buffers
For Org files, if there is a ‘<<target>>’ at point, the link points to the target.
Otherwise it points to the current headline, which is also the description®.

If the headline has a ‘CUSTOM_ID’ property, store a link to this custom ID. In
addition or alternatively, depending on the value of org-id-link-to-org-use-
id, create and/or use a globally unique ‘ID’ property for the link”. So using
this command in Org buffers potentially creates two links: a human-readable
link from the custom ID, and one that is globally unique and works even if the
entry is moved from file to file. Later, when inserting the link, you need to
decide which one to use.

Email/News clients: VM, Rmail, Wanderlust, MH-E, Gnus
Pretty much all Emacs mail clients are supported. The link points to the current
article, or, in some Gnus buffers, to the group. The description is constructed

6 If the headline contains a timestamp, it is removed from the link, which results in a wrong link—you
should avoid putting a timestamp in the headline.

" The Org Id library must first be loaded, either through org-customize, by enabling id in org-modules,
or by adding ‘(require 'org-id)’ in your Emacs init file.

Chapter 4: Hyperlinks 41

according to the variable org-link-email-description-format. By default,
it refers to the addressee and the subject.

Web browsers: W8, W3M and EWW

Here the link is the current URL, with the page title as the description.

Contacts: BBDB

Chat: IRC

Other files

Links created in a BBDB buffer point to the current entry.

For IRC links, if the variable org-irc-link-to-logs is non-nil, create a ‘file’
style link to the relevant point in the logs for the current conversation. Other-
wise store an ‘irc’ style link to the user/channel/server under the point.

For any other file, the link points to the file, with a search string (see Section 4.8
[Search Options|, page 44) pointing to the contents of the current line. If there
is an active region, the selected words form the basis of the search string. You
can write custom Lisp functions to select the search string and perform the
search for particular file types (see Section 4.9 [Custom Searches|, page 45).

You can also define dedicated links to other files. See Section A.3 [Adding
Hyperlink Types|, page 248.

Agenda view

When point is in an agenda view, the created link points to the entry referenced
by the current line.

From an Org buffer, the following commands create, navigate or, more generally, act on

links.

C-c C-1 (org-insert-1link)

Insert a link®. This prompts for a link to be inserted into the buffer. You can
just type a link, using text for an internal link, or one of the link type prefixes
mentioned in the examples above. The link is inserted into the buffer, along
with a descriptive text®. If some text was selected at this time, it becomes the
default description.

Inserting stored links
All links stored during the current session are part of the history
for this prompt, so you can access them with UP and DOWN (or M-p,
M-n).

Completion support
Completion with TAB helps you to insert valid link prefixes like
‘http’ or ‘ftp’, including the prefixes defined through link abbre-
viations (see Section 4.7 [Link Abbreviations|, page 43). If you

8 Note that you do not have to use this command to insert a link. Links in Org are plain text, and you
can type or paste them straight into the buffer. By using this command, the links are automatically
enclosed in double brackets, and you will be asked for the optional descriptive text.

9 After insertion of a stored link, the link will be removed from the list of stored links. To keep it in the
list for later use, use a triple C-u prefix argument to C-c C-1, or configure the option org-link-keep-
stored-after—-insertion.

Chapter 4: Hyperlinks 42

press RET after inserting only the prefix, Org offers specific comple-
tion support for some link types'?. For example, if you type f i 1
e RET—alternative access: C-u C-c C-1, see below—Org offers file
name completion, and after b b d b RET you can complete contact
names.

C-u C-c C-1

When C-c C-1 is called with a C-u prefix argument, insert a link to a file. You
may use file name completion to select the name of the file. The path to the
file is inserted relative to the directory of the current Org file, if the linked file
is in the current directory or in a sub-directory of it, or if the path is written
relative to the current directory using ‘../’. Otherwise an absolute path is
used, if possible with *~/’ for your home directory. You can force an absolute
path with two C-u prefixes.

C-c C-1 (with point on existing link)

When point is on an existing link, C-c C-1 allows you to edit the link and
description parts of the link.

C-c C-o (org-open-at-point)

RET

Open link at point. This launches a web browser for URL (using
browse-url-at-point), run VM/MH-E/Wanderlust/Rmail/Gnus/BBDB for
the corresponding links, and execute the command in a shell link. When point
is on an internal link, this command runs the corresponding search. When
point is on the tags part of a headline, it creates the corresponding tags view
(see Section 11.3.3 [Matching tags and properties], page 109). If point is on a
timestamp, it compiles the agenda for that date. Furthermore, it visits text
and remote files in ‘file’ links with Emacs and select a suitable application
for local non-text files. Classification of files is based on file extension only.
See option org-file-apps. If you want to override the default application
and visit the file with Emacs, use a C-u prefix. If you want to avoid opening
in Emacs, use a C-u C-u prefix.

If point is on a headline, but not on a link, offer all links in the headline and
entry text. If you want to setup the frame configuration for following links,
customize org-link-frame-setup.

When org-return-follows-1link is set, RET also follows the link at point.

mouse-2 or mouse-1

mouse-3

On links, mouse-1 and mouse-2 opens the link just as C-c C-o does.

Like mouse-2, but force file links to be opened with Emacs, and internal links
to be displayed in another window!!.

C-c % (org-mark-ring-push)

Push the current position onto the Org mark ring, to be able to return easily.
Commands following an internal link do this automatically.

10" This works if a function has been defined in the :complete property of a link in org-link-parameters.

11 See the variable org-link-use-indirect-buffer-for-internals.

Chapter 4: Hyperlinks 43

C-c & (org-mark-ring-goto)
Jump back to a recorded position. A position is recorded by the commands
following internal links, and by C-c 7. Using this command several times in
direct succession moves through a ring of previously recorded positions.

C-c C-x C-n (org-next-1link)
C-c C-x C-p (org-previous-1link)
Move forward/backward to the next link in the buffer. At the limit of the
buffer, the search fails once, and then wraps around. The key bindings for this
are really too long; you might want to bind this also to M-n and M-p.
(add-hook 'org-load-hook
(lambda ()
(define-key org-mode-map "\M-n" 'org-next-link)
(define-key org-mode-map "\M-p" 'org-previous-1link)))

4.6 Using Links Outside Org

You can insert and follow links that have Org syntax not only in Org, but in any Emacs
buffer. For this, Org provides two functions: org-insert-link-global and org-open-at-
point-global.

You might want to bind them to globally available keys. See Section 1.3 [Activation]
page 2 for some advice.

’

4.7 Link Abbreviations

Long URL can be cumbersome to type, and often many similar links are needed in a
document. For this you can use link abbreviations. An abbreviated link looks like this

[[1inkword:tag] [description]]

where the tag is optional. The linkword must be a word, starting with a letter, followed by
letters, numbers, ‘=’ and ‘_’. Abbreviations are resolved according to the information in
the variable org-link-abbrev-alist that relates the linkwords to replacement text. Here
is an example:

(setq org-link-abbrev-alist

'(("bugzilla" . "http://10.1.2.9/bugzilla/show_bug.cgi?id=")
("url-to-ja" . "http://translate.google.fr/translate?sl=en&tl=ja&u=%h")
("google" . "http://www.google.com/search?q=")
("gmap" . "http://maps.google.com/maps?q=7s")
("omap" . "http://nominatim.openstreetmap.org/search?q=%s&polygon=1")
("ads" . "https://ui.adsabs.harvard.edu/search/q=%20author’3A\"%s\"")))

If the replacement text contains the string ‘%s’, it is replaced with the tag. Using ‘%h’
instead of ‘%s’ percent-encodes the tag (see the example above, where we need to encode
the URL parameter). Using ‘% (my-function)’ passes the tag to a custom Lisp function,
and replace it by the resulting string.

If the replacement text do not contain any specifier, it is simply appended to the string
in order to create the link.

Instead of a string, you may also specify a Lisp function to create the link. Such a
function will be called with the tag as the only argument.

Chapter 4: Hyperlinks 44

With the above setting, you could link to a specific bug with ‘[[bugzilla:129]]°,
search the web for ‘OrgMode’ with ‘[[google:0rgMode]]’, show the map location of the
Free Software Foundation ‘[[gmap:51 Franklin Street, Boston]]’ or of Carsten office
‘[[omap:Science Park 904, Amsterdam, The Netherlands]]’ and find out what the Org
author is doing besides Emacs hacking with ‘[[ads:Dominik,C]]’ .

If you need special abbreviations just for a single Org buffer, you can define them in the
file with

#+LINK: bugzilla http://10.1.2.9/bugzilla/show_bug.cgi?id=
#+LINK: google http://wuw.google.com/search?q=%s

In-buffer completion (see Section 16.1 [Completion|, page 231) can be used after ‘[’ to
complete link abbreviations. You may also define a Lisp function that implements special
(e.g., completion) support for inserting such a link with C-c C-1. Such a function should
not accept any arguments, and should return the full link with a prefix. You can set the
link completion function like this:

(org-link-set-parameter "type" :complete #'some-completion-function)

4.8 Search Options in File Links

File links can contain additional information to make Emacs jump to a particular location
in the file when following a link. This can be a line number or a search option after a double
colon'?. For example, when the command org-store-link creates a link (see Section 4.5
[Handling Links]|, page 40) to a file, it encodes the words in the current line as a search
string that can be used to find this line back later when following the link with C-c C-o.

Note that all search options apply for Attachment links in the same way that they apply
for File links.

Here is the syntax of the different ways to attach a search to a file link, together with
explanations for each:

[[file:”/code/main.c::255]]
[[file:"/xx.org: :My Target]]
[[file:~/xx.org: :*My Target]]
[[file:™/xx.org: :#my-custom-id]]
[[file:~/xx.org::/regexp/]]
[[attachment:main.c: :255]]

‘255’ Jump to line 255.

‘My Target’
Search for a link target ‘<<My Target>>’, or do a text search for ‘my target’,
similar to the search in internal links, see Section 4.2 [Internal Links|, page 37.
In HTML export (see Section 13.9 [HTML Export], page 153), such a file link
becomes a HTML reference to the corresponding named anchor in the linked
file.

‘*My Target’
In an Org file, restrict search to headlines.

12 For backward compatibility, line numbers can also follow a single colon.

Chapter 4: Hyperlinks 45

‘#my-custom-id’
Link to a heading with a ‘CUSTOM_ID’ property

‘/REGEXP/’
Do a regular expression search for REGEXP. This uses the Emacs command
occur to list all matches in a separate window. If the target file is in Org mode,
org-occur is used to create a sparse tree with the matches.

As a degenerate case, a file link with an empty file name can be used to search the
current file. For example, ‘[[file:::find me]]’ does a search for ‘find me’ in the current
file, just as ‘[[find me]]’ would.

4.9 Custom Searches

The default mechanism for creating search strings and for doing the actual search related
to a file link may not work correctly in all cases. For example, BibTEX database files have
many entries like year="1993" which would not result in good search strings, because the
only unique identification for a BibTEX entry is the citation key.

If you come across such a problem, you can write custom functions to set the right
search string for a particular file type, and to do the search for the string in the file.
Using add-hook, these functions need to be added to the hook variables org-create-
file-search-functions and org-execute-file-search-functions. See the docstring
for these variables for more information. Org actually uses this mechanism for BibTEX
database files, and you can use the corresponding code as an implementation example. See
the file ‘ol-bibtex.el’.

Chapter 5: TODO Items 46

5 TODO Items

Org mode does not maintain TODO lists as separate documents'. Instead, TODO items
are an integral part of the notes file, because TODO items usually come up while taking
notes! With Org mode, simply mark any entry in a tree as being a TODO item. In this way,
information is not duplicated, and the entire context from which the TODO item emerged
is always present.

