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ABSTRACT 
File-type Identification (FTI) is an important problem in digital 

forensics, intrusion detection, and other related fields. Using state-

of-the-art classification techniques to solve FTI problems has 

begun to receive research attention; however, general conclusions 

have not been reached due to the lack of thorough evaluations for 

method comparison. This paper presents a systematic 

investigation of the problem, algorithmic solutions and an 

evaluation methodology. Our focus is on performance comparison 

of statistical classifiers (e.g., SVM and kNN) and knowledge-

based approaches, especially COTS (Commercial Off-The-Shelf) 

solutions which currently dominate FTI applications. We analyze 

the robustness of different methods in handling damaged files and 

file segments. We propose two alternative criteria in measuring 

performance: 1) treating file-name extensions as the true labels, 

and 2) treating the predictions by knowledge based approaches on 

intact files; these rely on signature bytes as the true labels (and 

removing these signature bytes before testing each method). In 

our experiments with simulated damages in files, SVM and kNN 

substantially outperform all the COTS solutions we tested, 

improving classification accuracy very substantially – some COTS 

methods cannot identify damaged files at all. Our experiments 

also show the scalability of SVM and kNN to large applications 

after adequate feature selection. 

Categories and Subject Descriptors 
E.5 [Data]: Files – Recovery/Backup. I.5.2 [Pattern 

Recognition]: Design Methodology – Classifier Design and 

Evaluation. H.1.0 [Information Systems]: General 

General Terms 
Algorithms, Experimentation, Performance.  

Keywords 

Digital Forensics, File-type Identification, Classification, 

Scalability, Comparative Evaluation 

1. INTRODUCTION 
File-type Identification (FTI) is the task of assigning a pre-defined 

label (the file type) to each instance (each file) based on observed 

data in the file.  The conventional application of FTI is in 

operating systems where computers need to choose different 

programs to process the information based on the type of each 

file.  Algorithmic solutions are needed for automated 

identification because systems cannot always rely on human-

assigned extension in file names; users occasionally choose a 

wrong extension when creating a file name, or simply forget to 

specify it.  A variety of Commercial Off-The-Shelf (COTS) 

software has been developed for automated FTI. For example, 

Libmagic [8] is open-source software in Linux for FTI (the ‘file’ 

command).  Other popular COTS software includes TrID [22], 

Outside-In [21], DROID [20], and so on.  

In the past decade, FTI has become an increasingly important 

area in digital forensics research where the focus is on extracting 

and analyzing useful information from digital devices such as 

mobile phones, computer hard disks and CD-ROMs. Forensic 

practitioners often encounter broken CD-ROMs, damaged hard-

disks, or partially deleted files. They are frustrated with the 

limitations of COTS solutions whose predictions are essentially 

based on the detection of signature bytes in each file, and the 

detection relies on a manually created database of mappings 

(rules) from signature bytes to file-types. For example, a 

Microsoft Windows bitmap file is typically matched with the 

signature string ‘BM’; a JPEG file is matched with the two-byte 

signature ‘0xFF, 0xD8’. If the signature bytes or the allocation 

information of the file segments are missing or garbled, COTS 

solutions will work poorly if at all (see Section 5 for empirical 

evidence). 

Other application areas where automated FTI has become 

important include intrusion detection [9] , virus removal, firewall 

protection [30], etc. For example, in intrusion detection, 

individual packets are monitored; if any offending file-type of 

data is detected, those data will be filtered out. In another 

example, firewalls are often setup to detect executable files from 

unknown sources; if such files are detected, they will be blocked. 

In such scenarios, the location of signature bytes and the 

allocation information about file segments are often not available. 

COTS solutions or similar knowledge-engineering approaches to 

FTI would perform poorly.  

Several statistical classification methods have been studied to 

address the limitations of COTS solutions or knowledge-

engineering based approaches. Those methods treat each file type 

as a category (class), and use supervised learning techniques to 

predict the category label for each test instance (a file) based on 

its content and a training set of labeled instances. Such 

approaches are referred to as content-based, in distinction from 
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those relying on file-name extensions or file-header information 

