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DRAFT
Digital media triage with stream-based

forensics and bulk extractor
Simson L. Garfinkel

Abstract—Stream-based forensics eschews file extraction
and analysis, common in forensic practice today, and
instead scans an entire disk image from beginning to end,
extracting salient details that are of use in the typical digital
forensics investigation. This article presents the require-
ments, design and implementation of bulk extractor, a new,
high-performance carving and feature extraction tool that
uses stream-based forensic for triage and rapid analysis
of digital media. bulk extractor offers several important
advances, including the optimistic decompression of com-
pressed data, context-based stop-lists, and the creation of a
forensic path that allows concise documentation of both the
physical location and forensic transformations necessary
to reconstruct exploited evidence. Although bulk extractor
was developed as a prototype, it has proved useful in actual
police investigations, two of which we recount.

I. INTRODUCTION

With each passing year the task of digital forensics
investigators becomes more difficult as the capacity and
variety of devices containing digital evidence continues
to increase. A variety of approaches have been proposed
for addressing the data onslaught, including paralleliza-
tion and multi-processing[6], [43], the use of statistical
sampling[17], [38], and even legislative solutions such
as extending the amount of time that a suspect can be
held without charges being filed so that evidence may
be completely analyzed[46].

A. Contributions

This paper makes many specific contributions that fur-
ther both the theory and the practice of digital forensics.
First, this paper shows that bulk data analysis, and espe-
cially stream-based bulk data analysis, can productively
be used as a fast analysis step during the early part of an
investigation. We show that significant analysis can take
place during stream processing to allow for both triage
and for the rapid identification of important investigative
leads. We present bulk extractor, a powerful tool for
performing stream-based bulk data analysis. By sharing
our experience in developing bulk extractor, we present
a model for the development of other digital forensic
tools. By their design, stream-based bulk data analysis

tools are considerably easier to adapt to multi-core paral-
lelization than traditional file-based forensic approaches:
we demonstrate this claim with a quantitative analysis of
the speedup provided through the use of multiple cores.
We show that our implementation can recover more
kinds of high-value forensic features than current tools,
and that it runs faster in both single-core and multi-core
environments. We also present a new forensic test disk
explicitly designed to test forensic feature extraction,
and show why our tool can find email addresses in
the PDF files created by Apple TextEdit but not by
Microsoft Word. Finally, we provide two real-world case
studies that show how features provided by stream-based
forensics can be used productively early in a forensic
investigation.

B. Stream-Based Forensics
Stream-based forensics is an alternative data process-

ing model for digital forensics that involves processing
an entire disk image as a single bytestream, starting at
the beginning and reading until the end. This approach
largely eliminates the time that the drive head spends
seeking between files and assures that no data in the
disk image will be left untouched.

A second important aspect of stream-based forensics
is that it can be applied to all kinds of computer systems,
file systems, and file types—especially those that are not
handled by existing tools. Stream-based systems can also
be readily applied to media that has been damaged or
partially overwritten.

Stream-based processing is far easier to parallelize
than traditional forensic approaches, making it relatively
easy to deliver software that fully utilizes today’s multi-
core microprocessors.

Our testing indicates that stream-based systems tuned
to specific tasks of forensic import significantly out-
perform existing tools both in terms of the quantity of
features extracted and the overall extraction speed. For
example, our multi-threaded bulk extractor can extract
email addresses from a standard forensic test disk image
10x faster than EnCase 6.2.1 same hardware, and only
5% slower than simply running ewfexport, strings and
grep (see Figure 1).
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Fig. 1. Guidance Software’s EnCase 6.2.1 takes 7 hours, 8 minutes
to extract email addresses and other information from the 40GB disk
image nps-2009-domexusers. bulk extractor performs the same task
in 274 minutes in single-threaded mode, and in 44 minutes in multi-
threaded mode. The combination of ewfexport, strings and grep runs
fastest, in just 42 minutes, but unlike bulk extractor cannot extract
email addresses from compressed data regions and fails to extract
other information such as URLs and credit card numbers. Hardware
is a dual-processor Xenon X5650 @ 2.67Ghz (12 physical cores, 12
hyperthreaded cores), 12GB RAM running Windows 7 Professional.

C. bulk extractor: An Overview

bulk extractor is a command-line program that ex-
tracts email addresses, credit card numbers, URLs, and
other types of information from digital evidence files.
bulk extractor operates on disk images in raw, split-raw,
EnCase E01[32], and AFF[22] format. The disk image is
split into pages and processed by one or more scanners.
Identified features are stored in feature files, a simple
line-based format that can be viewed directly with a text
editor or processed by subsequent tools. The program
produces report files containing extracted features, their
location and frequency.

bulk extractor detects and optimistically decom-
presses data in ZIP, gzip, and Microsoft’s XPress Block
Memory Compression algorithm[49]. This has proven
useful, for example, for recovering email addresses from
within fragments of corrupted system hibernation files.
bulk extractor contains a simple but effective mecha-
nism for protection against decompression bombs[5].

bulk extractor gets its speed through the use of
compiled search expressions and multi-threading. The
search expressions are written as pre-compiled regular
expressions, essentially allowing bulk extractor to per-
form searches on disparate terms in parallel (§III-B).
Threading is accomplished through the use of an analysis
thread pool (§IV-E).

After the features have been extracted, bulk extractor
builds a histogram of email addresses, Google search
terms, and other extracted features. Stop lists can remove
features not relevant to a case.

D. Outline of This Article

This concludes the introduction. Section II discusses
related work. Section III discusses the design of our
stream-based forensics system and presents the design
choices that were made. Section IV discusses the actual
implementation in bulk extractor. Section V presents the
results of bulk extractor run against both test data and
hundreds of forensic images. Section VI presents two
case studies. Section VII discusses limitations of our ar-
chitecture and opportunities for future work. Section VIII
concludes.

II. RELATED WORK

Two approaches now dominate the processing of dig-
ital evidence: file-based and bulk data forensics.

A. File-Based Forensics

File-based forensics are widely used by computer
forensic examiners and implemented by popular tools
such as EnCase[25] and FTK[3]. Such tools operate by
finding, extract, identify and processing files—that is,
a collection of bytes and metadata (e.g. file name and
timestamps). While some tools can recover information
from the unallocated sectors with file carving, many
practitioners eschew carving due to the time required
and the number of false positives generated.

File-based forensics has the advantage of being easy to
understand because it mirrors the way that users interact
with computers. The file-based approach also works well
with the legal system, because extracted files can be
printed and entered into evidence. It has the disadvantage
of largely ignoring sectors that are not contained within
files, as well as ignoring the unallocated regions and
metadata within compound document files that are not
made visible by forensic tools. Additional limitations can
be found in [15].

