
Present & future of the Moca compiler

Pierre Weis

Ssurf – May 13 2008



Pierre.Weis@inria.fr 2008-05-13 1

The new Moca release

The 0.6 release of the Moca compiler was delivered on February

the 13th of 2008.

The main new feature is the automatic test generation for mocac

generated files. This has been done by Laura Lowenthal during

its internship at Loria (extremely successful internship achieve-

ment).

From each relational data type definition a set of tests verifying

the invariants is generated.



Pierre.Weis@inria.fr 2008-05-13 2

The new Moca enhancements

In addition, we did:

• Numerous bug fixes (in particular thanks to Laura’ automatic
tests).

• Completion has been enhanced.

• Distributivity has been widely generalized.

• Vary-ary generation completely revisited.

• Some bug additions (for instance Division by absorbent re-
moval).



Pierre.Weis@inria.fr 2008-05-13 3

Embedded user’s Caml code

An important new feature is the possibility for the user to define

arbitrary Caml code within the definition of the relational type.

This was mandatory to define a specific comparison function

when the regular Caml polymorphic Pervasives.compare is not

semantically sound for the relation type. The user’s code is

output as is, after the definition of the relational type, but before

the beginning of the definition of the construction functions.

As usual, the documentation has been improved, in particular

by the addition of the ESOP article, the JFLA talk, and various

other talks given about moca.



Pierre.Weis@inria.fr 2008-05-13 4

The next Moca release(s)

We will split the future development of Moca into two parts:

• the implementation part,

• the research part.

The implementation part is shorter term and practical. It is also

well understood.

The research part is long term and may be impractical and/or

unclear, half backed and not understood at all.



Pierre.Weis@inria.fr 2008-05-13 5

The implementation part plan

We split the implementation plan into:

• revisit the algebraic keywords specification,

• enhance the internal test bed,

• enhance the automatic test generation procedure,

• write the manual for Moca.



Pierre.Weis@inria.fr 2008-05-13 6

Implementation: specification

For each algebraic keyword, we must precisely define its behav-
iors for each of its variations. In particular, concerning arity of
generators, we must fix the vocabulary:

• constant generator (or constary ?),

• unary generator,

• binary generator (two arguments),

• listary generator (a.k.a. vary-ary or vary-adic),

• multary generator (a.k.s. multi-ary i.e. any arity).



Pierre.Weis@inria.fr 2008-05-13 7

Implementation: vocabulary

By definition:

• a constary generator has no argument,

• a unary generator (has one argument which is not a list),

• a binary generator (has two arguments),

• a listary generator (has one argument which is a list),

• a multary generator (has any number of arguments).



Pierre.Weis@inria.fr 2008-05-13 8

Implementation: specification

For each keyword and each arity, give:

• the applicability to each arity, the applicability w.r.t implied
or required property,

• the rule(s) generated (match clause),

• the priority w.r.t. other rules (?),

• the “no values of the relational type matches” statement,

• systematically specify the Left, Right, and Both behavior.

No macro expansion in the parser.mly syntax !



Pierre.Weis@inria.fr 2008-05-13 9

Implementation: the test directory

We should enrich the test bed cases for Moca:

• enhance the internal test bed to check as much as possible

the combination of algebraic rules,

• complete the set of test files to handle the usual mathemati-

cal structures (fields, vectorial spaces, etc.) and in particular

usual generators/relations presentations of groups (as found

in Coxeter and alii),

• move some test files to the examples for the moca’s users.



Pierre.Weis@inria.fr 2008-05-13 10

Implementation: the automatic test generation

Augment the test generation procedure, such that:

• for each keyword and each case of the keyword specification,

add a specific test bed to check the behavior of the compiler

w.r.t. this specification,

• enhance the automatic test generation procedure to handle

polymorphic relational data types,

• more generally, enhance the test procedure to handle the

exhaustive set of examples given in the test directory.



Pierre.Weis@inria.fr 2008-05-13 11

The research part

We will split the future research development of Moca into:

• the Test,

• the Completion,

• the Focalize Library,

• the Proofs,

• Moca for Focalize,

• Moca for the Caml programmer,



Pierre.Weis@inria.fr 2008-05-13 12

Research: the Test generation

Try to understand the generality of the test generation proce-

dure:

• how to generalize the procedure to user’s defined equations

(relations) ?

• how to generalize the procedure to the full Caml language ?



Pierre.Weis@inria.fr 2008-05-13 13

Research: Completion algorithm

• Generalize usage of automatic completion,

• AC completion ?

• How to generate complex rules via completion ?



Pierre.Weis@inria.fr 2008-05-13 14

Research: generation of complex rules

An easy algebraic reasoning proves that the rules

Absorbent + Inverse

induce the rule

Division by absorbent.

Hence, the generation function for Inverse needs the rule

A -> failwith "Division by absorbent"

UNLESS A = E holds.

Is it possible to generate such a complex completion ?



Pierre.Weis@inria.fr 2008-05-13 15

Research: the Focalize library

• Take the Focalize library and “implement” it using Moca’s

algebraic rules.

• Implement the associated algorithm of the Focalize library ?



Pierre.Weis@inria.fr 2008-05-13 16

Research: Proofs

Write proofs, proofs, and proofs!!!

• write by hand a proof of a simple example of moca generated

code,

• understand how to generalize the preceding proof to generate

a proof with the generated code (file file coq.v ?)

Gather and carefully state the generic properties and proofs of

the Moca generated code, to be able to go on next point.



Pierre.Weis@inria.fr 2008-05-13 17

Research: Moca for Focalize

Interface Moca to Focalize:

• add a private type facility to Focalize data type definitions,

• interface Moca to Focalize to allow relational data type def-

initions in Focalize,

• add the relevant lemmas and properties for the construction

functions to the Focalize code (free proofs to generate for

Zenon and Coq).



Pierre.Weis@inria.fr 2008-05-13 18

Research: Moca for Caml

Use Moca to generate .mli files that we do not want to write.

• from a .mlm file with additional annotations:

• export clauses to export relevant identifiers,

• abstract annotations for abstract data types,

• test annotations to specify test equations or dis-equations,

or ad hoc algebraic rules.



Pierre.Weis@inria.fr 2008-05-13 19

A data types impedimenta generator

• Other generations (similar to -test) ?

• set clause to generate set universes,

• data base annotation to generate data bases,

• make string annotation to generate a make string function,

• read string annotation to generate a read string function.

• Generalization to general printing function and parsing func-

tion, (which printing annotations? which parsing technology?

...).



Pierre.Weis@inria.fr 2008-05-13 20

Development guidelines

Program with peace in mind, since

No confusion can ever arise

• except for the value of some quantities, unknown at compile

time, hence impossible for us to check,

• since anyway all the Moca generated programs are checked

again by the Caml compiler (including the complex test for

exhaustive and fragile matches in pattern matching).