alone. Each file is represented using a vector of feature weights 

where the features are typically n-gram bytes, and the weights are 

typically the within-file frequency of the features [18] or some 

kind of TF-IDF (term frequency multiplied to Inverted Document 

Frequency) weight (see Section 2).  Just like in text categorization 

where word order is typically ignored by statistical classifiers, the 

order of n-gram bytes is also often ignored by the classifiers in 

FTI. Of course by tuning the value of n for n-gram features, local 

context can be partially captured. Once we have files represented 

as feature vectors, any statistical classification method can in 

principle be applied.  Approaches examined so far include 

centroid-based methods [12],[15],[16], [17], [18], [19] where 

each category is represented using the centroid of its member 

instances in the training set, and the category centroids are 

compared to each test instance for inference. Other methods 

include 1-Nearest Neighbor (1-NN) [17], k-Nearest Neighbor 

(kNN) [1],[2], 3-layer neural networks (with PCA-induced 

features) [4] Support Vector Machines (SVM), etc. [1],[2].  

Although good progress has been made in statistical 

approaches to FTI, general conclusions are difficult to obtain with 

respect to the strengths and weaknesses of different methods, and 

it is not clear which ones are representative for the current state of 

the art. The reasons are: 

• The lack of evaluation results on shared benchmark 

datasets:  All the published results so far were obtained 

on unshared datasets, making it impossible to directly 

compare methods across studies or to replicate 

published results.   A realistic data collection, called 

Realistic Data Corpus (RealisticDC) [10], has been 

recently made publicly available; however, no 

evaluation result of any method has yet been reported 

on that collection. 

• The lack of well-established evaluation methodology: 

To our knowledge, no evaluation result was published 

for performance comparison against and among COTS 

solutions. Although COTS predictions are all based on 

signature bytes which can be found in a manually 

created external data base, different software may 

produce different labels for the same file type, or they 

may divide file types into sub-types inconsistently 1 .  

Comparing COTS solutions has been difficult due to the 

lack of standardization of file-type (category) labels. On 

the other hand, the evaluations of statistical classifiers 

for FTI often use file-name extensions as the true labels, 

which is contradictory to the common belief that user-

assigned extensions in file names are highly unreliable 

[12].  This contradiction makes it difficult to interpret 

the reported evaluation results for statistical classifiers 

in FTI.  

• No cross-method comparative evaluation has been 

reported on damaged files. This is the most crucial 

                                                                 

1 For example, a ‘C++ program’ can be considered to belong to 

the following types – C++ program text, Program Source code, 

Text, in increasing order of generality. The desirable level of 

generality is a subjective choice.   

 

issue for the security and forensic applications 

mentioned above. The claimed advantage of statistical 

classification approaches over COTS or knowledge-

based solutions has not been empirically examined 

using any quantitative measure.  As a result, software 

developers and forensic examiners cannot tell which 

tools would be best for their problems, and researchers 

in FTI-related fields also face difficulties in reaching 

conclusions regarding the state of the art. 

This paper addresses the above key issues by conducting a 

thorough investigation with several representative statistical 

classifiers and COTS solutions, as follows:  

a) We report the first comparative evaluation using controlled 

experiments with statistical classification methods (Support 

Vector Machines and k-Nearest Neighbor classifiers) and 

popular COTS solutions (Libmagic, TrID, Outside-In and 

DROID) on a shared and publicly available ReasliticDC 

dataset. 

b) We propose two strategies for cross-method evaluation. The 

first is to use the labels assigned by a COTS solution (e.g., 

Libmagic) on the intact files as the true labels of test 

instances, and to measure the accuracy of statistical 

classifiers in predicting file types accordingly. The second is 

to use file name extensions as the true labels, and to measure 

the consistency in label assignment by each COTS solution 

accordingly. The former (accuracy) allows us to compare 

statistical classifiers conditioned on the choice of software 

for information extraction (as the next step after file type 

identification). The latter (consistence) allows us to compare 

different COTS solutions without subjective unification of 

software-specific labels.     

c) We use the Realistic Data Corpus (RealisticDC) as the test 

bed, which is recently made publicly available by Garfinkel 

et al [10] for digital forensics research, and we provide the 

first set of empirical results on this corpus.  By making our 

detailed documentation and data preparation toolkit together 

accessible, we ensure that future results on this dataset can be 

compared with ours. 

d) Our experiments focus on performance analysis of different 

methods over incomplete files (using files with simulated 

damages and file segments) as well as complete files; the 

latter has been the setting in all previous evaluations. 