B. Bulk Data and Stream-Based Forensics

In bulk data forensics digital content is examined
without regard to partitions or file system metadata.
Instead, data of potential interest is identified by content
and processed, extracted, or reported as necessary. This
is the approach used by file carvers (§II-D). Roussev
suggested the term stream-based forensics to describe a
particular form of bulk data processing in which a device
is examined from the beginning to the end as a single
stream for efficiency[45].

With others, we have previously introduced another
bulk data approach based on random sampling of foren-
sic data[17]. Random sampling is similar to the stream-
based approach presented here, in that random sampling
operates independently of the file system and other
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metadata. Indeed, our random sampling system shares
some code with the system presented here. But the
approach present here is fundamentally different from
the random sampling approach in that the entire evidence
file is examined for the purpose of extracting all identity
information that the media may contain. Further, the
work presented here is more comprehensive than the
work presented previously, as it includes recursive re-
analysis and the use of feature extraction.

Outside of computer forensics there has been signifi-
cant work on stream processing. For example, Hristidis
et al. discuss an approach for performing continuous
keyword queries on multiple text streams[28]. But an
implicit assumption in their work is that the text streams
will be well-formed text—for example, RSS feeds and
blogs. They avoid one of the fundamental problem that
we solve—the identification and extraction of text from
an undifferentiated binary stream of digital evidence.

Likewise, Weinstein discusses in his PhD thesis a
variety of problems that arise when searching large audio
databases for speech and music[54]. Similar efforts are
underway to build large, indexed archives of video that
allow for efficient content-based retrieval[23]. Although
these are important technologies that will be used by
computer forensics practitioners, they assume a database
of well-formed audio and video. The stream-based ap-
proach discussed here could be used to rapidly extract
audio files from digital evidence and incorporate them
into a database that could then be processed using such
approaches.

C. Parallel Processing

More than four decades of research have devel-
oped numerous approaches for speeding text process-
ing through the use of parallelism. Indeed, Bird et al.
discussed parallelized searching a 50GB database in
the 1970s using specialized machines[7]. Similar efforts
continue to this day[33]. The parallelization in this paper
is distinguished from prior efforts in that we present the
use of parallel processing for the extraction of useful
information from digital forensic evidence: this is the
first work that we are aware of that moves parallelism
directly to the point of file and feature extraction from
a digital evidence file.

D. Carving

Carving in digital forensics refers to the practice of
extracting information based on content, rather than by
relying on metadata that points to the content. File
Carving is a special kind of carving in which files
are recovered. Although the two terms are frequently
used interchangeably, carving describes a more general

technique. For example, it is possible to carve a single
still image out of a (possibly corrupt) video file[47].

File carving is useful for both data recovery and
forensic investigations because it can recover files when
sectors containing file system metadata are either over-
written or damaged. The earliest file carvers (e.g. [36],
[44]) employed simple header/footer carving. Second-
generation carvers (e.g. [14], [19]) perform this verifi-
cation automatically, significantly reducing the amount
of data produced. Some carvers (e.g. [14], [24]) can
perform limited reconstruction of fragmented files.

E. Forensic Feature Extraction

Computer media frequently contains a persistent
record of a subject’s associates, activities, and financial
activities. As such, software that automatically searches
for these kinds of artifacts can aid many investigations.
Previously we adopted the term forensic feature extrac-
tion to describe this process[18].

Today many forensic tools allow searching files and
unallocated sectors for strings that match user-specified
regular expressions. Vendors and trainers publish lists of
regular expressions that match email addresses, US tele-
phone numbers, US social security numbers, credit card
numbers, IP addresses, and other kinds of information
typically useful in an investigation (e.g. [4], [8, p. 304–
305]). Credit card number searches are also performed
by the Cornell University Spider forensic tool[11]. The
University of Michigan office of Information Technology
Security Services reviewed several tools for discovering
credit card and social security numbers in 2008[51].

F. Recovery of Compressed Information

Our experience with bulk data forensics indicates that
it is important to detect and properly process compressed
data. We have identified five potential sources of com-
pressed data on a hard drive:

1) Many web browsers download data from web
servers with gzip compression and persist the com-
pressed stream directly in the web cache. (The
percentage of web servers employing compression
increased from less than 5% to 30% between 2003
and 2010[41] because compression significantly in-
creases the web performance[40], [48].)

2) The new .docx and .pptx file formats used by
Microsoft Office store content as compressed XML
files in ZIP archives[16].

3) NTFS file compression may result in files being
compressed. In practice, the files most likely to be
compressed are Windows restore points.

4) The Windows hibernation file is lightly com-
pressed using a lightweight proprietary compression
system[49].
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5) Files are increasingly bundled together and dis-

tributed as ZIP, RAR, or .tar.gz archives for con-
venience and to decrease bandwidth requirements.

Today’s forensic applications generally process com-
pressed data when it is present in files but do not
proactively detect and decompress compressed data
present in unallocated sectors. Two notable exceptions
are PyFlag[9], which evaluates each deleted file to see
if it is a gzip-compressed stream; and NetIntercept[10],
which automatically decompresses compressed network
streams. The forensic path used by bulk extractor to re-
port the location of extracted features (§III-D) is similar
to the virtual path reported by PyFlag.

G. Tool Validation

The US Supreme Court held in Daubert that scientific
evidence presented in court must involve established
techniques that are peer-reviewed and have error rates
that can be measured[52]. But to date, most of the
tools tested by the National Institute of Standards and
Technology’s Computer Forensics Tool Testing Program
have been disk imagers and write blockers. A draft
specification have been written for String Search[42]
and Deleted File Recovery[1], but the drafts have not
advanced past an initial version and no test results have
been published by NIST. Important real-world require-
ments are missing from these drafts, such as the ability
to recover information from complex document files and
compressed data.

In the absence of a standard, Guo et al. advocate
testing tools with simplified data sets containing known
targets. For example, Guo proposes a procedure for
validating the “Searching Function” of forensic tools
by hiding the word “evidence” in different kinds of
documents and then seeing if the tool can recover
the word[26]. We suggest an important modification to
Guo’s procedure is to hide different targets in different
file formats, a process that makes analyzing test results
considerably easier.

III. DESIGN

A. Requirements Study

We conducted a series of unstructured interviews
with local, state and federal law enforcement officers
to determine if there was a need for a tool that could
rapidly extract certain kinds of sensitive information
from disk images. In total, approximately 20 interviews
took place between 2005 and 2008. During these meet-
ings we received specific requests for a tool that could
automatically extract and create a report containing:

• Email addresses
• Credit card numbers, including track 2 information
• Search terms (extracted from URLs)

• Phone numbers
• GPS coordinates
• EXIF (Exchangeable Image File Format) informa-

tion from JPEG images.
• A list of all words present on the disk, for use in

password cracking.
Our interviews also provided us with a number of

operational requirements for the intended tool:
• Able to run on Windows, Linux and Macintosh-

based systems.
• Run with no user input.
• Operate on raw disk images, split-raw volumes,

EnCase E01 files, and AFF files.
• Allow users to provide additional regular expres-

sions for searches.
• Automatically extract features from compressed

data such as ZIP and windows hibernation files.
• Run as fast as the physical drive or storage system

can deliver data.
• The tool should never crash.