Of course, this technique for managing TODO items scatters them throughout your
notes file. Org mode compensates for this by providing methods to give you an overview of
all the things that you have to do.

5.1 Basic TODO Functionality

Any headline becomes a TODO item when it starts with the word ‘TODOQ’, for example:
**%x TODO Write letter to Sam Fortune

The most important commands to work with TODO entries are:

C-c C-t (org-todo)
Rotate the TODO state of the current item among
,—> (unmarked) -> TODO -> DONE --.

If TODO keywords have fast access keys (see Section 5.2.4 [Fast access to TODO
states|, page 49), prompt for a TODO keyword through the fast selection in-
terface; this is the default behavior when org-use-fast-todo-selection is
non-nil.

The same state changing can also be done “remotely” from the agenda buffer
with the t command key (see Section 11.5 [Agenda Commands|, page 117).

)

S-RIGHT S-LEFT
Select the following/preceding TODO state, similar to cycling. Useful mostly if
more than two TODO states are possible (see Section 5.2 [TODO Extensions],
page 47). See also Section 16.12.2 [Conflicts|, page 241, for a discussion of the
interaction with shift-selection. See also the variable org-treat-S-cursor-
todo-selection-as—-state-change.

C-c / t (org-show-todo-tree)

View TODO items in a sparse tree (see Section 2.5 [Sparse Trees|, page 11).
Folds the entire buffer, but shows all TODO items—with not-DONE state—
and the headings hierarchy above them. With a prefix argument, or by using
C-c / T, search for a specific TODO. You are prompted for the keyword, and
you can also give a list of keywords like ‘KWD1|KWD2| ...’ to list entries that
match any one of these keywords. With a numeric prefix argument N, show the
tree for the Nth keyword in the variable org-todo-keywords. With two prefix
arguments, find all TODO states, both un-done and done.

L Of course, you can make a document that contains only long lists of TODO items, but this is not
required.

Chapter 5: TODO Items 47

M-x org-agenda t (org-todo-list)
Show the global TODO list. Collects the TODO items (with not-DONE states)
from all agenda files (see Chapter 11 [Agenda Views|, page 103) into a sin-
gle buffer. The new buffer is in Org Agenda mode, which provides com-
mands to examine and manipulate the TODO entries from the new buffer (see
Section 11.5 [Agenda Commands], page 117). See Section 11.3.2 [Global TODO
list], page 108, for more information.

S-M-RET (org-insert-todo-heading)
Insert a new TODO entry below the current one.

Changing a TODO state can also trigger tag changes. See the docstring of the option
org-todo-state-tags-triggers for details.

5.2 Extended Use of TODO Keywords

By default, marked TODO entries have one of only two states: TODO and DONE. Org
mode allows you to classify TODO items in more complex ways with TODO keywords
(stored in org-todo-keywords). With special setup, the TODO keyword system can work
differently in different files.

Note that tags are another way to classify headlines in general and TODO items in
particular (see Chapter 6 [Tags|, page 58).

5.2.1 TODO keywords as workflow states

You can use TODO keywords to indicate different, possibly sequential states in the process
of working on an item, for example?:

(setq org-todo-keywords
' ((sequence "TODO" "FEEDBACK" "VERIFY" "|" "DONE" "DELEGATED")))

The vertical bar separates the TODO keywords (states that need action) from the DONE
states (which need no further action). If you do not provide the separator bar, the last state
is used as the DONE state.

With this setup, the command C-c C-t cycles an entry from ‘TODO’ to ‘FEEDBACK’, then to
‘VERIFY’, and finally to ‘DONE’ and ‘DELEGATED’. You may also use a numeric prefix argument
to quickly select a specific state. For example C-3 C-c C-t changes the state immediately
to ‘VERIFY’. Or you can use S-RIGHT and S-LEFT to go forward and backward through the
states. If you define many keywords, you can use in-buffer completion (see Section 16.1
[Completion], page 231) or a special one-key selection scheme (see Section 5.2.4 [Fast access
to TODO states|, page 49) to insert these words into the buffer. Changing a TODO state
can be logged with a timestamp, see Section 5.3.2 [Tracking TODO state changes|, page 51,
for more information.

5.2.2 TODO keywords as types

The second possibility is to use TODO keywords to indicate different types of action items.
For example, you might want to indicate that items are for “work” or “home”. Or, when
you work with several people on a single project, you might want to assign action items

2 Changing the variable org-todo-keywords only becomes effective after restarting Org mode in a buffer.

Chapter 5: TODO Items 48

directly to persons, by using their names as TODO keywords. This type of functionality is
actually much better served by using tags (see Chapter 6 [Tags|, page 58), so the TODO
implementation is kept just for backward compatibility.

Using TODO types, it would be set up like this:
(setq org-todo-keywords '((type "Fred" "Sara" "Lucy" "|" "DONE")))

In this case, different keywords do not indicate states, but rather different types. So the
normal work flow would be to assign a task to a person, and later to mark it DONE. Org
mode supports this style by adapting the workings of the command C-c C-t3. When used
several times in succession, it still cycles through all names, in order to first select the right
type for a task. But when you return to the item after some time and execute C-c C-t
again, it will switch from any name directly to ‘DONE’. Use prefix arguments or completion
to quickly select a specific name. You can also review the items of a specific TODO type
in a sparse tree by using a numeric prefix to C-c / t. For example, to see all things Lucy
has to do, you would use C-3 C-c / t. To collect Lucy’s items from all agenda files into a
single buffer, you would use the numeric prefix argument as well when creating the global
TODO list: C-3 M-x org-agenda t.

5.2.3 Multiple keyword sets in one file

Sometimes you may want to use different sets of TODO keywords in parallel. For example,
you may want to have the basic TODO/DONE, but also a workflow for bug fixing, and a
separate state indicating that an item has been canceled—so it is not DONE, but also does
not require action. Your setup would then look like this:

(setq org-todo-keywords

' ((sequence "TODO" "|" "DONE")
(sequence "REPORT" "BUG" "KNOWNCAUSE" "|" "FIXED")
(sequence "|" "CANCELED")))

The keywords should all be different, this helps Org mode keep track of which subse-
quence should be used for a given entry. In this setup, C-c C-t only operates within a
sub-sequence, so it switches from ‘DONE’ to (nothing) to ‘TODQ’, and from ‘FIXED’ to (noth-
ing) to ‘REPORT’. Therefore you need a mechanism to initially select the correct sequence. In
addition to typing a keyword or using completion (see Section 16.1 [Completion|, page 231),
you may also apply the following commands:

C-u C-u C-c C-t

C-S-RIGHT

C-S-LEFT These keys jump from one TODO sub-sequence to the next. In the above
example, C-u C-u C-c C-t or C-S-RIGHT would jump from ‘TODO’ or ‘DONE’ to
‘REPORT’, and any of the words in the second row to ‘CANCELED’. Note that the
C-S- key binding conflict with shift-selection (see Section 16.12.2 [Conflicts],
page 241).

S-RIGHT
S-LEFT S-LEFT and S-RIGHT walk through all keywords from all sub-sequences, so for
example S-RIGHT would switch from ‘DONE’ to ‘REPORT’ in the example above.

3 This is also true for the t command in the agenda buffer.

Chapter 5: TODO Items 49

For a discussion of the interaction with shift-selection, see Section 16.12.2 [Con-
flicts], page 241.

5.2.4 Fast access to TODO states

If you would like to quickly change an entry to an arbitrary TODO state instead of cycling
through the states, you can set up keys for single-letter access to the states. This is done
by adding the selection character after each keyword, in parentheses*. For example:

(setq org-todo-keywords

' ((sequence "TODO(t)" "|" "DONE(d)")
(sequence "REPORT(r)" "BUG(b)" "KNOWNCAUSE(k)" "|" "FIXED(£)")
(sequence "|" "CANCELED(c)")))

If you then press C-c C-t followed by the selection key, the entry is switched to this
state. SPC can be used to remove any TODO keyword from an entry®.

5.2.5 Setting up keywords for individual files

It can be very useful to use different aspects of the TODO mechanism in different files.
For file-local settings, you need to add special lines to the file which set the keywords and
interpretation for that file only. For example, to set one of the two examples discussed
above, you need one of the following lines, starting in column zero anywhere in the file:

#+T0ODO: TODO FEEDBACK VERIFY | DONE CANCELED

You may also write ‘#+SEQ_TODO’ to be explicit about the interpretation, but it means
the same as ‘#+T0ODO’, or

#+TYP_TODO: Fred Sara Lucy Mike | DONE
A setup for using several sets in parallel would be:
#+TODO: TODO | DONE

#+TODO: REPORT BUG KNOWNCAUSE | FIXED
#+TODO: | CANCELED

To make sure you are using the correct keyword, type ‘#+’ into the buffer and then use
M-TAB to complete it (see Section 16.1 [Completion], page 231).

Remember that the keywords after the vertical bar—or the last keyword if no bar is
there—must always mean that the item is DONE, although you may use a different word.
After changing one of these lines, use C-c¢ C-c with point still in the line to make the changes
known to Org mode®.

5.2.6 Faces for TODO keywords

Org mode highlights TODO keywords with special faces: org-todo for keywords indicating
that an item still has to be acted upon, and org-done for keywords indicating that an item
is finished. If you are using more than two different states, you might want to use special

4" All characters are allowed except ‘@', ‘°” and ‘!’, which have a special meaning here.

5 Check also the variable org-fast-tag-selection-include-todo, it allows you to change the TODO
state through the tags interface (see Section 6.2 [Setting Tags], page 58), in case you like to mingle the
two concepts. Note that this means you need to come up with unique keys across both sets of keywords.

6 Org mode parses these lines only when Org mode is activated after visiting a file. C-c C-c with point in
a line starting with ‘#+’ is simply restarting Org mode for the current buffer.

Chapter 5: TODO Items 50

faces for some of them. This can be done using the variable org-todo-keyword-faces. For
example:

(setq org-todo-keyword-faces
"(("TODO" . org-warning) ("STARTED" . "yellow")
("CANCELED" . (:foreground "blue" :weight bold))))

While using a list with face properties as shown for ‘CANCELED’ should work, this does
not always seem to be the case. If necessary, define a special face and use that. A string is
interpreted as a color. The variable org-faces-easy-properties determines if that color
is interpreted as a foreground or a background color.

5.2.7 TODO dependencies

The structure of Org files—hierarchy and lists—makes it easy to define TODO dependencies.
Usually, a parent TODO task should not be marked as done until all TODO subtasks, or
children tasks, are marked as done. Sometimes there is a logical sequence to (sub)tasks, so
that one subtask cannot be acted upon before all siblings above it have been marked as done.
If you customize the variable org-enforce-todo-dependencies, Org blocks entries from
changing state to DONE while they have TODO children that are not DONE. Furthermore,
if an entry has a property ‘ORDERED’, each of its TODO children is blocked until all earlier
siblings are marked as done. Here is an example:

* TODO Blocked until (two) is done
x DONE one
** TODO two

* Parent

:PROPERTIES:

:ORDERED: t

:END:

*x TODO a

**x TODO b, needs to wait for (a)

** TODO c, needs to wait for (a) and (b)

You can ensure an entry is never blocked by using the ‘NOBLOCKING' property (see
Chapter 7 [Properties and Columns|, page 63):

* This entry is never blocked
:PROPERTIES:

:NOBLOCKING: t

:END:

C-c C-x o (org-toggle-ordered-property)
Toggle the ‘ORDERED’ property of the current entry. A property is used for this
behavior because this should be local to the current entry, not inherited from
entries above like a tag (see Chapter 6 [Tags|, page 58). However, if you would
like to track the value of this property with a tag for better visibility, customize
the variable org-track-ordered-property-with-tag.