Incomplete files are particularly prevalent in forensics.  We 

found SVM and kNN outperforming Libmagic (among the 

best of COTS solutions) by a factor of 10 in micro-

averaged 1F , and by a factor of 7.3 to 8.0 in macro-averaged 

1F (Sections 3.2 and 5) . 

e) Our experiments also show that with adequate choice of n in 

n-gram feature generation and statistical feature selection, 

SVM (and kNN) can scale very well to large applications 

without any (significant) sacrifice in accuracy. 

The rest of the paper is organized as follows. Section 2 outlines 

our statistical learning framework for classification and the feature 

generation process. Section 3 discusses our evaluation 

methodology. Section 4 describes the experiments and data. 

Section 5 reports our results. Section 6 addresses scalability issue 

with statistical feature selection, and analyzes the effectiveness-



efficiency trade-off.  Section 7 concludes by summarizing our 

findings. 

2. THE STATISTICAL APPROACH  
 

In order to apply statistical classification methods to FTI, we need 

a set of features to represent files and to discriminate different 

types from each other. N-gram bytes have been found highly 

useful for FTI in previous work [1][15][19] hence we follow the 

same choice of features. Given a collection of files, the feature 

space is defined as the union of all the unique n-gram bytes in the 

files.  Each file is represented as a vector of feature weights. 

Within-file frequency of n-gram bytes is a common choice of 

feature weighting scheme. It is analogous to the term frequency 

(TF) in document retrieval and text categorization; hence we call 

it TF weight for convenience.  Other popular term-weighting 

schemes are also possible, such as TF-IDF weights where IDF 

stands for the Inverted Document Frequency of a term in a 

collection of documents.  Applied to FTI, a “document” means a 

file, and a “term” means an n-gram byte.  

Notice that the value of “n” need to be carefully chosen for 

both classification accuracy and for classifier training and run-

time efficiency.  Generally, the larger the value of ‘n’, the more 

byte order information is captured by the features.  That is, the 

features could be more discriminative for classification. However, 

a higher value of ‘n’ also means a larger size of the feature space 

(growing exponentially in n), which will cause an increased time 

to train the model and a risk of overfitting the training data. 

Adequate choice of n can found empirically through cross-

validation, i.e., using some held-out data (not a part of the test set) 

to tune the value of n and then fix the value in the testing phase.   

Having the vector representation of files and discriminative 

features, any classification method could be in principle applied. 

We use two of the most popular methods in this study: Support 

Vector Machines (SVM) and k-Nearest Neighbors (kNN). Both 

methods have been highly successful in a broad range of 

classification applications [14][25][5][27].  SVM is formulated as 

a large-margin method for a geometric classification problem: the 

objective is to find the decision surface that best separates two 

classes of data points (vectors) with the maximal margin in 

between. SVM has been found robust in high-dimensional feature 

spaces and with skewed class distributions where many classes 

have a relative small number of labeled instances for training. 

kNN is radically different: it is typical among instance-based 

(“lazy”) learning methods. It finds the nearest neighbors for each 

test instance in the training set on the fly, and makes inference 

based on the class labels in the local neighborhood. Specifically, 

our kNN uses the cosine similarity as the metric to select the top-k 

training instances for each test instance, and to weigh the class 

label of each nearest neighbor; the weights of labels are summed 

over for each class, and the class receives the highest score is 

assigned to the test instance.  This kind of kNN is called multi-

class kNN [5],[27], meaning that the unique class labels in each 

local neighborhood may be more than two. Multi-class kNN 

typically outperforms two-class kNN in multi-class or multi-label 

classification problems; the latter converts multi-class labels of 

training instances into binary labels for each class before training 

a two-way classifier for the class.   SVM as an eager learner is 

computationally intensive in its training phase, whereas kNN is 

computationally intensive in on-line testing phase. This 

dichotomy allows us to investigate the scalability of both types of 

classifiers. 

3. EVALUATION METHODOLOGY 

3.1 Alternative settings for the ground truth  
It has been more difficult to obtain the true labels of files for FTI 

evaluations, compared to some other domains such as text 

categorization or image pattern recognition where human-

assigned labels to documents or objects can be directly used as the 

true labels for evaluation.  In FTI, extensions in file names are 

potentially incorrect or even missing -- that is why COTS 

solutions have been developed for automated FTI. This leads to 

two open questions regarding the evaluation methodology in FTI:   

1) How can we get the true labels for evaluation, especially for 

comparing different statistical classifiers in FTI? 

2) File-name extensions are imperfect, but are they still useful 

for cross-method comparison, especially among different 

COTS solutions and between COTS and statistical 

classifiers? 

