Present & future of the Moca C

Pierre Weis

Ssurf — May 13 2008



T he new Moca release

The 0.6 release of the Moca compiler was delivered
the 13t" of 2008.

The main new feature is the automatic test generati
generated files. This has been done by Laura Lowe
its internship at Loria (extremely successful interns
ment).

From each relational data type definition a set of te
the invariants is generated.

I inRIA Pierre.Weis®@inria. fr 2008-05-17



T he new Moca enhancemel

In addition, we did:

e Numerous bug fixes (in particular thanks to Laur.
tests).

e Completion has been enhanced.
e Distributivity has been widely generalized.
e Vary-ary generation completely revisited.

e Some bug additions (for instance Division by z
moval).

I inRIA Pierre.Weis®@inria. fr 2008-05-17



Embedded user’s Caml co«

An important new feature is the possibility for the u
arbitrary Caml code within the definition of the rel.
This was mandatory to define a specific comparis
when the regular Caml polymorphic Pervasives.co
semantically sound for the relation type. The us
output as is, after the definition of the relational typ:
the beginning of the definition of the construction 1

As usual, the documentation has been improved,
by the addition of the ESOP article, the JFLA talk,
other talks given about moca.

I inRIA Pierre.Weis®@inria. fr 2008-05-17



The next Moca release(s

We will split the future development of Moca into

e the implementation part,

e the research part.

The implementation part is shorter term and practic
well understood.

The research part is long term and may be imprac
unclear, half backed and not understood at all.

I inRIA Pierre.Weis®@inria. fr 2008-05-17



T he immplementation part pl

We split the implementation plan into:

e revisit the algebraic keywords specification,
e enhance the internal test bed,
e enhance the automatic test generation procedul

e write the manual for Moca.

I inRIA Pierre.Weis®@inria. fr 2008-05-17



Implementation: specificati

For each algebraic keyword, we must precisely defir
iors for each of its variations. In particular, concer
generators, we must fix the vocabulary:

e constant generator (or constary ?7),

e uUnary generator,

e binary generator (two arguments),

e listary generator (a.k.a. vary-ary or vary-adic),

e multary generator (a.k.s. multi-ary i.e. any arity

I inRIA Pierre.Weis®@inria. fr 2008-05-17



Implementation: vocabulal

By definition:

e a constary generator has no argument,

e a unary generator (has one argument which is r
e a binary generator (has two arguments),

e a listary generator (has one argument which is .

e a multary generator (has any number of argume

I inRIA Pierre.Weis®@inria. fr 2008-05-17



Implementation: specificati

For each keyword and each arity, give:

e the applicability to each arity, the applicability
or required property,

e the rule(s) generated (match clause),
e the priority w.r.t. other rules (?),
e the “no values of the relational type matches’

e systematically specify the Left, Right, and Both

No macro expansion in the parser.mly syntax |

I inRIA Pierre.Weis®@inria. fr 2008-05-17



Implementation: the test dire

We should enrich the test bed cases for Moca:

e enhance the internal test bed to check as muct
the combination of algebraic rules,

e complete the set of test files to handle the usual
cal structures (fields, vectorial spaces, etc.) and
usual generators/relations presentations of grou
in Coxeter and alii),

e Mmove some test files to the examples for the ms

I inRIA Pierre.Weis®@inria. fr 2008-05-17



Implementation: the automatic test

Augment the test generation procedure, such that:

e for each keyword and each case of the keyword s
add a specific test bed to check the behavior of
w.r.t. this specification,

e enhance the automatic test generation procedu
polymorphic relational data types,

e Mmore generally, enhance the test procedure tc
exhaustive set of examples given in the test dire

I inRIA Pierre. Weis®@inria. fr 2008-05-13



T he research part

We will split the future research development of M.

e the Test,

e the Completion,

e the Focalize Library,
e the Proofs,

e Moca for Focalize,

e Moca for the Caml programmer,

I inRIA Pierre. Weis®@inria. fr 2008-05-13



Research: the Test generat

Try to understand the generality of the test gener
dure:

e how to generalize the procedure to user’'s define
(relations) ?

e how to generalize the procedure to the full Cam

I inRIA Pierre. Weis®@inria. fr 2008-05-13



Research: Completion algori

e Generalize usage of automatic completion,
e AC completion 7

e How to generate complex rules via completion

I inRIA Pierre. Weis®@inria. fr 2008-05-13



Research: generation of comple

An easy algebraic reasoning proves that the rules
Absorbent -+ Inverse
induce the rule

Division by absorbent.

Hence, the generation function for Inverse needs tr

A -> failwith "Division by absorbent"

UNLESS A = FE holds.

Is it possible to generate such a complex completio

I inRIA Pierre. Weis®@inria. fr 2008-05-13



Research: the Focalize librc

e [ake the Focalize library and “implement” it U
algebraic rules.

e Implement the associated algorithm of the Focse

I inRIA Pierre. Weis®@inria. fr 2008-05-13



Research: Proofs

Write proofs, proofs, and proofs!l!!

e Wwrite by hand a proof of a simple example of moc«
code,

e understand how to generalize the preceding proo
a proof with the generated code (file file coq.v

Gather and carefully state the generic properties a
the Moca generated code, to be able to go on next

I inRIA Pierre. Weis®@inria. fr 2008-05-13



Research: Moca for Focali

Interface Moca to Focalize:

e add a private type facility to Focalize data type

e interface Moca to Focalize to allow relational dc
initions in Focalize,

e add the relevant lemmas and properties for the
functions to the Focalize code (free proofs to
Zenon and Coq).

I inRIA Pierre. Weis®@inria. fr 2008-05-13



Research: Moca for Cam

Use Moca to generate .mli files that we do not wai

e from a .mlm file with additional annotations:

e export clauses to export relevant identifiers,
e abstract annotations for abstract data types

e test annotations to specify test equations or d
or ad hoc algebraic rules.

I inRIA Pierre. Weis®@inria. fr 2008-05-13



A data types impedimenta gen

e Other generations (similar to -test) 7

e set Clause to generate set universes,
e data base annotation to generate data bases
e make string annotation to generate a make str

e read string annotation to generate a read str:

e (Generalization to general printing function and
tion, (which printing annotations? which parsing

.

I inRIA Pierre. Weis®@inria. fr 2008-05-13



Development guidelines

Program with peace in mind, since
No confusion can ever arise

e except for the value of some quantities, unknow
time, hence impossible for us to check,

e Since anyway all the Moca generated programs
again by the Caml compiler (including the com
exhaustive and fragile matches in pattern matct

I inRIA Pierre. Weis®@inria. fr 2008-05-13