C-u C-u C-u C-c C-t
Change TODO state, regardless of any state blocking.

Chapter 5: TODO Items 51

If you set the variable org-agenda-dim-blocked-tasks, TODO entries that cannot be
marked as done because of unmarked children are shown in a dimmed font or even made
invisible in agenda views (see Chapter 11 [Agenda Views|, page 103).

You can also block changes of TODO states by using checkboxes (see Section 5.6 [Check-
boxes|, page 56). If you set the variable org-enforce-todo-checkbox-dependencies, an
entry that has unchecked checkboxes is blocked from switching to DONE.

If you need more complex dependency structures, for example dependencies between
entries in different trees or files, check out the contributed module ‘org-depend.el’.

5.3 Progress Logging

To record a timestamp and a note when changing a TODO state, call the command
org-todo with a prefix argument.

C-u C-c C-t (org-todo)
Prompt for a note and record a the time of the TODO state change. The note is
inserted as a list item below the headline, but can also be placed into a drawer,
see Section 5.3.2 [Tracking TODO state changes|, page 51.

If you want to be more systematic, Org mode can automatically record a timestamp and
optionally a note when you mark a TODO item as DONE, or even each time you change
the state of a TODO item. This system is highly configurable, settings can be on a per-
keyword basis and can be localized to a file or even a subtree. For information on how to
clock working time for a task, see Section 8.4 [Clocking Work Time], page 80.

5.3.1 Closing items

The most basic automatic logging is to keep track of when a certain TODO item was marked
as done. This can be achieved with”

(setq org-log-done 'time)
Then each time you turn an entry from a TODO (not-done) state into any of the DONE
states, a line ‘CLOSED: [timestamp]’ is inserted just after the headline. If you turn the
entry back into a TODO item through further state cycling, that line is removed again. If
you turn the entry back to a non-TODO state (by pressing C-c C-t SPC for example), that
line is also removed, unless you set org-closed-keep-when-no-todo to non-nil. If you
want to record a note along with the timestamp, use®

(setq org-log-done 'note)

You are then prompted for a note, and that note is stored below the entry with a ‘Closing
Note’ heading.

5.3.2 Tracking TODO state changes

You might want to automatically keep track of when a state change occurred and maybe
take a note about this change. You can either record just a timestamp, or a time-stamped
note. These records are inserted after the headline as an itemized list, newest first’. When

" The corresponding in-buffer setting is: ‘#+STARTUP: logdone’.
8 The corresponding in-buffer setting is: ‘#+STARTUP: lognotedone’.

9 See the variable org-log-states-order-reversed.

Chapter 5: TODO Items 52

taking a lot of notes, you might want to get the notes out of the way into a drawer (see
Section 2.7 [Drawers|, page 15). Customize the variable org-log-into-drawer to get this
behavior—the recommended drawer for this is called ‘LOGBOOK’'Y. You can also overrule the
setting of this variable for a subtree by setting a ‘LOG_INTO_DRAWER’ property.

Since it is normally too much to record a note for every state, Org mode expects con-
figuration on a per-keyword basis for this. This is achieved by adding special markers ‘!’
(for a timestamp) or ‘@’ (for a note with timestamp) in parentheses after each keyword. For
example, with the setting

(setq org-todo-keywords
' ((sequence "TODO(t)" "WAIT(w@/!)"™ "|" "DONE(d!)" "CANCELED(c@)")))

To record a timestamp without a note for TODO keywords configured with ‘@, just type
C-c C-c to enter a blank note when prompted.

You not only define global TODO keywords and fast access keys, but also request that a
time is recorded when the entry is set to ‘DONE’, and that a note is recorded when switching
to ‘WAIT’ or ‘CANCELED’!!. The setting for ‘WAIT’ is even more special: the ‘! after the slash
means that in addition to the note taken when entering the state, a timestamp should be
recorded when leaving the ‘WAIT’ state, if and only if the target state does not configure
logging for entering it. So it has no effect when switching from ‘WAIT’ to ‘DONE’, because
‘DONE’ is configured to record a timestamp only. But when switching from ‘WAIT’ back to
‘TODO’, the /!’ in the ‘WAIT’ setting now triggers a timestamp even though ‘TODO’ has no
logging configured.

You can use the exact same syntax for setting logging preferences local to a buffer:
#+TODO: TODO(t) WAIT(w@/!') | DONE(d!) CANCELED(c@)

In order to define logging settings that are local to a subtree or a single item, define
a ‘LOGGING’ property in this entry. Any non-empty ‘LOGGING’ property resets all logging
settings tonil. You may then turn on logging for this specific tree using ‘STARTUP’ keywords
like ‘lognotedone’ or ‘logrepeat’, as well as adding state specific settings like ‘TODO(!)’.
For example:

* TODO Log each state with only a time
:PROPERTIES:
:LOGGING: TODO(!) WAIT(!) DONE(!) CANCELED(!)
:END:

* TODO Only log when switching to WAIT, and when repeating
:PROPERTIES:
:LOGGING: WAIT(Q@) logrepeat
:END:

* TODO No logging at all
:PROPERTIES:
:LOGGING: nil
:END:

10 Note that the ‘LOGBOOK’ drawer is unfolded when pressing SPC in the agenda to show an entry—use C-u
SPC to keep it folded here.

1 1t is possible that Org mode records two timestamps when you are using both org-log-done and state
change logging. However, it never prompts for two notes: if you have configured both, the state change
recording note takes precedence and cancel the closing note.

Chapter 5: TODO Items 53

5.3.3 Tracking your habits

Org has the ability to track the consistency of a special category of TODO, called
“habits.” To use habits, you have to enable the habits module by customizing the
variable org-modules.

A habit has the following properties:
1. The habit is a TODO item, with a TODO keyword representing an open state.

2. The property ‘STYLE’ is set to the value ‘habit’ (see Chapter 7 [Properties and
Columns]|, page 63).

3. The TODO has a scheduled date, usually with a .+ style repeat interval. A ‘++’ style
may be appropriate for habits with time constraints, e.g., must be done on weekends,
or a ‘+’ style for an unusual habit that can have a backlog, e.g., weekly reports.

4. The TODO may also have minimum and maximum ranges specified by using the syntax
¢.+2d/3d’, which says that you want to do the task at least every three days, but at
most every two days.

5. State logging for the DONE state is enabled (see Section 5.3.2 [Tracking TODO state
changes|, page 51), in order for historical data to be represented in the consistency
graph. If it is not enabled it is not an error, but the consistency graphs are largely
meaningless.

To give you an idea of what the above rules look like in action, here’s an actual habit
with some history:

**x TODO Shave
SCHEDULED: <2009-10-17 Sat .+2d/4d>

:PROPERTIES:

:STYLE: habit

:LAST_REPEAT: [2009-10-19 Mon 00:36]

:END:

- State "DONE" from "TODO" [2009-10-15 Thul]
- State "DONE" from "TODO" [2009-10-12 Monl]
- State "DONE" from "TODO" [2009-10-10 Sat]
- State "DONE" from "TODO" [2009-10-04 Sun]
- State "DONE" from "TODO" [2009-10-02 Fril
- State "DONE" from "TODO" [2009-09-29 Tuel
- State "DONE" from "TODO" [2009-09-25 Fril
- State "DONE" from "TODO" [2009-09-19 Sat]
- State "DONE" from "TODO" [2009-09-16 Wed]
- State "DONE" from "TODO" [2009-09-12 Sat]

What this habit says is: I want to shave at most every 2 days—given by the ‘SCHEDULED’
date and repeat interval-—and at least every 4 days. If today is the 15th, then the habit
first appears in the agenda (see Chapter 11 [Agenda Views|, page 103) on Oct 17, after the
minimum of 2 days has elapsed, and will appear overdue on Oct 19, after four days have
elapsed.

What’s really useful about habits is that they are displayed along with a consistency
graph, to show how consistent you've been at getting that task done in the past. This

Chapter 5: TODO Items 54

graph shows every day that the task was done over the past three weeks, with colors for
each day. The colors used are:

Blue If the task was not to be done yet on that day.
Green If the task could have been done on that day.
Yellow If the task was going to be overdue the next day.
Red If the task was overdue on that day.

In addition to coloring each day, the day is also marked with an asterisk if the task was
actually done that day, and an exclamation mark to show where the current day falls in the
graph.

There are several configuration variables that can be used to change the way habits are
displayed in the agenda.

org-habit-graph-column
The buffer column at which the consistency graph should be drawn. This
overwrites any text in that column, so it is a good idea to keep your habits’
titles brief and to the point.

org-habit-preceding-days
The amount of history, in days before today, to appear in consistency graphs.

org-habit-following-days
The number of days after today that appear in consistency graphs.

org-habit-show-habits-only-for-today
If non-nil, only show habits in today’s agenda view. The default value is t.
Pressing C-u K in the agenda toggles this variable.

Lastly, pressing K in the agenda buffer causes habits to temporarily be disabled and do
not appear at all. Press K again to bring them back. They are also subject to tag filtering,
if you have habits which should only be done in certain contexts, for example.

5.4 Priorities

If you use Org mode extensively, you may end up with enough TODO items that it starts
to make sense to prioritize them. Prioritizing can be done by placing a priority cookie into
the headline of a TODO item, like this

xx TODO [#A] Write letter to Sam Fortune
By default, Org mode supports three priorities: ‘A’, ‘B’, and ‘C’. ‘A’ is the highest
priority. An entry without a cookie is treated as equivalent if it had priority ‘B’. Priorities
make a difference only for sorting in the agenda (see Section 11.3.1 [Weekly/daily agendal,
page 105); outside the agenda, they have no inherent meaning to Org mode. The cookies
are displayed with the face defined by the variable org-priority-faces, which can be
customized.

Priorities can be attached to any outline node; they do not need to be TODO items.
C-c , (org-priority)
Set the priority of the current headline. The command prompts for a priority
character ‘A’, ‘B’ or ‘C’. When you press SPC instead, the priority cookie, if one

Chapter 5: TODO Items 55

is set, is removed from the headline. The priorities can also be changed “re-
motely” from the agenda buffer with the , command (see Section 11.5 [Agenda
Commands]|, page 117).

S-UP (org-priority-up)

S-DOWN (org-priority-down)
Increase/decrease the priority of the current headline'?. Note that these keys
are also used to modify timestamps (see Section 8.2 [Creating Timestamps],
page 73). See also Section 16.12.2 [Conflicts], page 241, for a discussion of the
interaction with shift-selection.

You can change the range of allowed priorities by setting the variables org-highest-
priority, org-lowest-priority, and org-default-priority. For an individual buffer,
you may set these values (highest, lowest, default) like this (please make sure that the
highest priority is earlier in the alphabet than the lowest priority):

#+PRIORITIES: A C B

5.5 Breaking Down Tasks into Subtasks

It is often advisable to break down large tasks into smaller, manageable subtasks. You
can do this by creating an outline tree below a TODO item, with detailed subtasks on the
tree'3. To keep an overview of the fraction of subtasks that have already been marked as
done, insert either ‘[/]1’ or ‘[%]’ anywhere in the headline. These cookies are updated each
time the TODO status of a child changes, or when pressing C-c C-c on the cookie. For
example:

*x Organize Party [337%]

x TODO Call people [1/2]
*xx TODO Peter

**xx DONE Sarah

** TODO Buy food

** DONE Talk to neighbor

If a heading has both checkboxes and TODO children below it, the meaning of the
statistics cookie become ambiguous. Set the property ‘COOKIE_DATA’ to either ‘checkbox’
or ‘todo’ to resolve this issue.