Our answer for the first question is to use the output of a 

COTS solution on intact files as the true labels, and to compare 

the performance of different statistical classifiers on damaged or 

fragmentary files based on those true labels.  By using an 

application-specific choice of COTS solution to produce the true 

labels, we avoid the need for manual and subjective unification of 

inconsistent labels from different COTS solutions for the same 

file. For example, given an excel file (possibly incomplete or 

damaged) as the input, some COTS solution would label it as 

“Microsoft Excel 2000” and others would label it as “Microsoft 

Office Document” or “Microsoft Excel File”. These labels follow 

different naming conventions, and/or provide different levels of 

detail about the file type. We cannot subjectively decide that one 

convention is better than the others, or a certain level of detail is 

most appropriate in general. What level of detail is appropriate 

depends on the next-step application, e.g., on the choice of 

program to be used for information extraction or execution after 

Figure 1: File-types in the RealisticDC dataset have a skewed 

distribution 



FTI.  Hence, if the output labels of a COTS solution are suitable 

for the next-step application, it is sensible to use those labels as 

the ground truth for evaluating statistical classifiers in file-type 

identification. 

Our answer for the second question is yes.  We believe that 

using file extensions as the true labels to evaluate COTS solutions 

is informative. It is reasonable to assume that file extensions are 

more often to be correct than incorrect.  If the predicted labels by 

one method agree with file extensions in a large test set more 

often than another method does, then the chance for the former 

method to outperform the latter method is higher. Using noisy 

labels to evaluate the relative performance of FTI methods to each 

other is still informative, as long as the test set is sufficiently large 

for statistical significance. 

 

3.2 Metrics  
We choose to use micro-averaged 1F  and macro-averaged 

1F  as the primary metrics.  Both are standard and common in 

benchmark evaluations [26][27][28] for text categorization, 

information filtering, information extraction, and so on. Let 

Cc∈ be a class, cN be the number of test instances in the class, 

and cTP , cFP , cTN  and cFN be the counts of the true positives, 

false positives, true negatives and false negatives among the 

system-made predictions with respect to class c, respectively. The 

performance metrics are defined as:  
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Micro-averaged 1F and macro-averaged 1F provide 

complementary insights into performance analysis. If the classes 

have a skewed distribution, which is quite common in practical 

applications, the former is dominated by the system performance 

on large categories and the latter is dominated by the average 

performance on small categories. 

4. EXPERIMENTS  

4.1 Data 
The RealisticDC dataset was introduced by Garfinkel et al [10] to 

alleviate the problem of lack of a standardized dataset for FTC 

research. The dataset was created under realistic situations that 

mimic the kind of data commonly encountered by forensics 

investigators. An experimenter was hired to play the role of a 

normal computer user, exchanging messages, browsing the web, 

performing office related work, reading news etc. The images of 

the experimenter’s computer disk then were processed and made 

available as the dataset. By hiring individuals to mimic realistic 

users instead of directly collecting data from true users, privacy 

issues were avoided, making the data sharable to the research 

community.  

After performing our own filtering, such as removing empty files 

and files without extensions, we obtained a total of 31,644 files 

and 316 unique file-type extensions, among which 213 are binary 

file-types and 103 are ASCII text file-types. The category 

distribution is shown in Figure 1. This filtered dataset has the size 

of 7.2 GB in total. Further details of the filtering process can be 

found at http://nyc.lti.cs.cmu.edu/clair/datasets.htm. 

4.2 Methods for Comparison 
For cross-method comparison we include both state-of-the-art 

classifiers and popular COTS solutions.  We list these methods 

with a corresponding brief description.  

SVM is a state-of-the-art classification method we described in 

Section 2. Specifically, we used the large-scale linear SVM 

implementation by Hsieh et al [13] in our experiments.  

kNN is another state-of-the-art classification method we described 

in Section 2. We used our own implementation of kNN [27] in the 

experiments.  

Libmagic [8] is one of the most popular COTS solutions for FTI, 

which has been implemented as a UNIX command line tool. It 

uses the information about the UNIX/Linux system to recognize 

certain file types (such as device files) as the first step; if the first 

attempt fails, then it analyzes the signature bytes of the input file 

to identify the file-type as the second step; if the second attempt 

also fails, then the ASCII content within the file is used to identify 

the file-type. If all the above attempts fail, the file-type will be 

labeled as not recognized. 