B. Forensic Scanners and Feature Extractors
Our basic design uses multiple scanners that are run

sequentially on a buffer of raw digital evidence. These
scanners provided with a buffer to analyze (initially
corresponding to a 16MiB page of data read from the
disk image), the location or path of the buffer’s first
byte.

There are two kinds of scanners. Basic scanners,
also known as feature extractors, are limited to an-
alyzing the buffer and recording what they find. An
example is the email scanner (scan email), which can
find email addresses, RFC822 headers, and other kinds
of recognizable strings that are likely to be in email
messages. Extracted features are recorded in a feature
file (Figure 2).

Recursive scanners, as their name implies, can decode
data and pass it back to the buffer processor for re-
analysis. An example is scan zip, which detects the
components of ZIP files, records the ZIP header as an
XML feature, decompresses the data, and passes the
decompressed data back to the buffer processor.

Forensic programs that processes compressed data
must guard against decompression bombs that, when
fully decompressed, extend to many terabytes, petabytes,
or even more[5]. There are two defenses against com-
pression bombs. First, only a portion of each compressed
stream is decompressed. Second, the page processor will
not call the recursive scanners when the depth reaches a
configurable limit (by default, five recursions).

C. Feature Files
In our interviews we were repeatedly asked by ana-

lysts to provide output as a simple text file that could be
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317697633 micke@imendio.com kael Hallendal <micke@imendio.com>_Alexander Lars
317697671 alexl@redhat.com xander Larsson <alexl@redhat.com>_Shaun McCance
317697704 shaunm@gnome.org _Shaun McCance <shaunm@gnome.org>_3___x__][s_8__
318707924-GZIP-70 jbarnes@virtuousgeek.org Jesse Barnes <jbarnes@virtuousgeek.org>_Date: Wed
318707924-GZIP-647 jcristau@debian.org Julien Cristau <jcristau@debian.org>_Date: Wed Au
...
946315592-GZIP-64000-GZIP-1600 nelson@crynwr.com Russell Nelson <nelson@crynwr.com>___[9976] ne
946315592-GZIP-64000-GZIP-16095 strk@keybit.net androSantilli <strk@keybit.net>___[9880] Anoth

Fig. 2. Two excerpts from a feature file generated by processing the NPS disk image ubnist1.gen3.E01[21]. The first column is the byte offset
within the file; the second column is the extracted email address; the third column is the email address in context (unprintable characters are
represented as underbars). These email addresses are extracted from executables found within the Linux operating system and as a result do
not constitute private information or human subject data.

viewed with an editor or processed with other “scripting”
tools. To accommodate this request we designed the fea-
ture file format, a simple tab-delimited text file format.
Each line consists of the offset at which the feature was
found, the feature itself, and finally the context in which
the feature was found (Figure 2).

Although this format has proved useful, in some cases
it is necessary to report multiple values associated with
each extracted feature. In these cases we have found it
useful to replace the third field of the feature file with
an XML fragment. For example, our design uses a block
of XML to report all of the fields associated with EXIF
structures found within embedded JPEGs. XML is useful
here because different EXIF structures contain different
fields. A post-processing program can then transforms
the feature file into a single CSV file that can be readily
imported into Microsoft Excel.

D. Forensic Location, Path, and File System Correlation
For reporting purposes it is important to identify the

location at which each piece of extracted information
is found. This can be challenging when using tools
that have the ability to extract information from within
compressed objects.

Consider a message containing a set of credit card
numbers that is viewed using a webmail service. If the
web client and server both support HTTP compression
the web page will most likely be downloaded over the
Internet and saved in the browser cache using GZIP
compression. In this case it is not enough to simply
report where the credit card numbers is found, because
looking at the sectors in the disk image with a hex editor
will only show a compressed binary stream: it is also
necessary to explain how the data must be transformed
to make it is viewable.

We resolve this problem by reporting a forensic path
for each feature that is found. In most cases the forensic
path is simply the distance in bytes from the beginning of
the media. In cases where the feature is contained within
an object that is decompressed or otherwise processed by
a recursive scanner, the forensic path contains informa-
tion that can be used to repeat the decoding process.

For example, the fourth line of Figure 2 indicates that
the email address jbarnes@virtuousgeek.org is found by
decompressing the GZIP stream found at 318707924
within the disk image; the email address occurs 70
characters from the start of the decompressed stream.
(The email address is contained within the file /casper/-
filesystem.squashfs.)

Forensic paths can be extended. For example, the
email address nelson@crynwr.com in Figure 2 is found
by decompressing the GZIP stream that begins at byte
offset 946315592; 6400 bytes into the decompressed
stream is a second compressed stream; the email address
is found 1600 bytes into that stream. (This email address
appears within the file /var/cache/apt/archives/gnash-
common 0.8.4-0ubuntu1 i386.deb.) We have found a
high number of such double-compressed artifacts in
the unallocated regions of subject media. They have
been ignored by the current generation of forensic tools
because today’s carvers do not optimistically decompress
the data that they find.

Forensic paths can be readily translated to a specific
location in a resident or deleted file with a file system
map. Such a map can be formed as a Digital Forensics
XML file that contains the name of every file and
that file’s location in the digital media. Our program
fiwalk[20] produces such a map in just a few minutes for
most disk drives smaller than a terabyte; the operation
is fast because only file system metadata needs to be
examined.1

E. Histogram Processing

In previous work we showed that frequency distri-
bution histograms can be of significant use in forensic
investigations[18]. For example, a frequency histogram
of email addresses found on a hard drive readily iden-
tifies the drive’s primary user and that person’s primary
contacts.

1The program file locations.py, included with bulk extractor, will
rapidly annotate a feature file with the names of the files that corre-
spond to the sectors from which the features were extracted.
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Histogram generation can be efficiently integrated

with the feature recording system, allowing
histograms can be created for any feature. Our
design allows histograms to be generated from
substrings extracted from features using regular
expressions. For example, the regular expression
search.*[?&/;fF][pq]=([ˆ&/]+) creates a
histogram of search terms provided to Google, Yahoo,
and other popular search engines. Histograms of search
terms are particularly useful when conducting an
investigation, as they reveal the intent of the computer’s
user.2

F. Context-Sensitive Stop Lists

Many of the email addresses, phone numbers and
other identifiers on a hard drive are distributed as
part of the operating system or application programs.
For example, in our previous work we identified the
email address mazrob@panix.com as being part of the
Windows 95 Utopia Sound Scheme[18]. We suggested
that one way to suppress these common features was
to weight each feature by the inverse frequency with
which the feature appears in the corpus, apparently an
application of the well-known TF-IDF approach used in
information retrieval[30].