If you would like to have the statistics cookie count any TODO entries in the subtree (not
just direct children), configure the variable org-hierarchical-todo-statistics. To do
this for a single subtree, include the word ‘recursive’ into the value of the ‘COOKIE_DATA’
property.

* Parent capturing statistics [2/20]
:PROPERTIES:
:COOKIE_DATA: todo recursive
:END:

If you would like a TODO entry to automatically change to DONE when all children
are done, you can use the following setup:

12 See also the option org-priority-start-cycle-with-default.
13 To keep subtasks out of the global TODO list, see the option org-agenda-todo-list-sublevels.

Chapter 5: TODO Items 56

(defun org-summary-todo (n-done n-not-done)
"Switch entry to DONE when all subentries are done, to TODO otherwise."
(let (org-log-done org-log-states) ; turn off logging
(org-todo (if (= n-not-done 0) "DONE" "TODO"))))

(add-hook 'org-after-todo-statistics-hook 'org-summary-todo)

Another possibility is the use of checkboxes to identify (a hierarchy of) a large number
of subtasks (see Section 5.6 [Checkboxes], page 56).

5.6 Checkboxes

Every item in a plain list** (see Section 2.6 [Plain Lists], page 12) can be made into a
checkbox by starting it with the string ‘[J°. This feature is similar to TODO items (see
Chapter 5 [TODO Items|, page 46), but is more lightweight. Checkboxes are not included
into the global TODO list, so they are often great to split a task into a number of simple
steps. Or you can use them in a shopping list.

Here is an example of a checkbox list.

* TODO Organize party [2/4]
- [-] call people [1/3]
- [] Peter
- [X] Sarah
- [] Sam
- [X] order food
- [] think about what music to play
- [X] talk to the neighbors

Checkboxes work hierarchically, so if a checkbox item has children that are checkboxes,
toggling one of the children checkboxes makes the parent checkbox reflect if none, some, or
all of the children are checked.

The ‘[2/4]° and ‘[1/3] in the first and second line are cookies indicating how many
checkboxes present in this entry have been checked off, and the total number of checkboxes
present. This can give you an idea on how many checkboxes remain, even without opening a
folded entry. The cookies can be placed into a headline or into (the first line of) a plain list
item. Each cookie covers checkboxes of direct children structurally below the headline/item
on which the cookie appears'®. You have to insert the cookie yourself by typing either ‘[/]’
or ‘[%#]’. With ‘[/]’ you get an ‘n out of m’ result, as in the examples above. With ‘[%]’
you get information about the percentage of checkboxes checked (in the above example,
this would be ‘[50%]” and ‘[33%]’, respectively). In a headline, a cookie can count either
checkboxes below the heading or TODO states of children, and it displays whatever was
changed last. Set the property ‘COOKIE_DATA’ to either ‘checkbox’ or ‘todo’ to resolve this
issue.

14 With the exception of description lists. But you can allow it by modifying org-list-automatic-rules
accordingly.

15 Set the variable org-hierarchical-checkbox-statistics if you want such cookies to count all check-
boxes below the cookie, not just those belonging to direct children.

Chapter 5: TODO Items 57

If the current outline node has an ‘ORDERED’ property, checkboxes must be checked off
in sequence, and an error is thrown if you try to check off a box while there are unchecked
boxes above it.

The following commands work with checkboxes:

C-c C-c (org-toggle-checkbox)
Toggle checkbox status or—with prefix argument—checkbox presence at point.
With a single prefix argument, add an empty checkbox or remove the current
one'S. With a double prefix argument, set it to ‘[-]’, which is considered to be
an intermediate state.

C-c C-x C-b (org-toggle-checkbox)
Toggle checkbox status or—with prefix argument—checkbox presence at point.
With double prefix argument, set it to ‘[-]’, which is considered to be an
intermediate state.

e If there is an active region, toggle the first checkbox in the region and set
all remaining boxes to the same status as the first. With a prefix argument,
add or remove the checkbox for all items in the region.

e If point is in a headline, toggle checkboxes in the region between this head-
line and the next—so not the entire subtree.

e If there is no active region, just toggle the checkbox at point.

M-S-RET (org-insert-todo-heading)
Insert a new item with a checkbox. This works only if point is already in a
plain list item (see Section 2.6 [Plain Lists|, page 12).

C-c C-x o (org-toggle-ordered-property)
Toggle the ‘ORDERED’ property of the entry, to toggle if checkboxes must be
checked off in sequence. A property is used for this behavior because this
should be local to the current entry, not inherited like a tag. However, if you
would like to track the value of this property with a tag for better visibility,
customize org-track-ordered-property-with-tag.

C-c # (org-update-statistics-cookies)
Update the statistics cookie in the current outline entry. When called with
a C-u prefix, update the entire file. Checkbox statistic cookies are updated
automatically if you toggle checkboxes with C-c C-c and make new ones with
M-S-RET. TODO statistics cookies update when changing TODO states. If you
delete boxes/entries or add/change them by hand, use this command to get
things back into sync.

16 ¢y C-c C-c on the first item of a list with no checkbox adds checkboxes to the rest of the list.

Chapter 6: Tags 58

6 Tags

An excellent way to implement labels and contexts for cross-correlating information is to
assign tags to headlines. Org mode has extensive support for tags.

Every headline can contain a list of tags; they occur at the end of the headline. Tags are
normal words containing letters, numbers, ‘_’, and ‘@’. Tags must be preceded and followed
by a single colon, e.g., ‘:work:’. Several tags can be specified, as in ‘:work:urgent:’. Tags
by default are in bold face with the same color as the headline. You may specify special
faces for specific tags using the variable org-tag-faces, in much the same way as you can
for TODO keywords (see Section 5.2.6 [Faces for TODO keywords|, page 49).

6.1 Tag Inheritance

Tags make use of the hierarchical structure of outline trees. If a heading has a certain tag,
all subheadings inherit the tag as well. For example, in the list

* Meeting with the French group :work:
** Summary by Frank :boss:notes:
**x* TODO Prepare slides for him raction:

the final heading has the tags ‘work’, ‘boss’, ‘notes’, and ‘action’ even though the final
heading is not explicitly marked with those tags. You can also set tags that all entries
in a file should inherit just as if these tags were defined in a hypothetical level zero that
surrounds the entire file. Use a line like this!

#+FILETAGS: :Peter:Boss:Secret:

To limit tag inheritance to specific tags, or to turn it off entirely, use the variables
org-use-tag-inheritance and org-tags-exclude-from-inheritance.

When a headline matches during a tags search while tag inheritance is turned on, all the
sublevels in the same tree—for a simple match form—match as well?. The list of matches
may then become very long. If you only want to see the first tags match in a subtree,
configure the variable org-tags-match-list-sublevels (not recommended).

Tag inheritance is relevant when the agenda search tries to match a tag, either in the
tags or tags-todo agenda types. In other agenda types, org-use-tag-inheritance has
no effect. Still, you may want to have your tags correctly set in the agenda, so that tag
filtering works fine, with inherited tags. Set org-agenda-use-tag-inheritance to control
this: the default value includes all agenda types, but setting this to nil can really speed
up agenda generation.

6.2 Setting Tags

Tags can simply be typed into the buffer at the end of a headline. After a colon, M-TAB
offers completion on tags. There is also a special command for inserting tags:

C-c C-q (org-set-tags-command)
Enter new tags for the current headline. Org mode either offers completion or
a special single-key interface for setting tags, see below. After pressing RET, the

1 As with all these in-buffer settings, pressing C-c C-c activates any changes in the line.

2 This is only true if the search does not involve more complex tests including properties (see Section 7.3
[Property Searches|, page 65).

Chapter 6: Tags 59

tags are inserted and aligned to org-tags-column. When called with a C-u
prefix, all tags in the current buffer are aligned to that column, just to make
things look nice. Tags are automatically realigned after promotion, demotion,
and TODO state changes (see Section 5.1 [TODO Basics|, page 46).

C-c C-c (org-set-tags-command)
When point is in a headline, this does the same as C-c C—q.

Org supports tag insertion based on a list of tags. By default this list is constructed
dynamically, containing all tags currently used in the buffer®. You may also globally specify
a hard list of tags with the variable org-tag-alist. Finally you can set the default tags
for a given file using the ‘TAGS’ keyword, like

#+TAGS: Owork G@home Qtennisclub
#+TAGS: laptop car pc sailboat

If you have globally defined your preferred set of tags using the variable org-tag-alist,
but would like to use a dynamic tag list in a specific file, add an empty ‘TAGS’ keyword to
that file:

#+TAGS:

If you have a preferred set of tags that you would like to use in every file, in addition
to those defined on a per-file basis by ‘TAGS’ keyword, then you may specify a list of tags
with the variable org-tag-persistent-alist. You may turn this off on a per-file basis by
adding a ‘STARTUP’ keyword to that file:

#+STARTUP: noptag

By default Org mode uses the standard minibuffer completion facilities for entering tags.
However, it also implements another, quicker, tag selection method called fast tag selection.
This allows you to select and deselect tags with just a single key press. For this to work
well you should assign unique letters to most of your commonly used tags. You can do this
globally by configuring the variable org-tag-alist in your Emacs init file. For example,
you may find the need to tag many items in different files with ‘@home’. In this case you
can set something like:

(setq org-tag-alist '(("@work" . ?w) ("@home" . 7h) ("laptop" . 71)))

If the tag is only relevant to the file you are working on, then you can instead set the
‘TAGS’ keyword as:

#+TAGS: Qwork(w) @home(h) @tennisclub(t) laptop(l) pc(p)

The tags interface shows the available tags in a splash window. If you want to start a
new line after a specific tag, insert ‘\n’ into the tag list

#+TAGS: Qwork(w) G@home(h) @tennisclub(t) \n laptop(l) pc(p)
or write them in two lines:

#+TAGS: Owork(w) G©home(h) @tennisclub(t)
#+TAGS: laptop(l) pc(p)

You can also group together tags that are mutually exclusive by using braces, as in:

3 To extend this default list to all tags used in all agenda files (see Chapter 11 [Agenda Views], page 103),
customize the variable org-complete-tags-always-offer-all-agenda-tags.

Chapter 6: Tags 60

#+TAGS: { Owork(w) G@home(h) @tennisclub(t) } laptop(l) pc(p)

you indicate that at most one of ‘@work’, ‘Ghome’, and ‘@tennisclub’ should be selected.
Multiple such groups are allowed.

Do not forget to press C-c C-c with point in one of these lines to activate any changes.

To set these mutually exclusive groups in the variable org-tags-alist, you must use
the dummy tags :startgroup and :endgroup instead of the braces. Similarly, you can
use :newline to indicate a line break. The previous example would be set globally by the
following configuration:

(setq org-tag-alist '((:startgroup . nil)
("@work" . ?w) ("@home" . 7h)
("@tennisclub" . 7t)
(:endgroup . nil)
("laptop" . 71) ("pc" . ?7p)))

If at least one tag has a selection key then pressing C-c C-c automatically presents you
with a special interface, listing inherited tags, the tags of the current headline, and a list of
all valid tags with corresponding keys?.

Pressing keys assigned to tags adds or removes them from the list of tags in the current
line. Selecting a tag in a group of mutually exclusive tags turns off any other tag from that
group.