TrID [22] is another popular COTS solution designed for 

identifying file-types from their signature bytes. TrID uses a 

database of signature patterns. Currently TrID supports the 

identification of 4093 different file-types. 

Outside-In [21] is a part of the suite of algorithms distributed by 

Oracle for dealing with unstructured files. It uses a proprietary 

algorithm to identify the file-types without entirely relying on the 

file-extensions. It can identify more than 500 file-types. 

DROID (Digital Record Object Identification) [20] is an open-

source file-type identification tool developed by the National 

Archives. Rather than relying on signature bytes only, DROID 

uses regular expressions to allow flexible match in signature-

based file-type identification. 

  



For comparing the methods on intact files, we used file-name 

extensions as the true labels of the test instances.  For comparing 

the methods on damaged files or segments of files, we used the 

output of Libmagic on the undamaged and un-segmented version 

of the files as the true labels of the test instances. For these 

experiments, we used the subset of the dataset (30,254 files) on 

which libmagic was able to predict the file-types. We also 

investigated other signature-based COTS methods on intact files 

as the gold-standard, but we omit these variations for brevity, 

since they provide the same basic insight.  

4.3 Simulated Damages and Segments 
We simulate file damage in our experiments as follows:  

Type-0 corresponds to the case where there is no damage. It 

reflects an ideal situation where the files are intact without any 

missing bytes. Also, complete information about file segment 

allocation is available so that we can treat each file as a 

contiguous string of bytes after preprocessing. 

Type-1 corresponds to the case where the signature bytes in the 

file are missing. Generally a hard disk is arranged in the form of 

blocks (clusters) where each block is a contiguous sequence of 

512 bytes, and each file is stored across different blocks. The 

signature bytes of a file are typically stored in the first block 

assigned to the file. Thus, if the first block is damaged, the 

signature bytes of the file are lost.  In order the mimic such a 

situation, we removed the first block from each file, that is, the 

first 512 bytes of the file.  

Type-2 corresponds to the case where additional bytes (after the 

removal of signature bytes) are missing at random locations, i.e., 

the missing bytes are randomly allocated. We conducted 

experiments with the random removal of bytes at 10%, 20%, …, 

90% of each file in the test set. 

Type3 corresponds to the case where files are stored as isolated 

segments instead of a contiguous segment.  In order to mimic such 

a scenario, we divided the files into shorter segments of specific 

sizes and conducted experiments using the segments for training 

as well as testing. Sometimes, in practice it might not be easy to 

know the distribution of segments nor their labels, so it would be 

difficult to generate a labeled training dataset. In such cases, the 

alternative strategy would be use systems which are trained on 

complete (un-segmented) files. In our experiments for evaluating 

performance on file segment classification, we perform both the 

types of training, i.e., training on segments and training on 

complete files, respectively. 

4.4 Detailed Experimental Setting 
Our results for SVM and kNN are obtained through a five-fold 

cross validation process. We divided the full data into five 

subsets: four out of the five subsets were used for training and 

validation (parameter tuning), and the remaining subset was used 

for testing. We repeated this process five times, with a different 

non-overlapping subset for testing each time; the results were 

averaged over the five subsets. In SVM we tuned the 

regularization parameter and in kNN we tuned the number (k) of 

the nearest neighbors. We tried 5 different values for the SVM 

regularization parameter, from .01 to 100; and, we tried 10 

different values for k in kNN, from 1 to 50. As for feature 

weighting in both SVM and kNN, we used a conventional TF-IDF 

weighting scheme named ‘ltc’ in information retrieval and text 

categorization [28]. We also varied the value of n in the 

generation of n-gram features, with n = 1, 2 and 3. COTS methods 

have neither a training phase, nor any parameter tuning, since they 

are not based on statistical learning. 

5. RESULTS  

Figure 2 shows the performance of all the methods on intact files, 

including both COTS solutions and the statistical classifiers on 

complete undamaged files. File extensions were used as the true 

labels. During validation, we found kNN with 1-gram features 

worked better than kNN with 2-gram features, and SVM with 2-

gram features worked better than SVM with 1-gram in terms of 

classification performance, thus we included the better versions of 

kNN and SVM in the graph. In micro-averaged 1F , Libmagic is 

the best method among the COTS solutions; however, in macro-

averaged 1F , TrID is the best among COTS solutions.  In both 

Figure 3: Performance of FTI methods on files with 

type-1 damages (missing signature bytes): File 

extensions were used as the true labels in the evaluation. 