For reasons that we did not anticipate in 2005, but
which became clear during our interviews, it is not
possible for many organizations to create a single list of
the email addresses that they have extracted from every
disk that has been processed. Instead, many organiza-
tions manually produce stop lists of email addresses and
domain names based on examiner experience. The email
addresses in these stop lists are then summarily ignored.

Stop lists can be readily produced from default installs
of popular operating systems. We have done this and
found a staggering number of email addresses and URLs
in some OSes. For example, Fedora Core 12 contains
nearly 14 thousand distinct email addresses (see Ta-
ble II). Additional email addresses and URLs are present
in application programs.

Clearly, a forensic analyst who does not employ
stoplists will be overwhelmed by such information. How-
ever, we have determined that there is also a significant
danger to naı̈vely employing stop lists: they can provide
criminals with the ability to escape detection by using
an email address associated with an operating system.
Given that it is relatively easy to get an arbitrary email
address embedded in open source programs, this is a
significant and previously unrecognized risk when using
stoplists.

2At the 2008 murder trial of Neil Entwistle, prosecutors introduced
evidence that Entwistle had performed Internet searches for murder
techniques just three days before his wife and child were found
murdered[2].

Our solution is the introduction of context-sensitive
stop lists. The key insight is that email addresses such
as mazrob@panix.com should only be ignored when
they are encountered in the context of operating system
files—elsewhere they should be reported. So instead of
creating a stop list that contains just the email addresses
that are found in default operating system installs, our
context-sensitive stop list contains the local context.

Table I shows the results of histogram processing on
the nps-2009-domexusers disk image before and after
the application of the context-sensitive stop produced
from several a default Windows XP, 2000 and 2003
installations. The stop list removes email addresses that
are clearly associated with certificate authorities (e.g.
ips@mail.ips.edu and premium-server@thawte.com), but
leaves those email addresses associated with the sce-
nario.

Finally, we have learned that items on a stop list
should not be suppressed from the examiner. Instead,
we report these items to separate files. This allows the
examiner to manually review the stopped items to ver-
ify that no case-specific information was inadvertently
included.

IV. IMPLEMENTATION

We have created bulk extractor, a command-line pro-
gram that implements our design and has been deployed
to a number of production environments around the
world. Currently bulk extractor consists of 7664 lines
of C++ code and 814 lines of GNU flex code.

A. Functional Modules

Our current implementation consists of five modules:
1) An initialization module verifies command line

parameters, and creates the analysis thread pool.
2) The image processing module reads the disk im-

age, extracts a series of 16MiB pages, and passes
each page off to a thread in the thread pool.

3) The analysis thread pool operates multiple threads,
each of which receives an incoming page and
processes it with one or more feature scanners.

4) The feature scanners processes a buffer and iden-
tify features that can be recovered.

5) The feature recording module records features
identified by the scanners in one or more feature
files. Feature files are tab-delimited text files that
contain the forensic path, the feature, and the local
context in which that feature was found (see Fig-
ure 2). Feature files are not sorted but are loosely
ordered.

This modular design makes it straightforward to add
additional processing capabilities.
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Freq Email Freq Email
n=579 domexuser1@gmail.com n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com n=340 domexuser3@gmail.com
n=268 ips@mail.ips.es n=192 domexuser2@live.com
n=252 premium-server@thawte.com n=153 domexuser2@hotmail.com
n=244 CPS-requests@verisign.com n=146 domexuser1@hotmail.com
n=242 someone@example.com n=134 domexuser1@live.com
n=237 inet@microsoft.com n=91 premium-server@thawte.com
n=192 domexuser2@live.com n=70 talkback@mozilla.org
n=153 domexuser2@hotmail.com n=69 hewitt@netscape.com
n=146 domexuser1@hotmail.com n=54 DOMEXUSER2@GMAIL.COM
n=134 domexuser1@live.com n=48 domexuser1%40gmail.com@imap.gmail.com
n=115 example@passport.com n=42 domex2@rad.li
n=115 myname@msn.com n=39 lord@netscape.com
n=110 ca@digsigtrust.com n=37 49091023.6070302@gmail.com

TABLE I
HISTOGRAM ANALYSIS OF THE nps-2009-domexusers DISK IMAGE BEFORE AND AFTER THE APPLICATION OF THE CONTEXT-SENSITIVE

STOP LIST. THE EMAIL ADDRESS 49091023.6070302@GMAIL.COM IS THE MESSAGE-ID OF A WEBMAIL MESSAGE.

VM CCNs Domains Email Exif RFC822 Tel. URLs ZIPs
fedora12-64 1 13,973 21,612 119 2,017 662 75,555 55,172

macos10.6 35 2,432 2,669 909 485 256 6,781 55,793
redhat54-ent-64 0 12,345 17,669 36 2,052 3,773 25,078 20,749

w2k3-32bit 0 475 227 6 41 65 7,878 149
w2k3-64bit 0 330 172 5 40 42 7,421 163

win2008-r2-64 64 565 254 37 105 77 8,196 91
win7-ent-32 68 699 365 149 110 77 6,800 91
win7-utl-64 68 677 371 145 100 78 6,606 105

winXP-32bit-sp3 0 492 306 7 61 132 8,916 296
winXP-64bit 0 404 262 17 68 54 7,869 296

TABLE II
NUMBER OF UNIQUE FEATURES OF EACH TYPE FOUND BY bulk extractor ON VARIOUS BASE OPERATING SYSTEM INSTALLS. ALL OF THE

HITS IN THE CCNS COLUMN APPEAR TO BE FALSE POSITIVES.

B. Scanner Implementation

We use purpose-built scanners based on regular ex-
pressions and simple rules to extract forensic informa-
tion, an approach validated in the 1990s by natural
language researchers[39]. The email scanner and the
accounts scanner are both implemented as a series of reg-
ular expressions that are compiled using GNU flex [50]
(Figure 3). This technique creates object code that can
be quite large (the email scanner is 4 MiBytes) but
runs quickly. Another scanner implements the AES key
finding algorithm developed by Halderman et al. [27].

Some of our early scanners produced unacceptably
high levels of false positives when processing PDFs,
TIFFs, and other file types containing long runs of
formatted numbers. The false positives were decreased
with additional filters that examine local context in which
the features are found. For example, while EnCase 6.2.1
identifies the string Box [-568 -307 2000 1006]
/FontName as containing the US phone number 307
2000, our system does not, as we recognize that the
numbers 307 2000 are part of a larger group that does
not conform to the US phone number pattern.

The current scanners incorporated into bulk extractor
are shown in Table III.

C. The Margin

It is straightforward to process a disk image block-
by-block or page-by-page, but occasionally important
features cross block or page boundaries. Many programs
that process bulk data encounter this problem.