In this interface, you can also use the following special keys:

TAB Enter a tag in the minibuffer, even if the tag is not in the predefined list. You

can complete on all tags present in the buffer. You can also add several tags:
just separate them with a comma.

SPC Clear all tags for this line.

RET Accept the modified set.

C-g Abort without installing changes.

q If g is not assigned to a tag, it aborts like C-g.

! Turn off groups of mutually exclusive tags. Use this to (as an exception) assign
several tags from such a group.

C-c Toggle auto-exit after the next change (see below). If you are using expert
mode, the first C-c displays the selection window.

This method lets you assign tags to a headline with very few keys. With the above
setup, you could clear the current tags and set ‘Ghome’, ‘laptop’ and ‘pc’ tags with just the
following keys: C-c C-c SPC h 1 p RET. Switching from ‘@home’ to ‘@work’ would be done
with C-c C-c w RET or alternatively with C-c C-c C-c w. Adding the non-predefined tag
‘sarah’ could be done with C-c C-c TAB s a r a h RET.

If you find that most of the time you need only a single key press to modify your list of
tags, set the variable org-fast-tag-selection-single-key. Then you no longer have to
press RET to exit fast tag selection—it exits after the first change. If you then occasionally
need more keys, press C-c to turn off auto-exit for the current tag selection process (in

4 Keys are automatically assigned to tags that have no configured keys.

Chapter 6: Tags 61

effect: start selection with C-c C-c C-c instead of C-c C-c). If you set the variable to the
value expert, the special window is not even shown for single-key tag selection, it comes
up only when you press an extra C-c.

6.3 Tag Hierarchy

Tags can be defined in hierarchies. A tag can be defined as a group tag for a set of other
tags. The group tag can be seen as the “broader term” for its set of tags. Defining multiple
group tags and nesting them creates a tag hierarchy.

One use-case is to create a taxonomy of terms (tags) that can be used to classify nodes
in a document or set of documents.

When you search for a group tag, it return matches for all members in the group and
its subgroups. In an agenda view, filtering by a group tag displays or hide headlines tagged
with at least one of the members of the group or any of its subgroups. This makes tag
searches and filters even more flexible.

You can set group tags by using brackets and inserting a colon between the group tag
and its related tags—beware that all whitespaces are mandatory so that Org can parse this
line correctly:

#+TAGS: [GID : Control Persp 1

In this example, ‘GTD’ is the group tag and it is related to two other tags: ‘Control’,
‘Persp’. Defining ‘Control’ and ‘Persp’ as group tags creates a hierarchy of tags:

#+TAGS: [Control : Context Task]
#+TAGS: [Persp : Vision Goal AOF Project]

That can conceptually be seen as a hierarchy of tags:

e ‘GTD’
e ‘Persp’
e ‘Vision’
e ‘Goal’
e ‘AQOF’

e ‘Project’
e ‘Control’

e ‘Context’

e ‘Task’

You can use the :startgrouptag, :grouptags and :endgrouptag keyword directly
when setting org-tag-alist directly:

(setq org-tag-alist '((:startgrouptag)
("GTD")
(:grouptags)
("Control")
(llperspll)
(:endgrouptag)
(:startgrouptag)
("Control")

Chapter 6: Tags 62

(:grouptags)
("Context")
("Task")
(:endgrouptag)))
The tags in a group can be mutually exclusive if using the same group syntax as is used
for grouping mutually exclusive tags together; using curly brackets.

#+TAGS: { Context : @Home @Work @Call }

When setting org-tag-alist you can use :startgroup and :endgroup instead of
:startgrouptag and :endgrouptag to make the tags mutually exclusive.

Furthermore, the members of a group tag can also be regular expressions, creating the
possibility of a more dynamic and rule-based tag structure. The regular expressions in the
group must be specified within curly brackets. Here is an expanded example:

#+TAGS: [Vision : {V@.+}]
#+TAGS: [Goal : {G@.+}]
#+TAGS: [AOF : {AOQF@.+}]
#+TAGS: [Project : {P@.+}]

Searching for the tag ‘Project’ now lists all tags also including regular expression
matches for ‘P@.+’, and similarly for tag searches on ‘Vision’, ‘Goal’ and ‘AOF’. For ex-
ample, this would work well for a project tagged with a common project-identifier, e.g.,
‘PE2014_0rgTags’.

If you want to ignore group tags temporarily, toggle group tags support with
org-toggle-tags-groups, bound to C-c C-x q. If you want to disable tag groups
completely, set org-group-tags to nil.

6.4 Tag Searches

Once a system of tags has been set up, it can be used to collect related information into
special lists.

C-c /mor C-c \ (org-match-sparse-tree)
Create a sparse tree with all headlines matching a tags search. With a C-u
prefix argument, ignore headlines that are not a TODO line.

M-x org-agenda m (org-tags-view)
Create a global list of tag matches from all agenda files. See Section 11.3.3
[Matching tags and properties|, page 109.

M-x org-agenda M (org-tags-view)
Create a global list of tag matches from all agenda files, but check only TODO
items and force checking subitems (see the option org-tags-match-list-
sublevels).

These commands all prompt for a match string which allows basic Boolean logic
like ‘+boss+urgent-projectl’, to find entries with tags ‘boss’ and ‘urgent’, but not
‘projectl’, or ‘Kathy|Sally’ to find entries which are tagged, like ‘Kathy’ or ‘Sally’.
The full syntax of the search string is rich and allows also matching against TODO
keywords, entry levels and properties. For a complete description with many examples, see
Section 11.3.3 [Matching tags and properties], page 109.

Chapter 7: Properties and Columns 63

7 Properties and Columns

A property is a key-value pair associated with an entry. Properties can be set so they are
associated with a single entry, with every entry in a tree, or with every entry in an Org file.

There are two main applications for properties in Org mode. First, properties are like
tags, but with a value. Imagine maintaining a file where you document bugs and plan
releases for a piece of software. Instead of using tags like ‘release_1’, ‘release_2’, you
can use a property, say ‘Release’, that in different subtrees has different values, such as ‘1.0’
or ‘2.0’. Second, you can use properties to implement (very basic) database capabilities in
an Org buffer. Imagine keeping track of your music CDs, where properties could be things
such as the album, artist, date of release, number of tracks, and so on.

Properties can be conveniently edited and viewed in column view (see Section 7.5 [Col-
umn View], page 66).

7.1 Property Syntax

Properties are key—value pairs. When they are associated with a single entry or with a tree
they need to be inserted into a special drawer (see Section 2.7 [Drawers|, page 15) with the
name ‘PROPERTIES’, which has to be located right below a headline, and its planning line
(see Section 8.3 [Deadlines and Scheduling], page 76) when applicable. Each property is
specified on a single line, with the key—surrounded by colons—first, and the value after it.
Keys are case-insensitive. Here is an example:

* CD collection

**% Classic

*** Goldberg Variations

:PROPERTIES:

:Title: Goldberg Variations
:Composer: J.S. Bach

:Artist: Glenn Gould
:Publisher: Deutsche Grammophon
:NDisks: 1

:END:

Depending on the value of org-use-property-inheritance, a property set this way is
associated either with a single entry, or with the sub-tree defined by the entry, see Section 7.4
[Property Inheritance|, page 66.

You may define the allowed values for a particular property ‘Xyz’ by setting a property
‘Xyz_ALL’. This special property is inherited, so if you set it in a level 1 entry, it applies
to the entire tree. When allowed values are defined, setting the corresponding property
becomes easier and is less prone to typing errors. For the example with the CD collection,
we can pre-define publishers and the number of disks in a box like this:

* CD collection
:PROPERTIES:
:NDisks_ALL: 1 2 3 4
:Publisher_ALL: "Deutsche Grammophon" Philips EMI
:END:

If you want to set properties that can be inherited by any entry in a file, use a line like:

Chapter 7: Properties and Columns 64

#+PROPERTY: NDisks_ALL 1 2 3 4

If you want to add to the value of an existing property, append a ‘+’ to the property
name. The following results in the property ‘var’ having the value ‘foo=1 bar=2’".

#+PROPERTY: var foo=1
#+PROPERTY: var+ bar=2
It is also possible to add to the values of inherited properties. The following results in the
‘Genres’ property having the value ‘Classic Baroque’ under the ‘Goldberg Variations’
subtree.

* CD collection
** Classic

:PROPERTIES:
:Genres: Classic
:END:

***x Goldberg Variations
:PROPERTIES:
:Title: Goldberg Variatioms
:Composer: J.S. Bach
:Artist: Glenn Gould
:Publisher: Deutsche Grammophon
:NDisks: 1
:Genres+: Baroque
:END:

Note that a property can only have one entry per drawer.

Property values set with the global variable org-global-properties can be inherited
by all entries in all Org files.

The following commands help to work with properties:

M-TAB (pcomplete)
After an initial colon in a line, complete property keys. All keys used in the
current file are offered as possible completions.

C-c C-x p (org-set-property)
Set a property. This prompts for a property name and a value. If necessary,
the property drawer is created as well.

C-u M-x org-insert-drawer
Insert a property drawer into the current entry. The drawer is inserted early in
the entry, but after the lines with planning information like deadlines.

C-c C-c (org-property-action)
With point in a property drawer, this executes property commands.

C-c C-c s (org-set-property)
Set a property in the current entry. Both the property and the value can be
inserted using completion.

S-RIGHT (org-property-next-allowed-values)
S-LEFT (org-property-previous-allowed-value)
Switch property at point to the next/previous allowed value.

Chapter 7: Properties and Columns 65

C-c C-c d (org-delete-property)
Remove a property from the current entry.

C-c C-c D (org-delete-property-globally)
Globally remove a property, from all entries in the current file.

C-c C-c ¢ (org-compute-property-at-point)
Compute the property at point, using the operator and scope from the nearest
column format definition.

7.2 Special Properties

Special properties provide an alternative access method to Org mode features, like the
TODO state or the priority of an entry, discussed in the previous chapters. This interface
exists so that you can include these states in a column view (see Section 7.5 [Column View],
page 66), or to use them in queries. The following property names are special and should
not be used as keys in the properties drawer:

‘ALLTAGS’ All tags, including inherited ones.

‘BLOCKED’ t if task is currently blocked by children or siblings.

‘CATEGORY’ The category of an entry.

‘CLOCKSUM’ The sum of CLOCK intervals in the subtree. org-clock-sum
must be run first to compute the values in the current buffer.

‘CLOCKSUM_T’ The sum of CLOCK intervals in the subtree for today.

org-clock-sum-today must be run first to compute the
values in the current buffer.

‘CLOSED’ When was this entry closed?

‘DEADLINE’ The deadline time string, without the angular brackets.
‘FILE’ The filename the entry is located in.

‘ITEM The headline of the entry.

‘PRIORITY’ The priority of the entry, a string with a single letter.
‘SCHEDULED’ The scheduling timestamp, without the angular brackets.
‘TAGS’ The tags defined directly in the headline.

‘TIMESTAMP’ The first keyword-less timestamp in the entry.
‘TIMESTAMP_IA’ The first inactive timestamp in the entry.

‘TODO’ The TODO keyword of the entry.

7.3 Property Searches

To create sparse trees and special lists with selection based on properties, the same com-
mands are used as for tag searches (see Section 6.4 [Tag Searches]|, page 62).

C-c /mor C-c \ (org-match-sparse-tree)
Create a sparse tree with all matching entries. With a C-u prefix argument,
ignore headlines that are not a TODO line.

M-x org-agenda m, org-tags-view
Create a global list of tag/property matches from all agenda files.