Figure 2: Performance of FTI methods on intact files: File 

extensions were used as the true labels in the evaluations 
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Figure 5: Performance of FTI methods on files with type-1 

damage (signature bytes are missing): The output of 

Libmagic was used as the true labels 
measures, SVM and kNN are substantially better than all the 

COTS solutions being tested. This means that statistical classifiers 

are more discriminative with respect to user-specified file types in 

file-name extensions. The larger performance improvements in 

macro-averaged 1F  by the statistical classifiers over COTS, 

compared to the smaller improvements in micro-averaged 1F , 

indicates that COTS predictions tend to agree more with file 

extensions for common file types,  and agree less with file 

extensions for rare file types.   

Figure 3 shows the performance of all the methods on 

files with type-1 damages, i.e., when the signature bytes of each 

test instance are missing. Again, file extensions were used as the 

true labels in this evaluation.  Comparing the performance in this 

graph to that in Figure 2, we can see that most COTS solutions 

failed miserably (with the zero or near-zero value in both micro-

averaged and macro-averaged 1F ) when the signature bytes are 

missing, while the statistical classifiers suffer much less. The 

statistical classifiers are much more robust in FTI with respect to 

this kind of damage. 

Figure 4 compares the results of our statistical classifiers on 

intact files; the output of Libmagic for each test file was used as 

the true label of that file.  We include the performance of 

Libmagic for reference, which has the perfect score ( 1F =1), of 

course.  We include the results of SVM and kNN with 1-gram and 

2-gram features, respectively.  

Figure 5 compared the results of these methods on files with 

type-1 damages, i.e., when the first 512 bytes (including the 

signature bytes) of each test file is missing.  Libmagic failed 

dramatically in this case, while SVM and kNN are highly robust. 

SVM using 2-gram features works better than SVM using 1-gram 

features, but the former is more computationally costly than the 

latter. We analyze the efficiency and effectiveness trade-off in 

Section 6.  On the other hand, kNN using 1-gram features had 

better results than kNN using 2-gram features.  SVM and kNN 

have a comparable performance. In general, the statistical learning 

methods perform better in micro-averaged 1F (vs micro-averaged 

1F ) because the common classes have more training instances. 

SVM (2-gram) outperforms Libmagic by a factor of 10.3 (0.900 

vs. 0.088) in micro-averaged 1F and a factor of 8.0 (0.540 vs. 

0.068) in macro-averaged 1F .KNN (1-gram) outperforms 

Libmagic by a factor of 10.0 (0.874 vs. 0.088) in micro-averaged 

1F and a factor of 7.3 (0.496 vs. 0.068) in macro-averaged 1F . 

Figure 6 compares the performance curves for SVM (using 

2-gram features) and kNN (using 1-gram features) on files with 

type-2 damages.  A certain percentage of each file was removed at 

random, as well as the first 512 bytes from each file.  Again, the 

two methods have similar curves: until the damaged proportion 

reaches 50% or higher, there is no significant degradation in 

classification performance for both methods, but kNN is 

somewhat more robust when most of the file is missing. 
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Figure 4: Performance of FTI methods on intact files: The 

output of Libmagic was used as the true labels. 

Figure 6: Performance curves of statistical classifiers on 

files with type-2 damages: The output of Libmagic was used 

as true labels  



Figure 7 compares the performance curves for SVM (using 

2-gram features) on segments of files (type-3 damage). We 

evaluated the methods with two settings: training SVM on 

segments (of the same size as the test segments), and training 

SVM on the full files.  The former setting yielded a better 

performance but it had an unrealistic assumption, i.e., the size of 

the segments in the test set must be known or estimated in 

advance.  The latter setting is more realistic.  All the curves show 

that the smaller the segments, and harder the prediction task. 

6. SCALABILITY ANALYSIS 

In order for our approach to scale, we need to carefully balance 

the trade-off between effectiveness (better models) and efficiency 

(time required to train the models). As the value of ‘n’ in the n-

gram feature space increases, the individual features capture more 

information about byte order which may lead to more accurate 

predictions about file-types; but on the other hand, the time 

required for computation (in training SVM or in searching kNN 

given a test instance) also increases. It is therefore crucial to select 

the value of ‘n’ that offers a desirable effectiveness/efficiency 

trade-off. 