Our approach is to append to each buffer a margin of
additional bytes that extend from the current page into
the next. The implementation thus maintains two lengths
for each buffer: the buffer size and the margin size. The
margin is large enough so that any feature or compressed
region that starts near the end of the current page will be
captured entirely within the margin. Only features that
extend into the margin are reported; those that begin in
the margin are suppressed and reported later, when the
contents of the margin are re-processed.

We have experimentally determined that a margin of
1MiB is sufficient for most situations.
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END ([ˆ0-9e\.]|(\.[ˆ0-9]))
BLOCK [0-9]{4}
DELIM ([- ])
SDB ([45][0-9][0-9][0-9]{DELIM})
DB ({BLOCK}{DELIM})
%%
[ˆ0-9]{SDB}{DB}{DB}{DB}{BLOCK}/{END} {

/* #### #### #### #### --- most credit card numbers */
/* don’t include the non-numeric character in the hand-off */
if(validate_ccn(yytext+1,yyleng-1)){

ccn_recorder->write_buf(pos0,buf,bufsize,pos+1,yyleng-1);
}
pos += yyleng;

}

fedex[ˆa-z]+[0-9][0-9][0-9][0-9][- ]?[0-9][0-9][0-9][0-9][- ]?[0-9]/{END} {
ccn_recorder->write_buf(pos0,buf,bufsize,pos,yyleng);
pos += yyleng;

}

Fig. 3. These excerpts from bulk extractor’s scan accts.flex input file for GNU flex[50] shows how multiple regular expressions are combined
with external validators to extract credit card numbers, FedEx account numbers, and other types of information. Although these regular expressions
must be manually created, tuned and maintained, they offer high speed and an astonishingly low false positive rate.

Name Recognizes
Basic Scanners:
scan accts Credit card numbers, phone numbers, and other formatted numbers
scan aes Scans for AES key schedules in memory
scan bulk bulk data statistics
scan email RFC822 headers, HTTP Cookies, hostnames, IP addresses, email addresses, URLs
scan find User-provided regular expression searches.
scan exif JPEG EXIF headers
scan kml KML file recovery
scan net IP and TCP packets in virtual memory
scan wordlist Words (for password cracking)

Recursive Scanners:
scan base64 BASE64 coding
scan gzip GZIP[13] compressed files (including HTTP streams)
scan hiberfile Windows hibernation file decompression
scan pdf DEFLATE[12] compressed streams in PDF files and text extraction
scan zip Components of ZIP compressed files

TABLE III
SCANNERS THAT ARE CURRENTLY PART OF bulk extractor.

D. Crash Diagnosis and Recovery

Developers of forensic software are plagued by the
difficulty of diagnosing crashes. Unlike other types of
software, forensic tools are invariably run on data that is
incomplete or corrupt. Many crashes are data-dependent:
tools that run reliably on hundreds of data sets and
occasionally crash when presented with new data[37].
Replicating these crashes can be nearly impossible with-
out the specific data at hand. Unfortunately, users fre-
quently experience crashes caused by data that cannot
be shared with the developers due to issues of privacy
or confidentiality.

To address this problem we developed a detailed log
file that records what operations were performed but
which does not contain any forensic data. This log file is
in ASCII and can be readily inspected for the presence of

sensitive information. In the even of a crash the program
can be re-run with logging enabled; the relevant lines can
then be manually transcribed, retyped, or even read over
the phone to a developer, who will then posses sufficient
information to determine at least the location of the
faulty code. This diagnostic proved useful in determining
the causes of several crashes.

There were some cases, however, in which sufficient
information was not present. For these cases we devel-
oped a crash recovery mode. As bulk extractor runs,
the primary thread writes a checkpoint to the output
directory (the directory where all of the feature files are
saved). In the event of a crash, bulk extractor can be re-
run with the same command arguments and it will then
restart slightly beyond the point that caused the crash. In
practice, analysts are told to simply hit the up-arrow and
press Enter in the event of a crash, and bulk extractor
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continues from where it left off. Unfortunately, this crash
recovery works so well that analysts no longer have an
incentive to participate in debugging crashes.

To further protect bulk extractor against crashes, a
signal handler can be set before each scanner is called.
The handler catches invalid memory references and
returns control to the page processor. This works ac-
ceptably because most pointer errors in C/C++ forensic
programs result in invalid pointer references on read,
rather than on write.

E. Parallelizing bulk extractor

Many authors have noted that it is vital for forensic
tools to adopt parallelism both in order to keep up with
increasing forensic collections and to make the most
efficient use of modern hardware (e.g. [43], [6]). Tool
developers nevertheless have been slow to adopt paral-
lelized algorithms due to the complexity of doing so—
specifically the problem of managing multiple analyzers
and combining the results. Here we discuss alternative
design strategies for parallelizing bulk extractor and
present the rationale for the decisions that we made.

Treating the disk image as a series of independent
pages turns feature extraction into an “embarrassingly
parallel” problem, as each page can be processed inde-
pendently once features that cross page boundaries are
properly handled (see Section IV-C).

We devised three strategies for processing the pages
in parallel:

1) Regions: The disk is divided into N equal regions,
one for each thread.

2) Striping: Page 0 is processed by thread 0, page 1
by thread 1, and so on, up to page N , which is
again processed by thread 0.

3) Thread Pool: A master thread reads all of the pages
in order and hands them off to a pool of worker
threads 1, 2, 3, . . . (N − 1) as each thread becomes
available.

We implemented all three strategies. We found that
the regions strategy works well in a cluster environment
where each node has its own copy of the forensic image.
But in more typical environments where the evidence
is stored on a single spindle, the regions approach
exhibited a performance problem: because all of the
threads run in parallel, this strategy resulted in excessive
seeking of the disk drive head as each thread processed
more information. We thus observed high seeking and
relatively poor performance.

The striping and thread pool approaches have the
advantage that the disk image is read from the begin-
ning to the end. But we found that the striped threads
invariably became desynchronized, resulting in the same
kind of seeking overhead that happened with the regions

Fig. 4. Speed of bulk extractor to process the 43GB disk image nps-
2009-domexusers as a function of number of threads and threading
model. Reference computer is a MacPro with 16 GiB 1066 MHz
DDR3 and two 2.26 Ghz Quad-Core Intel Xeon processors, for eight
physical cores and 16 virtual cores with hyperthreading. Notice that the
thread pool shows linear performance improvement as the utilization
of physical cores increases, and then again linear improvement (at a
slower rate) as utilization of the hyperthreading virtual cores increases.
Increasing the number of threads beyond the number of virtual cores
results in no further improvement of performance. The striping model,
meanwhile, shows inconsistent performance improvement as a result
of I/O contention.

approach (although not as severe). The desynchroniza-
tion happened because different pages required different
processing times. Attempts to keep the threads in sync
would result in some threads idling until the slower
threads caught up.

The regions and striping approaches also suffered
from the need to maintain separate feature files for each
thread and then recombine the files when the threads
had finished executing. This created considerable code
complexity that was not initially anticipated.