Chapter 7: Properties and Columns 66

M-x org-agenda M (org-tags-view)
Create a global list of tag matches from all agenda files, but check only TODO
items and force checking of subitems (see the option org-tags-match-list-
sublevels).

The syntax for the search string is described in Section 11.3.3 [Matching tags and prop-
erties], page 109.

There is also a special command for creating sparse trees based on a single property:

C-c/p Create a sparse tree based on the value of a property. This first prompts for
the name of a property, and then for a value. A sparse tree is created with all
entries that define this property with the given value. If you enclose the value
in curly braces, it is interpreted as a regular expression and matched against
the property values.

7.4 Property Inheritance

The outline structure of Org documents lends itself to an inheritance model of properties: if
the parent in a tree has a certain property, the children can inherit this property. Org mode
does not turn this on by default, because it can slow down property searches significantly
and is often not needed. However, if you find inheritance useful, you can turn it on by
setting the variable org-use-property-inheritance. It may be set to t to make all
properties inherited from the parent, to a list of properties that should be inherited, or to a
regular expression that matches inherited properties. If a property has the value nil, this
is interpreted as an explicit un-define of the property, so that inheritance search stops at
this value and returns nil.

Org mode has a few properties for which inheritance is hard-coded, at least for the
special applications for which they are used:

COLUMNS The ‘COLUMNS’ property defines the format of column view (see Section 7.5
[Column View|, page 66). It is inherited in the sense that the level where a
‘COLUMNS’ property is defined is used as the starting point for a column view
table, independently of the location in the subtree from where columns view is
turned on.

CATEGORY For agenda view, a category set through a ‘CATEGORY’ property applies to the
entire subtree.

ARCHIVE For archiving, the ‘ARCHIVE’ property may define the archive location for the
entire subtree (see Section 9.2.1 [Moving subtrees]|, page 90).

LOGGING The ‘LOGGING’ property may define logging settings for an entry or a subtree
(see Section 5.3.2 [Tracking TODO state changes|, page 51).

7.5 Column View

A great way to view and edit properties in an outline tree is column view. In column
view, each outline node is turned into a table row. Columns in this table provide access to
properties of the entries. Org mode implements columns by overlaying a tabular structure
over the headline of each item. While the headlines have been turned into a table row, you
can still change the visibility of the outline tree. For example, you get a compact table by

Chapter 7: Properties and Columns 67

switching to “contents” view—S-TAB S-TAB, or simply ¢ while column view is active—but
you can still open, read, and edit the entry below each headline. Or, you can switch to
column view after executing a sparse tree command and in this way get a table only for the
selected items. Column view also works in agenda buffers (see Chapter 11 [Agenda Views],
page 103) where queries have collected selected items, possibly from a number of files.

7.5.1 Defining columns
Setting up a column view first requires defining the columns. This is done by defining a
column format line.

7.5.1.1 Scope of column definitions

To define a column format for an entire file, use a line like:
#+COLUMNS: %25ITEM %TAGS %PRIORITY %TODO

To specify a format that only applies to a specific tree, add a ‘COLUMNS’ property to the
top node of that tree, for example:

** Top node for columns view

:PROPERTIES:
:COLUMNS: %25ITEM %TAGS %PRIORITY %TODO
:END:

If a ‘COLUMNS’ property is present in an entry, it defines columns for the entry itself,
and for the entire subtree below it. Since the column definition is part of the hierarchical
structure of the document, you can define columns on level 1 that are general enough for
all sublevels, and more specific columns further down, when you edit a deeper part of the
tree.

7.5.1.2 Column attributes

A column definition sets the attributes of a column. The general definition looks like this:
% [WIDTH]PROPERTY [(TITLE)] [{SUMMARY-TYPE}]

Except for the percent sign and the property name, all items are optional. The individual

parts have the following meaning:

WIDTH An integer specifying the width of the column in characters. If omitted, the
width is determined automatically.

PROPERTY
The property that should be edited in this column. Special properties repre-
senting meta data are allowed here as well (see Section 7.2 [Special Properties]
page 65).

)

TITLE The header text for the column. If omitted, the property name is used.
SUMMARY-TYPE

The summary type. If specified, the column values for parent nodes are com-
puted from the children®.

Supported summary types are:

1 If more than one summary type applies to the same property, the parent values are computed according
to the first of them.

Chapter 7: Properties and Columns 68

+ Sum numbers in this column.

+%.1f Like ‘+’, but format result with ‘%.1£’.

‘$ Currency, short for ‘+;%.2f’.

‘min’ Smallest number in column.

‘max’ Largest number.

‘mean’ Arithmetic mean of numbers.

‘X Checkbox status, ‘[X]’ if all children are ‘[X]’.
X/’ Checkbox status, ‘[n/m]’.

Xn Checkbox status, ‘[n%]’.

© Sum times, HH:MM, plain numbers are minutes.
‘:min’ Smallest time value in column.

‘:max’ Largest time value.

‘:mean’ Arithmetic mean of time values.

‘@min’ Minimum age? (in days/hours/mins/seconds).
‘@max’ Maximum age (in days/hours/mins/seconds).
‘@mean’ Arithmetic mean of ages (in days/hours/mins/seconds).
‘est+’ Add low-high estimates.

You can also define custom summary types by setting org-columns-summary-
types.

The ‘est+’ summary type requires further explanation. It is used for combining esti-
mates, expressed as low-high ranges. For example, instead of estimating a particular task
will take 5 days, you might estimate it as 56 days if you're fairly confident you know how
much work is required, or 1-10 days if you do not really know what needs to be done. Both
ranges average at 5.5 days, but the first represents a more predictable delivery.

When combining a set of such estimates, simply adding the lows and highs produces
an unrealistically wide result. Instead, ‘est+’ adds the statistical mean and variance of
the subtasks, generating a final estimate from the sum. For example, suppose you had ten
tasks, each of which was estimated at 0.5 to 2 days of work. Straight addition produces an
estimate of 5 to 20 days, representing what to expect if everything goes either extremely
well or extremely poorly. In contrast, ‘est+’ estimates the full job more realistically, at
10-15 days.

Here is an example for a complete columns definition, along with allowed values®.

:COLUMNS: %25ITEM %9Approved(Approved?){X} %0Owner %11Status \
%10Time_Estimate{:} %CLOCKSUM %CLOCKSUM_T
:Owner_ALL: Tammy Mark Karl Lisa Don
:Status_ALL: "In progress" "Not started yet" "Finished" ""
:Approved_ALL: "[1" "[X]"
The first column, ‘%25ITEM’, means the first 25 characters of the item itself, i.e., of the
headline. You probably always should start the column definition with the ‘ITEM’ specifier.
The other specifiers create columns ‘Owner’ with a list of names as allowed values, for
‘Status’ with four different possible values, and for a checkbox field ‘Approved’. When no

2 An age can be defined as a duration, using units defined in org-duration-units, e.g., ‘3d 1h’. If any
value in the column is as such, the summary is also expressed as a duration.

3 Please note that the ‘COLUMNS’ definition must be on a single line; it is wrapped here only because of
formatting constraints.

Chapter 7: Properties and Columns 69

width is given after the ‘%’ character, the column is exactly as wide as it needs to be in order
to fully display all values. The ‘Approved’ column does have a modified title (‘Approved?’,
with a question mark). Summaries are created for the ‘Time_Estimate’ column by adding
time duration expressions like HH:MM, and for the ‘Approved’ column, by providing an
‘[X]’ status if all children have been checked. The ‘CLOCKSUM’ and ‘CLOCKSUM_T’ columns
are special, they lists the sums of CLOCK intervals in the subtree, either for all clocks or
just for today.

7.5.2 Using column view

Turning column view on or off

C-c C-x C-c (org-columns)

Turn on column view. If point is before the first headline in the file, column
view is turned on for the entire file, using the ‘#+COLUMNS’ definition. If point
is somewhere inside the outline, this command searches the hierarchy, up from
point, for a ‘COLUMNS’ property that defines a format. When one is found, the
column view table is established for the tree starting at the entry that contains
the ‘COLUMNS’ property. If no such property is found, the format is taken from
the ‘#+COLUMNS’ line or from the variable org-columns-default-format, and
column view is established for the current entry and its subtree.

ror g (org-columns-redo)
Recreate the column view, to include recent changes made in the buffer.

q (org-columns-quit)
Exit column view.

Editing values

LEFT, RIGHT, UP, DOWN
Move through the column view from field to field.

1..9,0 Directly select the Nth allowed value, 0 selects the 10th value.

n or S-RIGHT (org-columns-next-allowed-value)

p or S-LEFT (org-columns-previous-allowed-value)
Switch to the next/previous allowed value of the field. For this, you have to
have specified allowed values for a property.

e (org-columns-edit-value)
Edit the property at point. For the special properties, this invokes the same
interface that you normally use to change that property. For example, the tag
completion or fast selection interface pops up when editing a ‘TAGS’ property.

C-c C-c (org-columns-set-tags-or-toggle)
When there is a checkbox at point, toggle it.

v (org-columns-show-value)
View the full value of this property. This is useful if the width of the column is
smaller than that of the value.

Chapter 7: Properties and Columns 70

a (org-columns-edit-allowed)
Edit the list of allowed values for this property. If the list is found in the
hierarchy, the modified values is stored there. If no list is found, the new value
is stored in the first entry that is part of the current column view.

Modifying column view on-the-fly

< (org-columns-narrow)
> (org-columns-widen)
Make the column narrower/wider by one character.

S-M-RIGHT (org-columns-new)
Insert a new column, to the left of the current column.

S-M-LEFT (org-columns-delete)
Delete the current column.

7.5.3 Capturing column view

Since column view is just an overlay over a buffer, it cannot be exported or printed directly.
If you want to capture a column view, use a ‘columnview’ dynamic block (see Section A.6
[Dynamic Blocks|, page 253). The frame of this block looks like this:

* The column view
#+BEGIN: columnview :hlines 1 :id "label"

#+END:

This dynamic block has the following parameters:

frid’ This is the most important parameter. Column view is a feature that is often
localized to a certain (sub)tree, and the capture block might be at a different
location in the file. To identify the tree whose view to capture, you can use
four values:

‘local’ Use the tree in which the capture block is located.
‘global’ Make a global view, including all headings in the file.

‘file:FILENAME’
Run column view at the top of the FILENAME file.

‘LABEL’ Call column view in the tree that has an ‘ID’ property with the
value LABEL. You can use M-x org-id-copy to create a globally
unique ID for the current entry and copy it to the kill-ring.

:hlines’ When t, insert an hline after every line. When a number N, insert an hline
before each headline with level <= N.

‘:vlines’ When non-nil, force column groups to get vertical lines.

‘:maxlevel’

When set to a number, do not capture entries below this level.

‘:skip-empty-rows’

When non-nil, skip rows where the only non-empty specifier of the column
view is ‘ITEM’.

Chapter 7: Properties and Columns 71

‘:exclude-tags’
List of tags to exclude from column view table: entries with these tags will be
excluded from the column view.

‘:indent’ When non-nil, indent each ‘ITEM’ field according to its level.

‘:format’ Specify a column attribute (see Section 7.5.1.2 [Column attributes|, page 67)
for the dynamic block.

The following commands insert or update the dynamic block:

C-c C-x i (org-insert-columns-dblock)
Insert a dynamic block capturing a column view. Prompt for the scope or ID
of the view.

C-c C-c C-c C-x C-u (org-dblock-update)
Update dynamic block at point. point needs to be in the ‘#+BEGIN’ line of the
dynamic block.