We conduct a systematic analysis on how the 

performance of classifiers changes and how the time in 

training/testing increases as the value of n increases. Note that the 

dimensionality of the feature space increases exponentially with n; 

for n=1, the potential size of the feature space is 256, for n=2 the 

size is 65,536, for n=3 the size is 1,6777,216.  For n=3, it is 

impractical to train SVM models with all the features because it 

will take over several weeks on a single machine. We therefore 

use statistical feature selection to control the size of the feature 

space, i.e. we select the most informative features. 

In our experiments we used the Information Gain (IG) 

as the feature selection criterion. IG measures the average 

information associated with the absence or presence of a feature 

for file-type identification. Mathematically, the IG for a particular 

feature measures the change in entropy of the file-types given the 

presence or absence of that particular feature. IG has been 

commonly used for feature selection in text categorization [29], in 

decision tree induction [24], dimensionality reduction [11], etc. 

Given multiple file types (316 in our case), each n-gram feature 

has multiple IG scores, one per file type.  We used the maximum 

of these multiple IG scores of each feature as the final score of the 

feature, and we obtained a ranked list of all the features based on 

their final scores.  We measured the 1F scores as well as the 

training times for SVM with 1-gram features, 2-gram features, and 

for SVM 3-gram using the top-m features in the IG-ranked list of 

features.  Since kNN does not need any offline training, we just 

Figure 7: Performance curves of SVM (2-gram) in fragment-

based FTI: the output of Libmagic was used as the labels. 
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different values of n and feature selection: The output of 
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Figure 9: Average training time per fold for SVM (on 

intact files) for different values of n and feature selection: 

The output of Libmagic was used as the true labels. 
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measured the 1F scores and the testing times according to 

increasing values of m. We only examined feature selection for 

kNN 1-gram because we found it works better than kNN 2-gram 

when using all the features without selection. kNN 2-gram 

required the usage of distributed computing techniques (Hadoop 

based Map-reduce) to calculate the nearest neighbors, as using a 

single machine took more than a week. The heavy computational 

cost is partly due to the relatively large number of non-zero 

features per file in FTI. For example, when using 2-gram bytes as 

the features, the average number of non-zero unique features per 

file is nearly 10000, which is much higher than the typical number 

(300 or less) of unique words in news-story categorization. 

Figure 8 and Figure 9 show the performance and the 

training times (CPU seconds) for SVM with different feature sets.  

Figures 10 and Figure 11 show the performance and the test time 

of kNN using 1-gram features.   

 Based on the observations on the SVM figures, we see 

that using 2-gram features (without feature selection) exhibits a 

desirable balance between effectiveness and efficiency (3-grams 

with 160K features is another reasonable tradeoff).  On the 

contrary, SVM 1-gram is significantly worse in 1F  measure while 

SVM 3-gram with additional features only had negligible 

improvements in 1F but significantly increased computation time. 

In 5 fold cross validation across 30524 examples in the RDC 

dataset, the average training time per fold for SVM 2-gram (using 

24203 training examples per fold) without feature selection is 7.3 

hours on a single core of Intel Xeon 3.16 Ghz processor. The 

testing time per fold (6051 test examples per fold) for all the 

SVM-based methods was about 1second. 

Based on the observations on the kNN figures, we see that 

using the full set of 1-gram features yielded the best 1F  score for 

kNN.  The average computational time per fold is 8.8 CPU 

minutes on 6051 test examples (and 24203 training example), or 

0.09 CPU second per test example.  We used single core of Intel 

Xeon 3.16 Ghz processor for all the nearest neighbor 

computations. The similarity score calculation between two 

instances was cached so as to avoid redundant computations.  

7. CONCLUSION 
 

We conducted the first thorough comparative analysis of FTI 

methods on damaged or fragmentary files, contrasting COTS 

methods and statistical learning ones (SVM and kNN).  The study 

found statistical learning methods to be far more robust than 

COTS in all the measures.  SVM and kNN outperform COTS 

when the gold standard is set of available file extension for intact 

files.  More importantly, SVM and kNN far outperform COTS on 

different types of simulated file damages: files with missing 

signature bytes, files with randomly deleted sections, and isolated 

file segments.  These tests were conducted on a new realistic 

publicly available data set, encouraging future research and 

rigorous comparative evaluations. We also thoroughly analyzed 

the scalability of our statistical classification approaches to FTI.  . 
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