The “thread pool” strategy was relatively simple to
implement once the underlying single-producer/many-
consumer mechanism was implemented. We used POSIX
threads to provide multi-threading on Unix, and the
Pthreads-win32 package[29] on Windows.

We performed a series of performance tests using the
nps-2009-domexusers disk image[21]. The test machine
was a dual processor MacPro with 16GiB of RAM and
eight physical cores (16 with hyperthreading). We used
the raw 43GB image, large enough to assure that the
disk image could not fit in the system’s RAM. For
each case three runs were performed; the fastest of the
three runs are plotted in Figure 4. (We chose not to
average the runs because slower speeds on a Macintosh
are invariably the result of a background process over
which we have no control.) The data was collected with
a previous development version of bulk extractor that
supported both POSIX threads and striping.

The fastest raw run with a single thread was 26,481
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seconds, resulting in an average data transfer speed of
1.6 MBytes/sec. The fastest run with eight analyzing
processes was 3500 seconds, for a sustained processing
speed of 12.2 MB/sec, a speedup of 7.6—nearly linear
speedup, as evidenced by the first part of the graph.

Cores 9 through 16 are hyperthreaded, meaning that
the processor runs instructions on these virtual “cores”
when the various functional units are not otherwise in
use. Not surprisingly, we no longer see a strict linear
speedup, although the region of the graph as the number
of cores are increased from 9 to 16 is itself linear.
With 16 processes the raw image was processed in
3092 seconds, for a sustained processing rate of 13.9
MB/sec, an overall speedup of 870%. Thus, the addi-
tional eight hyperthreaded “cores” provide roughly the
speed of a physical core. This is uncharacteristically poor
performance for hyperthreading, and it argues that the
bulk extractor threads are making excellent use of the
CPU’s functional units, leaving little available for the
virtualized cores.

As can also be seen from the graph, the thread pool
approach consistently provides greater performance than
the striping. It also provides more consistent perfor-
mance, presumably because the evidence file is now be-
ing read sequentially from beginning to end, eliminating
much of the seeking.

V. VALIDATION

This section discusses how bulk extractor has been
tested with simplified test data, with clean operating
system installs, and with real data.

A. Constructed Test Drives

Although the recovery of email addresses from disk
drives is a common forensic task, we could find
no test procedures or data sets to help us compare
bulk extractor’s effectiveness at these tasks with other
tools. For example, the one NIST test disk for performing
string search ([35]) only tests the ability to search for
Cyrillic names, not email addresses. Meanwhile, the
data sets created by Guo et al. for testing string search
functions[26] have not been publicly released.

Faced with the lack of test images, we constructed
our own. We created a series of test documents using
various office productivity applications. Each document
contained a single descriptive email address. In some
cases we used the applications to produce PDF files.
All of the documents were stored on a disk image
which was then processed using bulk extractor. The
choice of document formats was based on our experi-
ence with real-world investigations. We then analyzed
this disk image with three tools: Unix strings, EnCase,
and bulk extractor. These documents were then stored

q Q q 72 300 460 420 re W n /Gs1 gs /Cs1 c
s 1 sc 72 300 460 420 re f 0 sc./Gs2 gs q
1 0 0 -1 72 720 cm BT 10 0 0 -10 5 10 Tm /
F1.0 1 Tf (plain_text_pdf@textedit.com).Tj
ET Q Q

Fig. 5. An inflated stream from a PDF file created using Apple’s
TextEdit application. The original document contained the string
“plain text pdf@textedit.com”. Notice that the email address is pre-
served in the output.

in a FAT32 disk image and subjected to analysis by
bulk extractor and EnCase 6.2.1. We also analyzed the
disk image with strings and grep as a control. Table IV
summarizes the results.

For every target bulk extractor finds more email ad-
dresses than either EnCase or the Unix tools, primar-
ily because of its ability to detect and recursively re-
analyze compressed data. The only email addresses that
bulk extractor failed to find are email addresses in PDF
files generated by Microsoft Office—somewhat curious,
as bulk extractor is able to extract email addresses from
PDF files generated by Apple’s TextEdit application.
The performance difference is a result of differences in
the internal structure of the PDF documents generated
by the two applications: Apple’s TextEdit tend to pre-
serve strings (Figure 5), allowing the email addresses
to be found when bulk extractor decompresses the PDF
streams and rescans them, while Microsoft Word tends to
break up words inside the PDF stream(Figure 6), making
feature extraction of some features impossible without
additional processing.

B. Base OS Installs

It is important to test forensic tools with base installa-
tions of operating systems. By characterizing the tool’s
behavior on base operating system installations we can
gain insight as to how the tool will behave on actual
data.

We used bulk extractor to analyze default installations
of nine operating systems, including two versions of
Linux and five versions of Windows. We then manu-
ally examined the results, both to improve the regular
expressions and false-positive rejection logic, as well as
to characterize the behavior of the tools.

We saw considerably different behavior between the
Linux and the Windows systems. The Linux systems had
thousands of domains, email addresses, URLs, telephone
numbers, and components of ZIP files. Inspection re-
vealed that the domains and email addresses were largely
those of Linux developers; the URLs were typically
those of open source software update distribution points,
web-based services used for software updates and XML
schema; the telephone numbers were from software li-
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email address Application (Encoding) & grep EnCase BE
plain text@textedit.com Apple TextEdit (UTF-8) 4 4 4
plain text pdf@textedit.com Apple TextEdit print-to-PDF (/FlateDecode) 4
rtf text@textedit.com Apple TextEdit (RTF) 4 4 4
rtf text pdf@textedit.com Apple TextEdit print-to-PDF (/FlateDecode) 4
plain utf16@textedit.com Apple TextEdit (UTF-16) 4 4
plain utf16 pdf@textedit.com Apple TextEdit print-to-PDF (/FlateDecode) 4
pages@iwork09.com Apple Pages ’09 4 4 4
pages comment@iwork09.com Apple Pages (comment) ’09 4
keynote@iwork09.com Apple Keynote ’09 4
keynote comment@iwork09.com Apple Keynote ’09 (comment) 4
numbers@iwork09.com Apple Numbers ’09 4
numbers comment@iwork09.com Apple Numbers ’09 (comment) 4
user doc@microsoftword.com Microsoft Word 2008 (Mac) (.doc file) 4 4 4
user doc pdf@microsoftword.com Microsoft Word 2008 (Mac) print-to-PDF
user docx@microsoftword.com Microsoft Word 2008 (Mac) (.docx file) 4
user docx pdf@microsoftword.com Microsoft Word 2008 (Mac) print-to-PDF (.docx file)
xls cell@microsoft excel.com Microsoft Word 2008 (Mac) 4 4 4
xls comment@microsoft excel.com Microsoft Word 2008 (Mac) 4 4 4
xlsx cell@microsoft excel.com Microsoft Word 2008 (Mac) 4
xlsx cell comment@microsoft excel.com Microsoft Word 2008 (Mac) (Comment) 4
doc within doc@document.com Microsoft Word 2007 (OLE .doc file within .doc) 4 4 4
docx within docx@document.com Microsoft Word 2007 (OLE .doc file within .doc) 4 4 4
ppt within doc@document.com Microsoft PowerPoint and Word 2007 (OLE .ppt file within .doc) 4 4 4
pptx within docx@document.com Microsoft PowerPoint and Word 2007 (OLE .pptx file within .docx) 4
xls within doc@document.com Microsoft Excel and Word 2007 (OLE .xls file within .doc) 4 4 4
xlsx within docx@document.com Microsoft Excel and Word 2007 (OLE .xlsx file within .docx) 4
email in zip@zipfile1.com text file within ZIP 4
email in zip zip@zipfile2.com ZIP’ed text file, ZIP’ed 4
email in gzip@gzipfile.com text file within GZIP 4
email in gzip gzip@gzipfile.com GZIP’ed text file, GZIP’ed 4