C-u C-c C-x C-u (org-update-all-dblocks)
Update all dynamic blocks (see Section A.6 [Dynamic Blocks|, page 253). This
is useful if you have several clock table blocks, column-capturing blocks or other
dynamic blocks in a buffer.

You can add formulas to the column view table and you may add plotting instructions
in front of the table—these survive an update of the block. If there is a ‘TBLFM’ keyword
after the table, the table is recalculated automatically after an update.

An alternative way to capture and process property values into a table is provided by
Eric Schulte’s ‘org-collector.el’, which is a contributed package?. It provides a general
API to collect properties from entries in a certain scope, and arbitrary Lisp expressions to
process these values before inserting them into a table or a dynamic block.

4 Contributed packages are not part of Emacs, but are distributed with the main distribution of Org—visit
https://orgmode.org.

https://orgmode.org

Chapter 8: Dates and Times 72

8 Dates and Times

To assist project planning, TODO items can be labeled with a date and/or a time. The
specially formatted string carrying the date and time information is called a timestamp in
Org mode. This may be a little confusing because timestamp is often used as indicating
when something was created or last changed. However, in Org mode this term is used in a
much wider sense.

8.1 Timestamps

A timestamp is a specification of a date (possibly with a time or a range of times) in a
special format, either ‘<2003-09-16 Tue>’ or ‘<2003-09-16 Tue 09:39>’ or ‘<2003-09-16
Tue 12:00-12:30>"!. A timestamp can appear anywhere in the headline or body of an Org
tree entry. Its presence causes entries to be shown on specific dates in the agenda (see
Section 11.3.1 [Weekly/daily agendal, page 105). We distinguish:

Plain timestamp; Event; Appointment
A simple timestamp just assigns a date/time to an item. This is just like writing
down an appointment or event in a paper agenda. In the agenda display, the
headline of an entry associated with a plain timestamp is shown exactly on that
date.

* Meet Peter at the movies
<2006-11-01 Wed 19:15>

* Discussion on climate change
<2006-11-02 Thu 20:00-22:00>

Timestamp with repeater interval
A timestamp may contain a repeater interval, indicating that it applies not only
on the given date, but again and again after a certain interval of N days (d),
weeks (w), months (m), or years (y). The following shows up in the agenda
every Wednesday:

* Pick up Sam at school
<2007-05-16 Wed 12:30 +1w>

Diary-style expression entries
For more complex date specifications, Org mode supports using the special
expression diary entries implemented in the Emacs Calendar package®. For
example, with optional time:

! The Org date format is inspired by the standard ISO 8601 date/time format. To use an alternative
format, see Section 8.2.2 [Custom time format], page 76. The day name is optional when you type
the date yourself. However, any date inserted or modified by Org adds that day name, for reading
convenience.

When working with the standard diary expression functions, you need to be very careful with the order of
the arguments. That order depends evilly on the variable calendar-date-style. For example, to specify
a date December 12, 2005, the call might look like ‘ (diary-date 12 1 2005)’ or ‘(diary-date 1 12 2005)’
or ‘(diary-date 2005 12 1)’, depending on the settings. This has been the source of much confusion.
Org mode users can resort to special versions of these functions like org-date or org-anniversary.
These work just like the corresponding diary- functions, but with stable ISO order of arguments (year,
month, day) wherever applicable, independent of the value of calendar-date-style.

Chapter 8: Dates and Times 73

* 22:00-23:00 The nerd meeting on every 2nd Thursday of the month
<%h(diary-float t 4 2)>

Time/Date range
Two timestamps connected by ‘-=-" denote a range. The headline is shown on
the first and last day of the range, and on any dates that are displayed and fall
in the range. Here is an example:

** Meeting in Amsterdam
<2004-08-23 Mon>--<2004-08-26 Thu>

Inactive timestamp
Just like a plain timestamp, but with square brackets instead of angular ones.
These timestamps are inactive in the sense that they do not trigger an entry
to show up in the agenda.

* Gillian comes late for the fifth time
[2006-11-01 Wed]

8.2 Creating Timestamps

For Org mode to recognize timestamps, they need to be in the specific format. All commands
listed below produce timestamps in the correct format.

C-c . (org-time-stamp)
Prompt for a date and insert a corresponding timestamp. When point is at an
existing timestamp in the buffer, the command is used to modify this timestamp
instead of inserting a new one. When this command is used twice in succession,
a time range is inserted.

When called with a prefix argument, use the alternative format which contains
date and time. The default time can be rounded to multiples of 5 minutes. See
the option org-time-stamp-rounding-minutes.

With two prefix arguments, insert an active timestamp with the current time
without prompting.

C-c ! (org-time-stamp-inactive)
Like C-c ., but insert an inactive timestamp that does not cause an agenda
entry.

C-c C-c Normalize timestamp, insert or fix day name if missing or wrong.

C-c < (org-date-from-calendar)
Insert a timestamp corresponding to point date in the calendar.

C-c > (org-goto-calendar)
Access the Emacs calendar for the current date. If there is a timestamp in the
current line, go to the corresponding date instead.

C-c C-o (org-open-at-point)
Access the agenda for the date given by the timestamp or -range at point (see
Section 11.3.1 [Weekly/daily agenda], page 105).

Chapter 8: Dates and Times 74

S-LEFT (org-timestamp-down-day)

S-RIGHT (org-timestamp-up-day)
Change date at point by one day. These key bindings conflict with shift-selection
and related modes (see Section 16.12.2 [Conflicts], page 241).

S-UP (org-timestamp-up)

S-DOWN (org-timestamp-down)
On the beginning or enclosing bracket of a timestamp, change its type. Within
a timestamp, change the item under point. Point can be on a year, month, day,
hour or minute. When the timestamp contains a time range like ‘15:30-16:30’,
modifying the first time also shifts the second, shifting the time block with
constant length. To change the length, modify the second time. Note that
if point is in a headline and not at a timestamp, these same keys modify the
priority of an item (see Section 5.4 [Priorities|, page 54). The key bindings also
conflict with shift-selection and related modes (see Section 16.12.2 [Conflicts],
page 241).

C-c C-y (org-evaluate-time-range)
Evaluate a time range by computing the difference between start and end.
With a prefix argument, insert result after the time range (in a table: into the
following column).

8.2.1 The date/time prompt

When Org mode prompts for a date/time, the default is shown in default date/time format,
and the prompt therefore seems to ask for a specific format. But it in fact accepts date/time
information in a variety of formats. Generally, the information should start at the beginning
of the string. Org mode finds whatever information is in there and derives anything you
have not specified from the default date and time. The default is usually the current date
and time, but when modifying an existing timestamp, or when entering the second stamp
of a range, it is taken from the stamp in the buffer. When filling in information, Org mode
assumes that most of the time you want to enter a date in the future: if you omit the
month/year and the given day/month is before today, it assumes that you mean a future
date3. If the date has been automatically shifted into the future, the time prompt shows
this with ‘(=>F)".

For example, let’s assume that today is June 13, 2006. Here is how various inputs are
interpreted, the items filled in by Org mode are in bold.

‘3-2-5’ = 2003-02-05
‘2/5/3 = 2003-02-05
‘14’ = 2006-06-14
‘12’ = 2006-07-12
‘2/5’ = 2007-02-05
‘Fri’ = nearest Friday (default date or later)
‘sep 15’ = 2006-09-15
‘feb 15’ = 2007-02-15
‘sep 12 9’ = 2009-09-12

3 See the variable org-read-date-prefer-future. You may set that variable to the symbol time to even
make a time before now shift the date to tomorrow.

Chapter 8: Dates and Times 75

‘12:45’ = 2006-06-13 12:45

‘22 sept 0:34’ = 2006-09-22 0:34

‘wd’ = ISO week for of the current year 2006
‘2012 w4 fri’ = Friday of ISO week 4 in 2012
‘2012-w04-5’ = Same as above

Furthermore you can specify a relative date by giving, as the first thing in the input:
a plus/minus sign, a number and a letter—‘d’, ‘w’, ‘m’ or ‘y’—to indicate change in days,
weeks, months, or years. With a single plus or minus, the date is always relative to today.
With a double plus or minus, it is relative to the default date. If instead of a single letter,

you use the abbreviation of day name, the date is the Nth such day, e.g.:

‘+0’ = today

$ = today

‘+4d’ = four days from today

‘+4’ = same as +4d

‘+2u’ = two weeks from today
‘++5’ = five days from default date
‘+2tue’ = second Tuesday from now

The function understands English month and weekday abbreviations. If you want to use
un-abbreviated names and/or other languages, configure the variables parse-time-months
and parse-time-weekdays.

Not all dates can be represented in a given Emacs implementation. By default Org mode
forces dates into the compatibility range 1970-2037 which works on all Emacs implemen-
tations. If you want to use dates outside of this range, read the docstring of the variable
org-read-date-force-compatible-dates.

You can specify a time range by giving start and end times or by giving a start time
and a duration (in HH:MM format). Use one or two dash(es) as the separator in the former
case and use ‘+’ as the separator in the latter case, e.g.:

‘11am-1:15pm’ = 11:00-13:15
‘11am--1:16pm’ = same as above
‘11am+2:15’ = same as above

Parallel to the minibuffer prompt, a calendar is popped up*. When you exit the date
prompt, either by clicking on a date in the calendar, or by pressing RET, the date selected
in the calendar is combined with the information entered at the prompt. You can control
the calendar fully from the minibuffer:

RET Choose date at point in calendar.
mouse-1 Select date by clicking on it.

S-RIGHT One day forward.

S-LEFT One day backward.

S-DOWN One week forward.

S-Up One week backward.

M-S-RIGHT One month forward.

M-S-LEFT One month backward.

> Scroll calendar forward by one month.

4If you do not need/want the calendar, configure the variable org-popup-calendar-for-date-prompt.

Chapter 8: Dates and Times 76

< Scroll calendar backward by one month.
M-v Scroll calendar forward by 3 months.
C-v Scroll calendar backward by 3 months.

The actions of the date/time prompt may seem complex, but I assure you they will grow
on you, and you will start getting annoyed by pretty much any other way of entering a
date/time out there. To help you understand what is going on, the current interpretation
of your input is displayed live in the minibuffer®.

8.2.2 Custom time format

Org mode uses the standard ISO notation for dates and times as it is defined in ISO 8601.
If you cannot get used to this and require another representation of date and time to keep
you happy, you can get it by customizing the variables org-display-custom-times and
org-time-stamp-custom-formats.

C-c C-x C-t (org-toggle-time-stamp-overlays)
Toggle the display of custom formats for dates and times.

Org mode needs the default format for scanning, so the custom date/time format does not
replace the default format. Instead, it is put over the default format using text properties.
This has the following consequences:

e You cannot place point onto a timestamp anymore, only before or after.

e The S-UP and S-DOWN keys can no longer be used to adjust each component of a
timestamp. If point is at the beginning of the stamp, S-UP and S-DOWN change the
stamp by one day, just like S-LEFT S-RIGHT. At the end of the stamp, change the time
by one minute.

e If the timestamp contains a range of clock times or a repeater, these are not overlaid,
but remain in the buffer as they were.

e When you delete a timestamp character-by-character, it only disappears from the buffer
after all (invisible) characters belonging to the ISO timestamp have been removed.

e If the custom timestamp format is longer than the default and you are using dates in

tables, table alignment will be messed up. If the custom format is shorter, things do
work as expected.

8.3 Deadlines and Scheduling

A timestamp may be preceded by special keywords to facilitate planning. Both the time-
stamp and the keyword have to be positioned immediately after the task they refer to.