TABLE IV
WE STORED EMAIL ADDRESSED IN SAMPLE DOCUMENTS USING SPECIFIC APPLICATIONS, PLACED THE FILES IN A DISK IMAGE, AND

ATTEMPTED TO RECOVER THE EMAIL ADDRESSES USING STRINGS AND GREP, ENCASE, AND bulk extractor. THIS TABLE SHOWS WHICH
EMAIL ADDRESSES COULD BE RECOVERED.

.

cense agreements. For example, the most common phone
number (found 47 times) in the Fedora release was (412)
268-4387, the number of the Carnegie Mellon University
office of Technology Transfer.

The most common false positive matches for tele-
phone numbers came from arrays in PDF files, which
sometimes were grouped as phone numbers. Adding a
rule to discard any phone number preceded by a pair
of 3 or 4 digit numbers or followed by the characters
_/Subtype solved this problem.

The Windows operating systems were, comparatively
speaking, quite clean. We did not see a large collection
of email addresses on the Windows installations. We did,
however, discover a significant number of “IP addresses”
that were in fact version numbers and SNMP OIDs.
Many of the remaining addresses were from certifi-
cate authorities or Microsoft-owned services such as
domain.microsoft.com or sign.msn.com.

C. Prevalence of Compressed Email Addresses

To gauge the value of bulk extractor’s data decom-
pressing feature, we analyzed disks and USB storage
devices, purchased on secondary markets around the

world, for the presence of email addresses that could
be recovered using GZIP or ZIP decompression and
were not otherwise present on the disk. We hypothesized
that such data would be present, and that such email
addresses would be more prevelant in recent drives and
less so on older ones.

The disk images that we analyzed were part of the
Real Data Corpus[21] and came mostly from China,
India, Israel and Mexico. To gauge the age of each drive
we analyzed the Date: headers in email messages and
HTTP headers found on the disks. (This information
is extracted into bulk extractor’s rfc822.txt feature file.)
We took the date of the disks’ last activity by averaging
the last five timestamps that were present.

For each drive we listed the email addresses and
noted for each address if it was present in plaintext,
in GZIP or ZIP compressed streams, and in Base64
encoded streams. (The Base64 data is not reported here.)
We then tallied the number of email addresses that
appeared on each drive and on no other drive in our
corpus; this was a straightforward approach for removing
the email addresses that were part of operating system
and application installs (although it assumes that each
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Fig. 6. An inflated stream from a PDF file created using Microsoft
Word 2008 for Macintosh. The original document contained the string
“This is a test — user doc pdf@microsoftword.com Really.” Notice
that the email address is split into three pieces.

operating system and application was installed on at least
two disks in our corpus). This is the same elimination
approach that we proposed in our previous work[18].

In total we analyzed 1473 drives. We found that 865
contained email addresses, 431 contained timestamps,
and 431 contained both email addresses and timestamps.
Table V tallies by year the number of drives recovered
for that year, the total number of email addresses, the
number of email addresses encoded with each compres-
sion format, and the number of those email addresses
only present on a single drive.

As can be seen, there are a significant number of email
addresses that can only be recovered by optimistically
decompressing forensic data, demonstrating the impor-
tance of this technique.

VI. CASE STUDIES

This section discuss two cases in which bulk extractor
provided timely information that proved critical to real-
world investigations.

A. Credit Card Fraud

In the Spring of 2010 the San Luis Obispo, CA,
County District Attorney’s Office “filed charges of credit
card fraud case and possession of materials to make
fraudulent credit cards against two individuals.”[34] The
day before the suspects’ preliminary hearing an evidence
technician at the SLO police department was given a
250GB hard drive that had been seized with the suspects.

The technician was told to find evidence that tied the
suspects to the alleged crime; the defense was expected
to claim that the computer belonged to an associate of
the defendants who had not been arrested, and that the
suspects lacked the necessary skills to commit the crime.

An early version of bulk extractor was able to analyze
the hard drive in roughly 2.5 hours. The email address
and credit card number extractors, in combination with
the histogram analysis, quickly established:

• More than 10,000 credit card numbers were present
on the hard drive.

• The most common email address clearly belonged
to the primary defendant, disproving his contention
that he had no connection to the drive and helping
to establish the defendant’s possession of the credit
card numbers.

• The most common Internet search queries con-
cerned credit card fraud and bank identification
numbers used to create fraudulent credit cards,
helping to establish the defendant’s intent[34].

Based on the reports generated by bulk extractor
and the testimony of the evidence technician, the court
concluded that the District Attorney had met the burden
of proof to hold the suspects pending trial.

It is unlikely that such high quality reporting could
have been generated so quickly (and with such little
effort on the part of the investigator) with a conventional
forensic tool. While bulk extractor can process a disk
image at roughly the speed it takes to read the data
(on a suitably fast machine), conventional tools such
as EnCase or FTK can take anywhere from 2 to 10
times as long to ingest a disk image, a process that
involves finding all of the files and indexing the data
that they contain. Such tools also lack bulk extractor’s
histogram analysis and its ability to extract information
from residual data that is compressed.

B. ATM Fraud

A 250GB disk drive was recovered from individuals
suspected of setting a credit-card “skimmer” and pinhole
camera at ATM machines in a major US city. Police
needed to rapidly supply the banks with a list of the
compromised credit card numbers so that the accounts
could be shut down.

bulk extractor completed its processing after just two
hours on a quad-core computer. The banks in question
were provided with ccns.txt output file, a list of
credit-card numbers found on the drive. The actual files
containing the data were later identified by using the file
offsets present in the feature file.