‘DEADLINE’
Meaning: the task—most likely a TODO item, though not necessarily—is sup-
posed to be finished on that date.

On the deadline date, the task is listed in the agenda. In addition, the agenda
for today carries a warning about the approaching or missed deadline, starting
org-deadline-warning-days before the due date, and continuing until the
entry is marked as done. An example:

5 If you find this distracting, turn off the display with org-read-date-display-live.

Chapter 8: Dates and Times 77

*x*x TODO write article about the Earth for the Guide
DEADLINE: <2004-02-29 Sun>
The editor in charge is [[bbdb:Ford Prefect]]

You can specify a different lead time for warnings for a specific deadlines us-
ing the following syntax. Here is an example with a warning period of 5
days ‘DEADLINE: <2004-02-29 Sun -5d>’. This warning is deactivated if the
task gets scheduled and you set org-agenda-skip-deadline-prewarning-if-
scheduled to t.

‘SCHEDULED’
Meaning: you are planning to start working on that task on the given date.

The headline is listed under the given date®. In addition, a reminder that the
scheduled date has passed is present in the compilation for today, until the entry
is marked as done, i.e., the task is automatically forwarded until completed.

*** TODO Call Trillian for a date on New Years Eve.
SCHEDULED: <2004-12-25 Sat>

If you want to delay the display of this task in the agenda, use ‘SCHEDULED:
<2004-12-25 Sat -2d>’: the task is still scheduled on the 25th but will appear
two days later. In case the task contains a repeater, the delay is considered to
affect all occurrences; if you want the delay to only affect the first scheduled
occurrence of the task, use ‘--2d’ instead. See org-scheduled-delay-days
and org-agenda-skip-scheduled-delay-if-deadline for details on how to
control this globally or per agenda.

Important: Scheduling an item in Org mode should not be under-
stood in the same way that we understand scheduling a meeting.
Setting a date for a meeting is just a simple appointment, you
should mark this entry with a simple plain timestamp, to get this
item shown on the date where it applies. This is a frequent misun-
derstanding by Org users. In Org mode, scheduling means setting
a date when you want to start working on an action item.

You may use timestamps with repeaters in scheduling and deadline entries. Org mode
issues early and late warnings based on the assumption that the timestamp represents the
nearest instance of the repeater. However, the use of diary expression entries like

<%h(diary-float t 42)>
in scheduling and deadline timestamps is limited. Org mode does not know enough about
the internals of each function to issue early and late warnings. However, it shows the item
on each day where the expression entry matches.
8.3.1 Imserting deadlines or schedules

The following commands allow you to quickly insert a deadline or to schedule an item:”

6 Tt will still be listed on that date after it has been marked as done. If you do not like this, set the variable
org-agenda-skip-scheduled-if-done.

" The ‘SCHEDULED’ and ‘DEADLINE’ dates are inserted on the line right below the headline. Do not put any
text between this line and the headline.

Chapter 8: Dates and Times 78

C-c C-d (org-deadline)
Insert ‘DEADLINE’ keyword along with a stamp. The insertion happens in the
line directly following the headline. Remove any ‘CLOSED’ timestamp . When
called with a prefix argument, also remove any existing deadline from the entry.
Depending on the variable org-log-redeadline, take a note when changing
an existing deadline®.

C-c C-s (org-schedule)
Insert ‘SCHEDULED’ keyword along with a stamp. The insertion happens in the
line directly following the headline. Remove any ‘CLOSED’ timestamp. When
called with a prefix argument, also remove the scheduling date from the entry.
Depending on the variable org-log-reschedule, take a note when changing
an existing scheduling time?.

C-c / d (org-check-deadlines)
Create a sparse tree with all deadlines that are either past-due, or which will
become due within org-deadline-warning-days. With C-u prefix, show all
deadlines in the file. With a numeric prefix, check that many days. For example,
C-1 C-c / d shows all deadlines due tomorrow.

C-c / b (org-check-before-date)
Sparse tree for deadlines and scheduled items before a given date.

C-c / a (org-check-after-date)
Sparse tree for deadlines and scheduled items after a given date.

Note that org-schedule and org-deadline supports setting the date by indicating a
relative time e.g., ‘+1d’ sets the date to the next day after today, and ‘--1w’ sets the date
to the previous week before any current timestamp.

8.3.2 Repeated tasks

Some tasks need to be repeated again and again. Org mode helps to organize such tasks
using a so-called repeater in a ‘DEADLINE’, ‘SCHEDULED’, or plain timestamps'®. In the
following example:

**x TODO Pay the rent
DEADLINE: <2005-10-01 Sat +1m>

the ‘+1m’ is a repeater; the intended interpretation is that the task has a deadline on
‘<2005-10-01>" and repeats itself every (one) month starting from that time. You can use
yearly, monthly, weekly, daily and hourly repeat cookies by using the ‘y’, ‘w’, ‘m’, ‘d’ and ‘h’
letters. If you need both a repeater and a special warning period in a deadline entry, the
repeater should come first and the warning period last

DEADLINE: <2005-10-01 Sat +1m -3d>

Deadlines and scheduled items produce entries in the agenda when they are over-due, so
it is important to be able to mark such an entry as done once you have done so. When you

8 Note the corresponding ‘STARTUP’ options ‘logredeadline’, ‘lognoteredeadline’, and
‘nologredeadline’.
9 Note the corresponding ‘STARTUP’ options ‘logreschedule’, ‘lognotereschedule’, and
‘nologreschedule’.

10 Org does not repeat inactive timestamps, however. See Section 8.1 [Timestamps], page 72.

Chapter 8: Dates and Times 79

mark a ‘DEADLINE’ or a ‘SCHEDULED’ with the TODO keyword ‘DONE’, it no longer produces
entries in the agenda. The problem with this is, however, is that then also the next instance
of the repeated entry will not be active. Org mode deals with this in the following way:
when you try to mark such an entry as done, using C-c C-t, it shifts the base date of the
repeating timestamp by the repeater interval, and immediately sets the entry state back to
TODO!". In the example above, setting the state to ‘DONE’ would actually switch the date
like this:

**x TODO Pay the rent
DEADLINE: <2005-11-01 Tue +1m>

To mark a task with a repeater as DONE, use C-- 1 C-c C-t, i.e., org-todo with a
numeric prefix argument of ‘-1’.

A timestamp!? is added under the deadline, to keep a record that you actually acted on
the previous instance of this deadline.

As a consequence of shifting the base date, this entry is no longer visible in the agenda
when checking past dates, but all future instances will be visible.

With the ‘+1m’ cookie, the date shift is always exactly one month. So if you have not paid
the rent for three months, marking this entry DONE still keeps it as an overdue deadline.
Depending on the task, this may not be the best way to handle it. For example, if you
forgot to call your father for 3 weeks, it does not make sense to call him 3 times in a single
day to make up for it. Finally, there are tasks like changing batteries which should always
repeat a certain time after the last time you did it. For these tasks, Org mode has special
repeaters ‘++’ and ‘.+’. For example:

**x TODO Call Father
DEADLINE: <2008-02-10 Sun ++1w>
Marking this DONE shifts the date by at least one week, but also
by as many weeks as it takes to get this date into the future.
However, it stays on a Sunday, even if you called and marked it
done on Saturday.

** TODO Empty kitchen trash
DEADLINE: <2008-02-08 Fri 20:00 ++1d>
Marking this DONE shifts the date by at least one day, and also
by as many days as it takes to get the timestamp into the future.
Since there is a time in the timestamp, the next deadline in the
future will be on today's date if you complete the task before
20:00.

** TODO Check the batteries in the smoke detectors
DEADLINE: <2005-11-01 Tue .+1m>
Marking this DONE will shift the date to one month after today.

L fact, the target state is taken from, in this sequence, the ‘REPEAT_TO_STATE’ property, the variable
org-todo-repeat-to-state if it is a string, the previous TODO state if org-todo-repeat-to-state is
t, or the first state of the TODO state sequence.

12 You can change this using the option org-log-repeat, or the ‘STARTUP’ options ‘logrepeat’,
‘lognoterepeat’, and ‘nologrepeat’. With ‘lognoterepeat’, you will also be prompted for a note.

Chapter 8: Dates and Times 80

You may have both scheduling and deadline information for a specific task. If the
repeater is set for the scheduling information only, you probably want the repeater to
be ignored after the deadline. If so, set the variable org-agenda-skip-scheduled-if-
deadline-is-shown to repeated-after-deadline. However, any scheduling information
without a repeater is no longer relevant once the task is done, and thus, removed upon
repeating the task. If you want both scheduling and deadline information to repeat after
the same interval, set the same repeater for both timestamps.

An alternative to using a repeater is to create a number of copies of a task subtree,
with dates shifted in each copy. The command C-c C-x ¢ was created for this purpose; it
is described in Section 2.4 [Structure Editing], page 9.

8.4 Clocking Work Time

Org mode allows you to clock the time you spend on specific tasks in a project. When you
start working on an item, you can start the clock. When you stop working on that task,
or when you mark the task done, the clock is stopped and the corresponding time interval
is recorded. It also computes the total time spent on each subtree'® of a project. And
it remembers a history or tasks recently clocked, to that you can jump quickly between a
number of tasks absorbing your time.

To save the clock history across Emacs sessions, use:

(setq org-clock-persist 'history)
(org-clock-persistence-insinuate)

When you clock into a new task after resuming Emacs, the incomplete clock!? is retrieved
(see [Resolving idle time (1)], page 85) and you are prompted about what to do with it.

8.4.1 Clocking commands

C-c C-x C-1i (org-clock-in)

Start the clock on the current item (clock-in). This inserts the ‘CLOCK’ keyword
together with a timestamp. If this is not the first clocking of this item, the
multiple ‘CLOCK’ lines are wrapped into a ‘LOGBOOK’ drawer (see also the variable
org-clock-into-drawer). You can also overrule the setting of this variable for
a subtree by setting a ‘CLOCK_INTO_DRAWER’ or ‘LOG_INTO_DRAWER’ property.
When called with a C-u prefix argument, select the task from a list of recently
clocked tasks. With two C-u C-u prefixes, clock into the task at point and mark
it as the default task; the default task is always be available with letter d when
selecting a clocking task. With three C-u C-u C-u prefixes, force continuous
clocking by starting the clock when the last clock stopped.

While the clock is running, Org shows the current clocking time in the mode
line, along with the title of the task. The clock time shown is all time ever
clocked for this task and its children. If the task has an effort estimate (see
Section 8.5 [Effort Estimates|, page 86), the mode line displays the current

13 Clocking only works if all headings are indented with less than 30 stars. This is a hard-coded limitation
of 1max in org-clock-sum.

14 To resume the clock under the assumption that you have worked on this task while outside Emacs, use
‘(setq org-clock-persist t)’.

Chapter 8: Dates and Times 81

clocking time against it'®. If the task is a repeating one (see Section 8.3.2
[Repeated tasks|, page 78), show only the time since the last reset of the task!®.
You can exercise more control over show time with the ‘CLOCK_MODELINE_TOTAL’
property. It may have the values ‘current’ to show only the current clocking
instance, ‘today’ to show all time clocked on this tasks today—see also the
variable org-extend-today-until, all to include all time, or auto which is
the default'”. Clicking with mouse-1 onto the mode line entry pops up a menu
with clocking options.

C-c C-x C-o (org-clock-out)
Stop the clock (clock-out). This inserts another timestamp at the same location
where the clock was last started. It also directly computes the resulting time
in inserts it after the time range as ‘=>HH:MM’. See the variable org-log-note-
clock-out for the po