As in the previous case, it is unlikely the current
commercial tools could have found the compromised
credit card numbers in so short a time.
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year drives total in ZIP uniquely in a single ZIP stream in GZIP uniquely in a single GZIP stream

1991 1 57 0 0 0 0
1992 1 2,663 0 0 16 0
1993 2 33,352 0 0 255 20
1994 4 18,401 310 0 1,096 421
1995 13 76,469 53 14 1,353 71
1996 19 314,340 10 1 43,567 1,532
1997 16 755,597 276 86 31,057 1,066
1998 30 252,811 66 4 297 14
1999 30 1,167,208 79 4 118 11
2000 51 2,709,526 67,221 306 199,063 3,615
2001 51 1,180,587 360 109 9,118 710
2002 46 6,336,891 414 57 341,810 9,178
2003 44 1,654,880 429 95 19,444 563
2004 49 2,746,356 1,088 222 30,705 9,989
2005 27 351,238 75 3 2,656 127
2006 26 326,480 56 7 1,370 40
2007 17 828,229 301 0 3,319 388
2008 4 799,127 9 2 2,171 59

TABLE V
A STUDY OF 431 DISK DRIVES ACQUIRED AROUND THE WORLD SHOWS THAT THERE IS A SIGNIFICANT PRESENCE OF EMAIL ADDRESSES

THAT CAN ONLY BE RECOVERED BY DECOMPRESSING ZIP AND GZIP-COMPRESSED DATA STREAMS.

VII. LIMITATIONS AND FUTURE WORK

Stream-based forensics and bulk extractor are de-
signed to complement conventional forensic tools, not
to replace them. In this section we discuss specific
limitations that we have encountered and discuss the
outlook for this technology.

A. Theoretical Limitations of Stream Processing

The primary limitation of stream processing is that
compressed objects fragmented across multiple locations
cannot be recovered. Previous research has shown that
this is not a significant limitation; with the exception of
log files, most files that are forensically interesting are
not fragmented[19]. And while log files are fragmented,
most log files are not stored with compression, allowing
the various fragments to be matched and recombined.

B. Specific Design Limitations

Overall we have found bulk extractor’s design to be
quite powerful, as evidenced by the ease of adding
new scanners and capabilities. Two limitations that
have emerged, however, are the susceptibility to crashes
caused from errors in C buffer processing, and the need
to write individual scanners and decoders for each data
type that we wish to recognize.

The issue of C buffer processing is not unique to
bulk extractor—this issue impacts every tool that is not
coded in a typesafe language such as C# or Java. Rewrit-
ing bulk extractor in such a language is complicated
by the reliance on GNU flex and on libraries such as
AFFLIB and libewf. We did create an earlier pure-
Java version of bulk extractor using JFlex[31] instead

of flex. At the time we found that compilation with
JFlex required minutes rather than seconds, but that the
resulting scanner ran approximately three times faster—
presumably a result of Java’s optimizing just-in-time
compiler. We are considering a rewrite of bulk extractor
into C# or Java.

C. Unicode and IDN issues

Unicode and Internationalized Domain Names (IDN)
pose challenges for bulk data processing and extraction
based on regular expressions, as bulk data processing
views data as a series of bytes but Unicode combines
multiple bytes to form characters.

Most modern text is encoded in either ASCII, UTF-
8, UTF-16LE, or UTF-16BE. It can be difficult to
distinguish these variant coding schemes. Although the
Unicode Byte Order Mark (U+FEFF) is used to distin-
guish UTF-16LE from UTF-16BE, fragments of Uni-
code found within residual data may be missing the
BOM.

An added complication is that ASCII and Unicode
are not the only types of localized strings likely to be
found. Data may be coded using a Windows Code Page.
Disks from China or Japan may be coded in Big5, EUC-
JP, GB18030, Shift-JIS, or other less popular coding
schemes.

The best way to process bulk data is to scan the data
and determine which coding, if any, is in use. Individual
characters should be extracted, transcoded into Unicode
if necessary, and then processed with a Unicode-aware
lexical analyzer. The task is complicated by the fact
that some bulk data may have multiple codings, and
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that some codings cannot be inferred from context—
for example, it is not possible to infer if text is coded
in Code Page 737 (Greek) or Code Page 862 (Hebrew)
without attempting to decode the text in both code pages
and then applying a language model to determine which
coding is more likely.

Fortunately, such approaches are sufficient for the
majority of bulk data analysis today, as most email
addresses and URLs are in simple ASCII, UTF-8 or
UTF-16, all of which are handled by bulk extractor to a
varying degree using a simple but reasonably accurate
algorithm. bulk extractor contains regular expressions
that recognize email addresses and URLs formed as 7-
bit ASCII strings and as 8-bit strings where every other
character is an ASCII NULL. This handles both the case
of 7-bit ASCII, UTF-8, and UTF-16 (both LE and BE)
when it is used to encode ASCII strings.

We are developing more sophisticated approaches
for text extraction. Those approaches are beyond the
scope of this paper and will be discussed in a future
publication.

D. SSDs and Other Random Access Media
At the present time the use of solid state drives

(SSDs) and other forms of random access media is
increasing. Modern SSDs are implemented using flash
memory systems that support a limited number of writes
to each cell. Media life is prolonged through the use of a
flash translation layer (FTL) that maps the logical block
addresses of the disk drive’s interface to the physical
pages that make up the storage system. Modern SSDs
typically reserve 4% to 25% space beyond the rated
storage capacity to support the FTL as well as previous
versions of user data.

Recent experiments by Wei et al. have shown that
traditional file sanitization strategies of repeated over-
writes do not work properly with SSDs[53]. The authors
demonstrated recovery by removing flash chips from a
SSD and reading the data directly. The authors were
not able to restore reconstruct the original file systems,
however, as the operation of each drive’s FTL is closely
held proprietary corporate information.

Because it has the ability to recover useful investiga-
tive information without the need reconstruct individual
files, stream based forensics may be an important tool in
the analysis of SSDs in the future. This procedure would
be made easier through the use of vendor-proprietary
commands that allow reading the raw flash pages present
in each chip without the need to reverse engineer or
otherwise understand the FTL.

VIII. CONCLUSION

This paper has introduced both stream-based forensics
and bulk extractor, a forensic tool that works instead on

bulk data and extracts small-sized identifiable features
such as email addresses, Internet URLs, and EXIF struc-
tures. Information extracted by bulk extractor is reported
in feature files that indicate where each feature was found
in the source file. bulk extractor also performs histogram
analysis, reporting (for example) the most common email
addresses and search terms present on a hard drive. The
tool automatically decompresses compressed data that is
encountered.

bulk extractor was initially developed as a tool to
assist in other research projects, and grew into a research
interest in its own right. Today the tool is also being used
to support law enforcement activities. We have found
bulk extractor to be extraordinarily useful, and hope that
interest in the tool and in stream-based forensics will
continue to grow.

A. Code Availability

We have made bulk extractor source code, ancillary
programs, and pre-compiled executables for Windows
available on the http://afflib.org/ website. The code is
public domain and may be freely incorporated into other
open source or commercial applications.

The constructed drive can be downloaded from
http://digitalcorpora.org.
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